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Abstract: The removal of acidic gases and impurities from gas mixtures is a critical operation in the
oil and gas industry. Several separation techniques, e.g., cryogenic fractionation, polymeric mem-
branes, zeolites, and metal-organic frameworks, are employed to treat gas mixtures depending
upon the nature of separation and contaminants present in the gas mixtures. However, removing
Nz, Hz, H2S, and CO: contents from industrial gas mixtures is a challenging step due to economic
factors, high energy consumption, and effective separation. Hydrate-based separation for selective
gas removal is a promising and efficient separation technique over a range of temperatures, pres-
sures, and acidic gas contents. The enclathration of CO», Hz, N2, H2S, and other natural gas constit-
uents effectively removes acidic gases and other contaminants from process gas streams. This work
presents a novel process design to remove acidic gases and other contaminants from industrial
waste gases and natural gas mixtures to achieve the desired selectivity in gas mixtures. Multi-phase
equilibria calculations were also performed for various binary and ternary gas mixtures (e.g., CO2 +
CHs, H2S + CH4, COz2 + N2, CHs + CO2 + HzS, and CO2 + HaS + N2) over a range of compositions and
T, P conditions. The former calculations established the suitable region in terms of temperature and
pressure for adequate separations. To determine the optimal process conditions (T & P) for efficient
separation, fractional cage occupancy and gas mole fraction in each phase were also computed. A
detailed analysis of the hydrate-based separation shows that the number of stages necessary for
desired separation efficiency depends on the nature of the gas mixture and hydrate stability.
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While doing hydrate phase equilibria calculations, while imposing equilibrium cri-
teria for C # of components and 7 phases, objective function in each phase is as shown in
Equation S1:
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Where:
xj; mole fraction of component i in any phase k
x; mole fraction of component 7 in reference phase r
@; Normalized molar amount.
z; Overall mole fraction.
the fugacity coefficient ratios are utilized here for % and it was calculated by Equa-

tion S2:
Xik _ Dir 0 6
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Where:
K, fugacity ocefficent ratio for component i between phase k and reference phase r
¢ix fugacity coefficient of component i in phase k
¢ fugacity coefficient of component i in reference phase r
0\ stability variable for phase k.
The natural log of fugacity ratio is stability of phase k and calculated by Equation S3
efk = InLik 3)
ir
Where:
fir fugacity of component i in phase k
fir fugacity of component i in reference phase r

This is equivalent to the Gibbs energy minimization with the constraint (Equation
S4):
Ora
Sk _ kUK
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The generalized algorithm for thermodynamic equilibrium is given in Figure 2 of the
manuscript. Moreover, the adopted newton Raphson procedure for minimizing Gibb’s
energy of a system for set of distribution ratios is discussed in detail of the Adam Ballard
Ph.D. thesis [1].

While minimizing Gibbs free energy at calculated values of distribution coefficients
and checking phase stability criteria (Table S1), the mole fractions are updated using be-
low Equation S5 and the algorithm (Figure 2 of the manuscript).

Table S1. Phase Stability criteria for GEM algorithm.

Normalized molar amount (cx) Stability Variable (6x) Phase stability
>0 0 Phase £ is present
=0 +0 Phase k absent
Zj K ik€ Ok
TN a (K% — 1) ®)
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J#ET



Energies 2022, 15, 966 3 of 4

To initialize the Gibbs energy minimization algorithm the 6 =0 and «a; = % are

initialized with the former values with the assumption that all phases are available with
equal amounts. Moreover, GEM calculations for ternary gas mixture of N2 + HzS + COz
were also carried out, and the mole fraction of nitrogen for each stage is presented in Fig-
ure S1.
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Figure S1. Case study for hydrate-based Separation for the ternary gas mixture of CO2+ N2+H2S
(Feed: 86.36 mol. % N2+ 4.54 mol. % CO:z+ 9.09 mol. % H-S).

In addition, recoveries of CHs and H:S in binary hydrate systems for a range of H2S concentrations
were calculated and shown in Figure S2.
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Figure S2. Predicted Recoveries of CHs and H-:S in binary hydrate systems for a range of HzS con-
centrations.
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