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Abstract: The ability to precisely forecast power generation for large wind farms is very important,
since such generation is highly unstable and creates problems for Distribution and Transmission
System Operators to properly prepare the power system for operation. Forecasts for the next 24 h
play an important role in this process. They are also used in energy market transactions. Even a
small improvement in the quality of these forecasts translates into more security of the system and
savings for the economy. Using two wind farms for statistical analyses and forecasting considerably
increases credibility of newly created effective prediction methods and formulated conclusions. In the
first part of our study, we have analysed the available data to identify potentially useful explanatory
variables for forecasting models with additional development of new input data based on the basic
data set. We demonstrate that it is better to use Numerical Weather Prediction (NWP) point forecasts
for hourly lags: −3, 2, −1, 0, 1, 2, 3 (original contribution) as input data than lags 0, 1 that are typically
used. Also, we prove that it is better to use forecasts from two NWP models as input data. Ensemble,
hybrid and single methods are used for predictions, including machine learning (ML) solutions like
Gradient-Boosted Trees (GBT), Random Forest (RF), Multi-Layer Perceptron (MLP), Long Short-Term
Memory (LSTM), K-Nearest Neighbours Regression (KNNR) and Support Vector Regression (SVR).
Original ensemble methods, developed for researching specific implementations, have reduced errors
of forecast energy generation for both wind farms as compared to single methods. Predictions by
the original ensemble forecasting method, called “Ensemble Averaging Without Extremes” have
the lowest normalized mean absolute error (nMAE) among all tested methods. A new, original
“Additional Expert Correction” additionally reduces errors of energy generation forecasts for both
wind farms. The proposed ensemble methods are also applicable to short-time generation forecasting
for other renewable energy sources (RES), e.g., hydropower or photovoltaic (PV) systems.

Keywords: wind energy; wind farm; ensemble methods; short-term forecasting; electric energy
production; machine learning; deep neural network; swarm intelligence

1. Introduction

The impact of humanity on climate change is a fact accepted by most scientists and
policymakers. Renewable energy sources have become a “natural” alternative to energy
sources based on fossil fuels. Obviously, the largest increases in energy production come
from wind sources. However, they are known for their basic disadvantage, which is
intermittent power generation. A way to overcome this drawback is to develop best
possible energy production forecasts and properly prepare the power system for operation
by Distribution and Transmission System Operators. Forecasts for the next day play an
important role in this process. They are also used in energy market transactions. Even a
small improvement in the quality of these forecasts translates into improved security of the
system and savings for the economy. Therefore, efforts are made to improve quality by:
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• analysing the usefulness of various explanatory data;
• utilizing machine learning;
• preparing forecasts with single, team and hybrid methods;
• analysing the influence of point distribution of Numerical Weather Prediction (NWP)

models at large wind farms;
• conducting comparative analysis of forecast quality for various wind farms.

The research presented in this paper concerns two medium-sized wind farms. No
real-world wind speed data had been collected, which has made data analysis difficult.

1.1. Related Works

In recent years, ensemble models have become popular to tackle the deficiencies
of single prediction models. The concept of ensemble is to achieve data variability to
compensate for disadvantages of component models, such as bias, and obtain a solution
that is more robust and less susceptible to the errors of NWP models. In their work,
Liu, Chen, Lv, Wu and Liu [1] presented different ways of creating an ensemble. One
solution (sol1) was based on achieving varying training data sets. Bagging and boosting
mechanisms were indicated by the authors as a way to create such data, and decision tree-
based methods as models using this type of data. Another solution (sol2) involved using
different prediction models as components of the ensemble. In this case, the same class of
prediction tools (different ANN) or their different classes (statistical and machine learning
models) were both suggested as viable options. The third way of achieving variability
(sol3) was to use the same prediction models with different components. MLP networks
with different numbers of hidden layers and neurons in them or wavelet networks using
different wavelets could be given as an example here. To systematize the papers presented
below, they are assigned to the aforementioned groups.

Studies on sol1 have been presented in many works [2–8]. Research of Yildiz, Acikgoz,
Korkmaz and Budak [2], Duan, Wang, Ma, Tian, Fang, Cheng, Chang, Y and Liu [3],
and Abedinia et al. [4] addressed achieving sol1 by decomposition of input data into
IMFs. On the other hand, Memarzadeh and Keynia [5] and Liu, Zhao, Yu, Zhang, and
Wang [6] used wavelet decomposition, while Wang, Zhang and Ma [7] used single spectrum
analysis instead. Like in the work of Sun, Zhao and Zhang [8], clusterization sometimes
followed decomposition.

Literature concerning sol2 offers a plethora of model mixes. Piotrowski et al. [9]
analysed different combinations of physical model, kNN regression, MLP and LSTM
networks with PSO or BFGS optimization. Other researchers used 2 neural networks of the
same type with different Lagrange polynomials in hidden layers [7], different predictive
distributions [10], BPNN, ENN, ELM, LSTM [11], ANN-SVR-Gaussian process [12], etc.

After data decomposition, Sun, Zhao, and Zhang [8] performed further clustering
and created a separate LSTM model for each cluster. Thus, their work could be assigned
not only to sol1 but also to the sol3 category. The same applies to the work by Chen and
Liu [11], as the authors created the same models for data with different time resolutions.
Others authors proposed, among others, using parallel stacked autoencoders [13] and
LSTM networks [14–19] with different wavelet activation kernels [14] or with ensemble
pruning and combination [15].

Some authors performed comparative analyses. Sun, Zhao, and Zhang [8] compared
BP, Elman, and LSTM networks accuracy, Saini, Kumar, Mathur, and Saxena [16] compared
RNN, NARX, and LSTM networks and Ahmadi et al. compared different tree models [17];
Kisvari, Lin, and Liu confronted LSTM with GRU [18], while Yildiz et al. [2] compared
CNN with other deep learning methods. Although these studies lacked ensemble models
as a cherry on top, the performed analyses could be of use when composing ensembles
of these models. Semi-ensemble, switchable models would also be a viable alternative:
Ouyang, Huang, He, and Tang [19] created models switched by the Markov chain regime,
while Sun, Feng, and Zhang [10] created an ensemble with component models accuracy at
previous time steps used as a switching condition.
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Machine learning models have become frequently used prediction tools, not only as
ensemble components, but also as standalone solutions. Decision trees with variants [17],
SVR [10,20], and neural networks [8–10] are examples of quite popular predictors. With
increasing average PC computational power, deep learning models gained their share of
popularity, too. Among them, not only methods such as LSTM [3,6,8,11,14,16,18,21,22],
GRU [18,23], or deep ESN [24] have been used in research, but also methods previously
associated with image analysis like CNN [1,2,25–27] have been incorporated into studies.
In their research, Wang, Li, and Yang [19] proposed an LSTM-based encoder to achieve
input attention that understands the importance of variables, Sun, Zhao, and Zhang [8]
created different LSTM hybrids for wind power series of multiple time scales, while
Niu et al. [23] presented Sequence-to-Sequence GRU Networks as a recurrent method of
multi-step ahead prediction.

In the papers reviewed by us, convolution networks were used to extract spatial
information from data. In some cases [2,25,26], they were used to add spatial aspect to tem-
poral information. For that purpose, Yin, Ou, Huang, and Meng [28] suggested extracting
both temporal and spatial information by cascade of CNN followed by LSTM; in another
case [27], extracted spatial information was a replacement for lacking time information.

Data extraction by CNN can be treated as semi-automatic input inference without user
involvement. Some authors, however, preferred a different approach, i.e., feature engineer-
ing and input selection based on statistical analysis. Lin and Liu [29] presented wind data
correction methods according to IEC standards, Medina and Ajenjo [30] presented analysis
of optimal time lags for input variables with different time horizons, while other authors
presented data cleaning and imputation by Lomnaofski norm [31], extensive sensitivity
analysis of input data [9], and analyses of optimal sparsity of NWP model grids [32].

Last but not least, note that all of the mentioned deep learning and ensemble solutions
could either use NWP data or be created as a stack of weather forecasting models followed
by energy prediction models. Since generated energy prediction accuracy is usually affected
by the accuracy of input data, enhanced weather forecasts could lead to improved energy
prediction. Better weather forecast could be achieved in multiple ways, e.g., de Mattos
Neto et al. [33] proposed in their paper an LSTM-SVR hybrid as a means of obtaining better
wind speed forecasts.

1.2. Objective and Contribution

The main objectives of this paper can be summarized as follows:

• Perform extensive statistical analysis of time series of energy generated in two wind
farms and perform statistical analysis of potential exogenous explanatory variables;

• Perform very extensive analysis of sensitivity of explanatory variables;
• Verify the accuracy of forecasts conducted by single methods, hybrid methods, and

ensemble methods (13 methods in total);
• Develop and verify an original ensemble method, called “Ensemble Averaging With-

out Extremes” and conduct an original selection of combinations of predictors for
ensemble methods;

• Identify the most efficient forecasting methods from among tested methods for data
from both wind farms.

Below are listed selected contributions of this paper:

1. This research addresses forecasting for large wind farms. Although this topic fre-
quently appears in literature, this research has its unique values. First of all, an
extensive data analysis was performed, including the time series itself, additional
data, and two different NWP model parameters (81 inputs in total). Secondly, 13 fore-
casting methods for two wind farms were tested and compared.

2. Development of an original method, called “Ensemble Averaging Without Extremes”.
Predictions by this method have yielded the lowest SS metric (Skill Score) and nMAE
error among the tested methods; the original “Additional Expert Correction” method
yielded additional improvement of forecasts.
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3. Construction of a number of different models, data scenarios and parameters resulted
in testing more than 400 forecasting models. This makes this research one of the
most extensive studies on the topic. The conclusions drawn from this research can be
generalized, at least for Central Europe.

The remainder of this paper is organized as follows: Section 2.1 presents statistical
analysis of times series and NWP data for two wind farms. The importance of the available
basic input data and additional input data is discussed in Sections 2.2 and 2.3. Section 3 de-
scribes prediction methods employed and Section 4 gives evaluation criteria for assessment
of forecasting quality. Extensive analysis of the results and their discussion is in Section 5.
Section 6 summarizes the whole research providing the main conclusions. References are
listed at the end of this paper.

2. Data
2.1. Statistical Analysis

For statistical analyses, data acquired for two medium-sized European wind farms (A
and B) were used. The range of the acquired data was identical for both farms and spanned
from 4 April 2017 to 10 October 2019, with about 29 months in total. Rated powers for
Farms A and B were 50 MW and 48.3 MW, respectively.

The following data were available for analysis:

• Wind farm generation time series (forecasted variable);
• Weather forecasts for wind farms location.

Records of actual meteorological parameters were not available; hence, GFS and
ECMWF NWP models were used for our research instead. For ECMWF, the archived
high-resolution atmospheric model was chosen (HRES) [34]. The GFS model was supplied
by the Interdisciplinary Modelling Center, Warsaw University (ICM UW) [35,36]. Both
models make it possible to use 4 forecast runs per day (at 0/6/12/18 UTC) with 1 h
resolution and maximal horizon of 240 h. Time resolution of HRES changes, however,
to a 3 h interval after 90 h horizon and to 6 h after 144 h horizon. For GFS, only the
first interval change appears after reaching the 120 h horizon. For each wind farm, only
weather forecasts corresponding to the respective spatial point were used. Weather source
points for the ECMWF model were chosen as the points nearest to the ones appearing in a
dense 1/8 × 1/8-degree grid. The same method was applied to GFS with its native spatial
resolution of 0.25 × 0.25 degrees.

Data from both time series of electric energy production (Farm A and Farm B) were
normalized separately for anonymization to relative units (1 relative unit is equal to the
rated power of the wind farm). However, each time series of NWP forecasts data was
normalized using min–max scaling.

Table 1 shows descriptive statistics for time series of hourly electric energy generated
by the Wind Farm A and Wind Farm B considered here. Percentage distribution of electric
energy generation for both wind farms is shown in Figure 1. The analysis of electric energy
generation percentiles shows that values very close to 0 made up more than 25% of both
time series samples. Usually, energy generation was within the range of (0–0.1) [p.u.] for
both time series samples.

Calculated autocorrelation coefficient (ACF) of hourly generation in both time series
shows a little daily periodicity. Autocorrelation coefficients quickly decrease for the follow-
ing hours of the first day. For both time series, all autocorrelation coefficients are statistically
significant (5% significance level) up to 3 days back (72 prior observations). Autocorrelation
function (ACF) of the Wind Farm A energy generation time series is presented in Figure 2.
However, autocorrelation function (ACF) of the Wind Farm B energy generation time series
is presented in Figure 3.
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Table 1. Descriptive statistics for hourly electric energy generation.

Descriptive Statistics Wind Farm A Wind Farm B

Mean 0.278 [p.u.] 0.288 [p.u.]
Standard deviation 0.284 [p.u.] 0.315 [p.u.]

Minimum 0.000 [p.u.] 0.000 [p.u.]
Maximum 0.990 [p.u.] 0.980 [p.u.]

Coefficient of variation 102.277% 109.164%
The 10th percentile 0.000 [p.u.] 0.000 [p.u.]

The 25th percentile (lower quartile) 0.025 [p.u.] 0.018 [p.u.]
The 50th percentile (median) 0.181 [p.u.] 0.163 [p.u.]

The 75th (upper quartile) 0.459 [p.u.] 0.483 [p.u.]
The 90 percentile 0.742 [p.u.] 0.861 [p.u.]

Variance 0.080 0.099
Skewness 0.906 0.941
Kurtosis −0.320 −0.468
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Figure 4 shows daily variability of hourly energy production [p.u.] of Wind Farms
A and B. Arithmetic means of hourly energy generations for each hour of the day were
calculated based on data span from 4 April 2017 to 28 September 2018 (18 months in
total), with omitting test period datetimes—1 October 2018 to 1 October 2019. For the
same periods, mean arithmetic hourly generations were calculated for each month, with
the averaging of values for the months occurring two times. Pearson linear correlation
coefficient between the data is equal to 0.950. Daily variability of electric energy generation
of both wind farms is similar.
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Figure 5 shows seasonal variability of electrical energy generation of Wind Farms A
and B. Pearson linear correlation coefficient between the data is equal to 0.922. Seasonal
variability of electric energy generation of both wind farms is similar.
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Figure 5. (a) Seasonal variability of electrical energy production of Wind Farm A; (b) Seasonal
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Figure 6 presents dispersion diagrams—relationships between wind speed forecasts
[p.u.] for the beginning of a 1 h period of energy generation and actual production
of electrical energy [p.u.] from Wind Farm A for 2 different NWP models (GFS and
ECMWF). Figure 7 contains similar diagrams for Wind Farm B. For both figures, points
are slightly more concentrated for the ECMWF model (cases b). All dispersion diagrams
indicate a non-linear relationship between wind speed and the yield of electricity. The
exact shape corresponding approximately to the shape of the wind turbine power curve
typical for a single turbine cannot be well seen on the diagram due to low concentration of
data points. Both of the observed disadvantageous phenomena result probably from the
following reasons:

• Data include wind speed forecasts instead of actual, recorded values;
• Wind speed forecasts are momentary values for a given hour and actual wind speed

usually changes during a 1 h period;
• Data come from very large wind farms with turbines scattered across vast territory

with varying orography. For single wind turbines, data would probably be much
more concentrated.

For both wind farms, extreme outliers were treated as unreliable samples, and fur-
ther removed from data. This can be due to incorrect readings, missing data or sched-
uled/unscheduled shutdowns of at least a part of the wind farm. Only extreme, rarely
occurring outliers were removed from the data, since big errors of wind speed prediction
certainly must occur in a 24 h forecast horizon. A scenario with null wind speed forecast
and non-zero electricity generation could be given as an example of NWP inaccuracy.

2.2. Analysis of Importance of Available Basic Input Data for Forecasting Methods

A detailed description of the available basic set of potential input variables for fore-
casting models is presented in Table 2. Figure 8 presents time points (momentary values
time lags) of point weather forecasts from GFS and ECMWF models (input data) in relation
to periods of electricity generation.
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To identify the most important inputs for prediction models, extensive sensitivity
analysis was performed for both wind farms. All of the 68 potential input variables that
had been acquired were included. Comparison of the importance of input variables for
both farms made it possible to draw general conclusions about the validity of use of given
variables in predictions of electricity generation from large wind farms. Figure 9 presents
consecutive steps of this analysis. Global Sensitivity Analysis (SA statistics) in the MLP
network was performed for 4 models. Each trained model had 68 input variables and
1 output variable (electricity generation), 40, 50, 60, 70, and 80 (5 models) hidden neurons,
used the BFGS learning algorithm, hyperbolic tangent hidden layer activation function,
and linear output layer activation function. After training each MLP model, GSA was
performed and the importance of each input variable was computed. Next, for each input,
the overall rating was calculated as the arithmetic mean of 4 results of global sensitivity
analysis obtained from each MLP model.
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Table 2. Description of available basic input variables for forecasting models.

Input Data Numbers Input Data Code/Codes Description of Input Data (Three Categories)
Category I. Markers of variability of wind farm’s daily energy production

1 hour
Numbers from 0 to 23 refer to the time of the forecast, where
0 refers to power generation from 23:00 to 00:00

2 ave_hour Arithmetic mean of power generation for the given hour of the
day (24 values)

Category II. Lagged variables of hourly energy generation forecasted time series

3–5 E-23 h, E-24 h, E-25 h Energy generation lagged by 23/24/25 h from currently
considered timestamp

Category III. NWP forecasts

6–12 GFS_t_−3, GFS_t_−2, . . . ,
GFS_t_3

Seven values of air temperature point forecasts from GFS NWP
model for respective hourly lags −3, −2, −1, 0, +1 1, +2, +3 h

13–19
ECMWF_t_−3,
ECMWF_t_−2, . . . ,
ECMWF_t_3

Seven values of air temperature point forecasts from ECMWF
NWP model for respective hourly lags −3, −2, −1, 0, +1 1, +2, +3
h

20–26 GFS_p_−3, GFS _p_−2, . . . ,
GFS _p_3

Seven values of atmospheric pressure point forecasts from GFS
NWP model for respective hourly lags −3, −2, −1, 0, +1 1, +2, +3
h

27–33
ECMWF_p_−3,
ECMWF_p_−2, . . . ,
ECMWF_p_3

Seven values of atmospheric pressure point forecasts from
ECMWF NWP model for respective hourly lags −3, −2, −1, 0, +1
1, +2, +3 h

34–40 GFS_h_−3, GFS_h_−2, . . . ,
GFS_h_3

Seven values of air humidity point forecasts from GFS NWP
model for respective hourly lags −3, −2, −1, 0, +1 1, +2, +3 h

41–47
GFS_alpha_−3,
GFS_alpha_−2, . . . ,
GFS_alpha_3

Seven values of wind direction (0 degree at N, 90 at E) point
forecasts from GFS NWP model for respective hourly lags −3, −2,
−1, 0, +1 1, +2, +3 h

48–55
ECMWF_alpha_−3,
ECMWF_alpha_−2, . . . ,
ECMWF_alpha_3

Seven values of wind direction (0 degree at N, 90 at E) point
forecasts from ECMWF NWP model for respective hourly lags
−3, −2, −1, 0, +1 1, +2, +3 h

55–61
GFS_v_mod_−3,
GFS_v_mod_−2, . . . ,
GFS_v_mod_3

Seven values of wind speed (modulus calculated from NS and
WE components) point forecasts from GFS NWP model for
respective hourly lags −3, −2, −1, 0, +1 1, +2, +3 h

62–68
ECMWF_v_mod_−3,
ECMWF_v_mod_−2, . . . ,
ECMWF_v_mod_3

Seven values of wind speed (modulus calculated from NS and
WE components) point forecasts from ECMWF NWP model for
respective hourly lags −3, −2, −1, 0, +1 1, +2, +3 h

1 1 h lag refers to the time point for which forecast is to be generated, and energy generated is assigned to the
hourly period between the considered time and one hour earlier.
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Results of sensitivity analysis for potential input variables of prediction models are
shown in Figure 10. The most important input variables are definitely wind speed forecasts,
notably, the ones closest to the 1 h energy generation period. ECMWF NWP forecasts
turned out higher in ranking than GFS forecasts, while the least important input variables
were predictions of atmospheric pressure.

The importance of INPUT variables varied between 4 analytic methods used here for
both value of metrics and position in importance ranking. The most differing results came
from the SA method due to the non-linear modelling (MLP network) used in that method.
The remaining analytic methods used linear modelling; hence, their results were similar.
Figure 11 contains the interrelationship matrix (Pearson linear correlation coefficients)
between 4 analytic methods used to determine the importance of input variables.

2.3. Analysis of Importance of Additional Input Data Created

A detailed description of an additional set of potential input variables for forecasting
models, derived from mathematical transformation of basic data, is presented in Table 3.
Additional input data are created to verify their potential usefulness and importance in
the forecasting process. Wind speed forecasts using either one or both NWP models are
averaged to reduce the random component. Percentage differences between averaged wind
speed/atmospheric pressure point forecasts for respective pairs of hourly lags are computed
to include additional information about the dynamics for wind speed/atmospheric pressure
in the model. Physical model (turbine power curve) prognosis is another additional
information. A third-order polynomial is used to approximate the power curve, while
averaged wind speeds with lag 0 and 1 from time bounds of the predicted periods are
inputs to this model.

Figure 12 shows the results of importance analysis of the additional input data created.
The analysis was performed according to steps in Figure 3, the same as for the basic input
data case, and used 68 basic input variables (described in Table 2) and 13 additional inputs
(described in Table 3). Figure 12 presents partial results-40 best input variables out of
the total of 81. Studies have shown that additional input data, in particular forecasts
from physical models and average values of predictions, are highly valuable as prediction
model explanatory data, as additional input data usually rank high in terms of importance
(OR metrics). Moreover, similar results for both wind farms show the universality of
our procedure of the construction of additional input data. As the next step, it was
verified whether additional data can be advantageous for different methods of electricity
generation forecasting.
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Table 3. Description of additional input variables created for forecasting models.

Input Data Numbers Input Data Code(s) Description of Additional Input Data

1A ave(GFS_ECMWF)_v_mod_0-1
Arithmetic mean of averaged wind speed point forecasts for
hourly lags 0 h and +1 1 h from ECMWF NWP and GFS
NWP models

2A ave_ECMWF_v_mod_0-1 Arithmetic mean of wind speed point forecasts for hourly
lags 0 h and +1 1 h from ECMWF NWP model

3A ave_GFS_v_mod_0-1 Arithmetic mean of forecasts of wind speed point for hourly
lags 0 h and +1 1 h from GFS NWP model

4A–7A

differ(GFS_ECMWF)_v_mod_−2_−1
differ(GFS_ECMWF)_v_mod_−1_0
differ(GFS_ECMWF)_v_mod_0_1
differ(GFS_ECMWF)_v_mod_1_2

Percentage difference between averaged wind speed point
forecasts for respective pair of hourly lags −2, −1, 0, +1 1,
+2 h from ECMWF NWP and GFS NWP models

8A–11A

differ(GFS_ECMWF)_p_−2_−1
differ(GFS_ECMWF)_p_−1_0
differ(GFS_ECMWF)_p_0_1
differ(GFS_ECMWF)_p_1_2

Percentage difference between averaged atmospheric
pressure point forecasts for respective pair of hourly lags −2,
−1, 0, +1 1, +2 h from ECMWF NWP and GFS NWP models

12A E_from_producer_turbine_power_curve

Forecast of electric energy production calculated based on
producer turbine power curve estimated as a polynomial of
degree 3, with ave(GFS_ECMWF)_v_mod_0-1 as input data.
For input data below and above the cut-in for turbine, the
forecast value is equal to zero

13A E_from_power_curve(scatter_plot)

Forecast electric energy production calculated based on
estimated polynomial of degree 3 as turbine power curve
with ave(GFS_ECMWF)_v_mod_0-1 as input data. The
estimation of power curve was executed based on the
scatter plot between electric energy production and wind
speed forecasts. For input data below and above the cut-in
for turbine, the forecast value is equal to zero

1 1 h lag refers to the point of time for which forecast is to be generated, and energy generated is allocated between
the considered time and one hour earlier.
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3. Forecasting Methods

This section includes the description of proposed forecasting methods. The research
used both single methods as well as advanced ensemble and hybrid methods. Described
the Persistence Model is a benchmark for the quality of other, more advanced forecasting
methods.

Single methods, using only one individual predictor, are addressed next. The general
scheme is presented in Figure 13.
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Persistence model. The naïve model is the simplest model in forecasting. In the
Persistence Model, the forecast generation value is the same as the actual energy generation
value from the same hour the day before. Forecasts are calculated by Formula (1):

ŷt = yt−24 (1)

where ŷt—forecast electric energy generated by wind farm for hour t and yt−24·n—energy
generation for period lagged by t – 24 from forecast period t.

Physical Model. This forecasting model of generated hourly power is a function of
wind speed. The function is in the form of the 3rd-order polynomial. Two different methods
were utilized to form 3rd-degree polynomial separately for Wind Farm A and Wind Farm B.

• Physical model version 1. The polynomial of degree 3 is estimated based on turbine
power curve data from the manufacturer’s catalogue (turbine power for wind speeds
with 1 m/s steps). For input data below and above cut-in for each turbine, the forecast
is equal to zero. The input data depend on variant (ave(GFS_ECMWF)_v_mod_0-1,
ave_ECMWF_v_mod_0-1 or ave_GFS_v_mod_0-1).

• Physical model version 2. The polynomial of degree 3 is estimated based on the scatter
plot between electric energy production and wind speed forecasts (ave(GFS_ECMWF)
_v_mod_0-1). For input data below and above cut-in for each turbine, the forecast
value is equal to zero. The input data are ave(GFS_ECMWF)_v_mod_0-1.

K-Nearest Neighbours Regression. KNNR is a non-parametric method used for
regression problems [37]. The input of the model contains the k-closest training examples in
the feature space. The output of KNNR model is the property value for the object. Property
value is the average of the values of k-nearest neighbours. Hyperparameter—the value of k
(the number of nearest neighbours) needs searching for the appropriate value. The other
hyperparameter for tuning is the choice of the distance metric.

Neural Network, Type MLP—Multi-layer Perceptron is a classical type of ANN.
Widely used over decades, it proved its applicability as an effective non-linear or linear
global approximator [13,38]. It is a feedforward ANN usually with an input layer, one or
two hidden layers, and an output layer. Originally, it used the backpropagation algorithm
for supervised learning. During years of development, other optimisation algorithms were
applied for MLP learning, among them, the BFGS method that was chosen as the learning
algorithm in our research. The number of neurons in hidden layer(s) was decided to be the
main hyperparameter for tuning.

Support Vector Regression. Support Vector Machine for regression (SVR) transforms
the classification task into regression by defining hyperparameter width ε tolerance re-
gion around the destination [39]. Hyperparameters of SVR for tuning are the following:
regularization constant C, tolerance ε, and parameter s of the Gaussian kernel.

Deep Neural Network Type LSTM. The main difference between LSTM and tradi-
tional RNNs is LSTM’s internal built format. Its hidden layers contain 3 gates, namely,
input, forget, and output gate. This solution allows to control the flow of information
and allows to deal with problems such as gradient explosion and vanishing, and taking
long-term dependencies into account [10]. A typical LSTM network contains an input
layer followed by up to two hidden layers finished by an output layer with dropout layers
possible between layers. The dropout mechanism’s goal is to prevent overfitting by keeping
node in network with Bernoulli distribution probability [40]. The LSTM model contains
(among others) the following hyperparameters: the number of hidden layers and neurons
in them, activation function in each layer, number of training epochs, batch size, dropout
degree, type of model optimizer, and learning rate.

Ensemble methods, using more than one individual predictor and supported by a
simple or more complex integration system of individual forecasts, are addressed next. The
simplest integration system is weighted averaging of individual predictors. The general
scheme of establishing an ensemble of predictors is presented in Figure 14. The ensemble
method can use the same type of methods as predictors (e.g., Random Forest, Gradient-
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Boosted Trees) or different types of predictors (e.g., single Machine Learning methods as
predictors.
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Random Forest Regression. RF is an ensemble method based on many single decision
trees (the same type of models). In the regression task, the prediction in a single decision
tree is the average target value of all instances associated with the single leaf node [41].
The final prediction is the average value of all n single decision trees. The regularization
hyperparameters depend on the algorithm used, but generally restricted are among others:
the maximum depth of a single decision tree, maximum number of levels in each decision
tree, minimum number of data points placed in a node before the node is split, minimum
number of data points allowed in a leaf node and maximum number of nodes. The number
of predictors for each of the n single decision trees is made by the random choice of k
predictors from all available n predictors [41,42].

Gradient-Boosted Trees for Regression. Gradient boosting refers to an ensemble
method that can combine several weak learners into a strong learner [41]. GBT works
by sequentially adding predictors (the same type of models) to the ensemble, each one
correcting its predecessor. The method tries to fit the new predictor into the residual
errors made by the previous predictor. The final prediction is the average value from all n
single decision trees. In comparison with random forest, this method has one additional
hyperparameter—learning rate, which scales the contribution of each tree [42,43].

Ensemble Averaging Without Extremes. The method developed by the authors of
this study involves the deletion of the minimum and maximum forecast from the set of n
single predictors (different types of methods) before each calculation of single final forecasts,
being an average of forecasts from n-2 single predictors. The deletion is executed 24 times
for each forecast separately. The choice predictors in the ensemble is based on the similar
levels of forecasting error and mutually independent operation [9]. The final forecast result
is calculated by Formula (2).

ŷi =
1

n− 2
· (

s

∑
k=1

ŷk
i −min{ŷk

i } −max{ŷk
i }) (2)

where i is the forecast point, ŷi is the final forecast value, ŷk
i is the forecasted value by

predictor number k, and n is the number of predictors in the original ensemble before the
removal of the outputs of predictors yielding extreme forecasts from the set of results.

Weighted Averaging as an Integrator of Ensemble based on nMAE and R. It inte-
grates the results of selected predictors (different types of methods) into the final verdict of
the ensemble. The final forecast is defined as the average of the results generated by all n
predictors in the ensemble and is calculated by Formula (3) [9,39]. This method reduces
the variance of forecast errors. Predictors are included in the ensemble based on two
important elements:
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• time series of the residues from forecasts should be most distant from each other (small
R values);

• the smallest nMAE errors on the validation subset.

ŷi =
1
n

n

∑
j=1

ŷj
i (3)

where i is the prediction point, ŷi is the final predicted value, ŷj
i is the predicted value by

predictor number j, and n is the number of hybrid predictors in the ensemble.
Hybrid methods, using two or more different methods connected in series, are ad-

dressed next.
Machine learning method with additional input data from two Physical models.

This hybrid method is a cascade of two different Physical models (version 1 and version 2)
with one of the five ML methods (GBT, SVR, KNNR, MLP, or LSTM). ML component uses
both forecasts of electric energy production as an additional input. The general scheme of
this hybrid method is presented in Figure 15.
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Figure 15. General structure of hybrid method—machine learning method with additional input
data from two Physical models.

Physical model version 1 with input data as wind speed forecast from Gradient-
Boosted Trees method. This hybrid method consists of the Gradient-Boosted Trees method
connected in series with Physical Model Version 1. The GBT method predicts wind speed,
while Physical Model Version 1 forecasts electric energy production. Physical Model Version
1 yielded smaller errors than the MLP and GBT methods considered here. The training and
testing subsets differ from each other. The training subset uses wind speed based on the
manufacturer’s reversed turbine power curve (third-order polynomial) as additional input.
This allows the method to learn effective wind speed corresponding to actual values of
electric energy production. In turn, the testing subset uses ave(GFS_ECMWF)_v_mod_0-1
as its additional input, since electric energy production, and thus effective wind speed,
would be unobtainable during the operational work of the models. The concept of this
hybrid methods is based on the assumption that GBT will learn better on a training subset
containing a precise estimate of wind speed than on one containing wind speed forecasts
with a large random component. The general scheme of this hybrid method is presented
in Figure 16.

A summary description of thirteen tested forecasting methods is shown in Table 4.
The listed methods include four types of ensemble methods, two types of hybrid ones, and
seven single methods. Six methods (single/ensemble) are machine learning (ML) methods,
including one deep learning method.
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Table 4. Summary description of thirteen tested forecasting methods.

Name of Method Method Code Category Complexity

Persistence PERSISTENCE Linear/
non-parametric Single

Physical model version 1 PHYS_v1 Non-linear/
parametric Single

Physical model version 2 PHYS_v2 Non-linear/
parametric Single

K-Nearest
Neighbours Regression KNNR Non-linear/

non-parametric Single

Type MLP artificial
neural network MLP Non-linear/

parametric Single

Support Vector Regression SVR Non-linear/
non-parametric Single

Deep neural network type LSTM LSTM Non-linear/
parametric Single

Random Forest Regression RF Non-linear/
non-parametric

Ensemble
(one type of model)

Gradient-Boosted Trees
for regression GBT Non-linear/

non-parametric
Ensemble

(one type of model)

Ensemble Averaging
Without Extremes INT_OUT_EXT [p1 *, . . . , pn] Non-linear/

non-parametric

Ensemble
(different types of models
including hybrid models)

Weighted Averaging as an
Integrator of Ensemble based on

nMAE and R
INT_AVE [p1 *, . . . , pn] Non-linear/

non-parametric

Ensemble
(different types of models
including hybrid models)

Machine learning method with
additional input data from two

physical models
PHYS(v1&v2)→ML Non-linear/

parametric Hybrid

Physical model version 1 with
input data as wind speed forecast

from Gradient-Boosted
Trees method

GBT→PHYS_v1 Non-linear/
parametric Hybrid

Remark: * denotes first predictor in ensemble of n predictors.
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Additional expert correction of forecasts. Since wind turbines produce no power
below the lower and above the upper limits of wind speed, a unique expert correction
method is proposed. Obviously, without verification, the use of the correction would
be unjustified, as it applies to wind speed forecasts with a large random component
instead of real-world wind speeds. Due to that, its effectiveness and validity are verified
for the selected group of methods providing best forecasts. A robust wind estimator
ave(GFS_ECMWF)_v_mod_0-1 is used as a conditional variable for the method to adjust
for bias of singular NWP models. For wind speed forecasts—ave(GFS_ECMWF)_v_mod_0-
1 below cut-in and above cut-out wind speeds for wind turbine, forecast electric energy
production is corrected to zero. The final prediction with expert correction is calculated
by Formula (4).

Êi =


Êi f or vmin〈v̂i〉vmax

0 f or v̂i ≤ vmin
0 f or v̂i ≥ vmax

(4)

where Êi is the predicted value (electric energy production), v̂i is the predicted wind speed
(ave(GFS_ECMWF)_v_mod_0-1) and vmin and vmax are cut-in and cut-out wind speeds
of turbine.

4. Evaluation Criteria

Three evaluation criteria are used to test the performance of the methods, including
normalized Root Mean Square Error (nRMSE), normalized Mean Absolute Error (nMAE)
and normalized Mean Bias Error (nMBE).

Normalized Root Mean Square Error which is sensitive to large error values is calcu-
lated by Formula (5):

nRMSE =
1

cnorm

√
1
n

n

∑
i=1

(ŷi − yi)
2 (5)

where ŷi is the predicted value (electric energy production), yi is the actual value, cnorm is
the normalizing factor (rated power of wind farm), and n is the number of prediction points.

Normalized Mean Absolute Error is calculated by Formula (6). nMAE is a risk metric
according to the expected value of the absolute error.

nMAE =
1
n

n

∑
i=1

1
cnorm

|ŷi − yi| · 100% (6)

Normalized Mean Bias Error (nMBE) captures average bias in prediction and is calcu-
lated by Formula (7). The forecasting method overestimates if nMBE > 0 or underestimates
if nMBE < 0.

nMBE =
1
n

n

∑
i=1

1
cnorm

(ŷi − yi) (7)

Errors nRMSE and nMAE are basic measures to evaluate the accuracy of proposed
models, while nMBE is only auxiliary. In the process of forecasting electric energy pro-
duction in a wind farm, the changes of nRMSE and nMAE have the same trend, and the
smaller the two error values, the more accurate the prediction results. Both show random
and systematic errors. A large gap between nMAE and nRMSE for the results of a method
indicates that predicted values are extremely distant from the measured data [44,45].

The effectiveness of the forecasting approaches is found by considering the uncertainty
and variability of forecasts [46]. For a comparative assessment of the performance test of
the analysed methods, the Skill Score (SS) metric was used. The proposed Skill Score metric
uses two error metrics—nRMSE and nMAE—and is calculated by Formula (8). Higher SS
values are an indication of superior prediction quality.

SS =
1
2

[(
1−

nMAE f orecast

nMAEre f erence

)
+

(
1−

nRMSE f orecast

nRMSEre f erence

)]
(8)
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where nMAE f orecast and nRMSE f orecast are errors of the analysed method, nMAEre f erence
and nRMSEre f erence are errors of reference method (persistence method—naive model).

5. Results and Discussion

The range of the acquired data was identical for both wind farms and spanned from
4 April 2017 to 10 October 2019, with about 29 months in total. Data were divided into three
subsets—training subset, validation subset, and test subset. The training and validation
subsets for the period from 4 April 2017 to 30 September 2018 (17 months) were chosen
at random (85% and 15%, respectively). The training subset is used for the estimation of
model parameters. The validation subset is used for tuning hyperparameters of parts of
methods. The last part of the data (from 1 October 2018 to 1 October 2019—12 months)
constituted the test subset used for one-time final evaluation of the quality of specific
prediction methods on data for all seasons.

Predictions were conducted sequentially, from single methods with a limited number
of input variables to hybrid methods, to ensemble methods. Such procedure allows us
to observe differences in the quality of results depending on the complexity of particular
methods and the range of input variables used. Research was done in steps in order
to verify different hypotheses, and find an optimal input dataset and the best group of
prediction methods.

Step 1. Hypotheses verification:

• Are the accuracies of two designed physical models different from each other?
• Is it better to use one or two NWP models with wind speed forecasts for physical models?

Tables 5 and 6 contains results of forecasts for A and B wind farms, respectively.
Physical and Persistence (reference) Models were used for predictions.

Table 5. Measures of performance of the proposed Physical Models (test subset) for Wind Farm A.

Method Code Input Data Codes nMAE [%] nRMSE nMBE

PHYS_v1 ave(GFS_ECMWF)_v_mod_0-1 12.3288 0.1813 0.0349
PHYS_v2 ave(GFS_ECMWF)_v_mod_0-1 12.3700 0.1709 0.0025
PHYS_v1 ave_ECMWF_v_mod_0-1 13.2318 0.1920 0.0663
PHYS_v1 ave_GFS_v_mod_0-1 14.5975 0.2152 −0.0063

PERSISTENCE E-24 h 28.7790 0.3833 0.0127
Remarks: The best fitting results for each fitting measure are printed in bold in blue. The worst fitting result is
printed in red.

Table 6. Measures of performance of the proposed Physical Models (test subset) for Wind Farm B.

Method Code Input Data Codes nMAE [%] nRMSE nMBE

PHYS_v1 ave_ECMWF_v_mod_0-1 14.6101 0.2246 −0.0173
PHYS_v1 ave(GFS_ECMWF)_v_mod_0-1 15.2718 0.2286 0.0403
PHYS_v2 ave(GFS_ECMWF)_v_mod_0-1 15.9984 0.2196 −0.0025
PHYS_v1 ave_GFS_v_mod_0-1 19.5102 0.2889 −0.0468

PERSISTENCE E-24 h 29.9931 0.3886 −0.0291
Remarks: The best fitting results for each fitting measure are printed in bold in blue. The worst fitting result is
printed in red.

Results of the two Physical Models indicate that PHYS_v1 was better fitted for both
wind farms, while results for the NWP models were ambiguous. Although using only the
GFS model was clearly the least favourable option, for Wind Farm A it was better to use
both NWP models, while for Wind Farm B it was better to use the ECMWF model only. In
comparison, the nMAE Persistence Model was twice as good as both Physical Models.

Step 2. Hypotheses verification:

• Is it better to use NWP point forecasts for hourly lags: −3, 2, −1, 0, 1, 2, 3 (original
contribution) as input data instead of the typically used lags 0, 1?

• Is it better to use one or two NWP models as input data source?
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To verify the above, a strong GBT method was used, recommended by multiple papers.
Tables 7 and 8 present the resulting forecasts for Wind Farms A and B using the proposed
GBT method with different versions of NWP input data.

Table 7. Measures of performance of the proposed GBT method, with different versions of NWP
input data (test subset) for Wind Farm A.

Method Code Input Data Numbers/Description nMAE [%] nRMSE nMBE

GBT
1−68 (68 inputs)/including NWP forecasts

from ECMWF and GFS models (point forecasts
for hourly lags: −3, 2, −1, 0, 1, 2, 3)

11.8518 0.1636 0.0006

GBT

1–5, 13–19, 27–33, 48–55, 62–68 (34
inputs)/including NWP forecasts from

ECMWF model (point forecasts for hourly lags:
−3, 2, −1, 0, 1, 2, 3)

12.5388 0.1701 −0.0019

GBT
1–5, 16–17, 30–31, 51–52, 65–66 (13

inputs)/including NWP forecasts from ECMWF
model (point forecasts for hourly lags: 0, 1)

12.9633 0.1760 −0.0006

GBT

1–5, 6–12, 20–26, 34–47, 55–61 (40
inputs)/including NWP forecasts from GFS
model (point forecasts for hourly lags: −3, 2,

−1, 0, 1, 2, 3)

13.8295 0.1855 0.0037

GBT
1–5, 16–17, 30–31, 51–52, 65–66 (13

inputs)/including NWP forecasts from GFS
model (point forecasts for hourly lags: 0, 1)

14.1665 0.1888 0.0026

Remarks: The best fitting results for each fitting measure are printed in bold in blue. The worst fitting result is
printed in red.

Table 8. Measures of performance of the proposed GBT method, with different versions of NWP
input data (test subset) for Wind Farm B.

Method Code Input Data Numbers/Description nMAE [%] nRMSE nMBE

GBT
1–68 (68 inputs)/NWP forecasts from ECMWF
and GFS models (point forecasts for hourly lags:

−3, 2, −1, 0, 1, 2, 3)
14.4555 0.2090 0.0032

GBT

1–5, 13–19, 27–33, 48–55, 62–68 (34
inputs)/including NWP forecasts from

ECMWF model (point forecasts for hourly lags:
−3, 2, −1, 0, 1, 2, 3)

14.7389 0.2141 0.0066

GBT
1–5, 16–17, 30–31, 51–52, 65–66 (13

inputs)/including NWP forecasts from ECMWF
model (point forecasts for hourly lags: 0, 1)

14.9831 0.2161 0.0048

GBT

1–5, 6–12, 20–26, 34–47, 55–61 (40
inputs)/including NWP forecasts from GFS
model (point forecasts for hourly lags: −3, 2,

−1, 0, 1, 2, 3)

17.8355 0.2397 −0.0003

GBT
1–5, 16–17, 30–31, 51–52, 65–66 (13

inputs)/including NWP forecasts from GFS
model (point forecasts for hourly lags: 0, 1)

18.0803 0.2446 −0.0019

Remarks: The best fitting results for each fitting measure are printed in bold in blue. The worst fitting result is
printed in red.

Research in step 2 demonstrated that the order of the results obtained with the same
combination of input data was the same for both wind farms. Best accuracies were achieved
by using both NWP models. The application of the novel and original idea of using point
forecasts for hourly lags: −3, 2, −1, 0, 1, 2, 3 yields clearly better results than using typical
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0, 1 lags. Like in Physical Models, in this case, forecasts for Wind Farm B were less accurate
than for Wind Farm A. Preliminary studies analysing the importance of input data also
indicated slightly lesser correlation between NWP forecasts for Wind Farm B than for Wind
Farm A. The above findings were used in further research steps; hence, the subsequent
versions of forecasts use both NWP models predictions and point forecasts for hourly lags:
−3, 2, −1, 0, 1, 2, 3.

Step 3. This step is the main, most extensive and labour intensive part of research.
Forecasts of energy production were obtained from different single, hybrid and ensemble
models, including by original methods. To find proper hyperparameters for them, more
than 300 hyperparameter combinations were tested using the Grid Search method. The
lowest nMAE score on the validation range was used as the parameter selection criterion.
Hyperparameter search ranges and their determined values for chosen methods are sum-
marized in Table A1 in Appendix A. The described determinations were carried out to
verify the following:

• Which method group yields the lowest prediction errors (recommended methods) and
does the Ensemble Averaging Without Extremes original method developed by us
belong to the recommended methods?

• Does the original proposition developed by us—additional input variables (see Table 3)—
reduce the prediction error?

• Does the original proposition developed by us—additional expert correction—reduce
the prediction error?

Tables 9 and 10 present forecasts for Wind Farms A and B resulting from the proposed
single, ensemble and hybrid methods with different sets of input data. For the two best
methods, results are shown with and without additional expert correction (see Formula (4)).

Tabular results were ordered by descending SS metric, which was taken as the main
determinant of prediction quality, as it takes into account both nMAE and nRMSE errors.

Based on the results from Tables 9 and 10, the following conclusions can be drawn
regarding the proposed single, hybrid, and ensemble methods with different sets of
input data:

• Original method called “Ensemble Averaging Without Extremes” is the best for both
wind farms (SS metric and nMAE error);

• For “Ensemble Averaging Without Extremes”, the best fitted solution was to use
an ensemble of 5 methods, while a 3-method ensemble was the best for “Weighted
Averaging As an Integrator of Ensemble”;

• Our original method “Additional Expert Correction” resulted in lower nMAE than for
predictions without correction. For “Ensemble Averaging Without Extremes”, nMAE
decreased by 0.42% for Wind Farm A and 0.92% for Wind Farm B;

• Hybrid methods have worse accuracy measures of nMAE and nRMSE than ensemble
methods for both wind farms;

• Deep neural network LSTM is the best single method, MLP is the second best;
• Original hybrid “Physical Model Version 1 With Input Data As Wind Speed Fore-

cast from Gradient-Boosted Trees Method” turned out to be of less advantage than
ensemble methods;

• For most methods, using additional input data (numbers: 1A, 2A, 3A) reduced nMAE
in comparison with using basic input data only (numbers: 1–68). KNNR was an
exception as it yielded the lowest nMAE with a highly reduced number of input
data variables;

• Values of nMBE were very low for the analysed methods, which means there was no
systematic error in predictions. The lowest nMBE for both wind farms was achieved
with the RF Method;

• Prediction errors for Wind Farm B were bigger than for Wind Farm A, which was
indicated by results of sensitivity analysis of potential input variables (see Figure 10).
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Figures 17–20 provides two forecasts of electric energy generation for Wind Farm A
made by the best method with additional expert correction for the two following days of
each season (from autumn to summer).

Table 9. Measures of performance of the proposed single, ensemble and hybrid methods with
different sets of input data (test subset) for Wind Farm A.

Method Code Input Data Numbers SS nMAE [%] nRMSE nMBE

INT_OUT_EXT [GBT, RF,
PHYS(v1&v2)→KNNR, MLP, LSTM]

with additional expert correction

Different, it depends on predictor
in ensemble 0.5925 11.3055 0.1618 0.0146

INT_AVE [GBT, RF, LSTM] with
additional expert correction

Different, it depends on predictor
in ensemble 0.5923 11.3387 0.1615 0.0117

INT_OUT_EXT [GBT, RF,
PHYS(v1&v2)→KNNR, MLP, LSTM]

Different, it depends on predictor
in ensemble 0.5921 11.3527 0.1615 0.0123

INT_AVE [GBT, RF, LSTM] Different, it depends on predictor
in ensemble 0.5910 11.4403 0.1612 0.0085

INT_AVE [GBT, RF,
PHYS(v1&v2)→KNNR, MLP, LSTM]

with additional expert correction

Different, it depends on predictor
in ensemble 0.5904 11.3558 0.1627 0.0149

INT_AVE [GBT, RF,
PHYS(v1&v2)→KNNR, MLP, LSTM]

Different, it depends on predictor
in ensemble 0.5898 11.4174 0.1624 0.0124

LSTM 1–68, 1A, 2A, 3A 0.5842 11.4012 0.1669 0.0252

GBT 1–68 0.5807 11.8518 0.1636 0.0006

RF 1–68, 1A, 2A, 3A 0.5803 11.8847 0.1635 −0.0004

PHYS(v1&v2)→GBT 1–68, 1A–13A 0.5791 11.9190 0.1639 0.0022

MLP 1–68, 1A, 2A, 3A 0.5781 11.9211 0.1646 0.0041

GBT→PHYS_v1 1–68, 1A, 2A, 3A 0.5760 11.6604 0.1698 0.0463

PHYS(v1&v2)→MLP 1–68, 1A–13A 0.5694 12.1960 0.1676 −0.0026

PHYS_v1 1A 0.5622 12.3700 0.1709 0.0025

PHYS(v1&v2)→LSTM 1–68, 1A–13A 0.5534 12.2249 0.1796 0.0134

PHYS(v1&v2)→KNNR 1A, 2A, 3A, 12A, 13A 0.5507 12.2899 0.1807 0.0326

PHYS_v1 1A 0.5493 12.3288 0.1813 0.0349

PHYS(v1&v2)→SVR 2A, 12A, 13A 0.5432 13.1031 0.1757 −0.0202

PERSISTENCE 4 0.0000 28.7790 0.3833 0.0127

Remarks: The best fitting results for each fitting measure are printed in bold in blue. The worst fitting result is
printed in red.

Figures 21–24 provides two forecasts of electric energy generation for Wind Farm B
made by the best method with additional expert correction for two following days of each
season (from autumn to summer).

Figures 17–24 show that energy generation of both wind farms in presented days
(16 in total) is highly random. For some hours of certain days, generation is periodically
close to its rated value, but for other hours generation is very low. There are also few hour
periods of null generation. The lowest generations and predictions among the presented 16
days occurred for 4 days of summer months (Figures 20 and 24). It should be noted that
generation predictions have periods of both over- and under-forecasting. Most commonly,
it can be observed on a few consequent samples of time series. Moreover, time series of
generation predictions have slightly smoothened course due to using the ensemble method,
as ensemble methods reduce the variance of forecasts. For “Ensemble Averaging Without
Extremes”, additional removal of extreme forecasts occurs before average forecast calcula-
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tion, which, in turn, further enhances the smoothening effect for generation prediction time
series.
Table 10. Measures of performance of the proposed single, ensemble and hybrid methods with
different sets of input data (test subset) for Wind Farm B.

Method Code Input Data Numbers SS nMAE [%] nRMSE nMBE

INT_OUT_EXT [GBT, RF,
PHYS(v1&v2)→KNNR, MLP, LSTM]

with additional expert correction

Different, it depends on predictor
in ensemble 0.5096 13.7552 0.2029 0.0108

INT_OUT_EXT [GBT, RF,
PHYS(v1&v2)→KNNR, MLP, LSTM]

Different, it depends on predictor
in ensemble 0.5091 13.8199 0.2025 0.0075

INT_AVE [GBT, RF, LSTM] with
additional expert correction

Different, it depends on predictor
in ensemble 0.5087 13.7794 0.2033 0.0061

INT_AVE [GBT, RF,
PHYS(v1&v2)→KNNR, MLP, LSTM]

with additional expert correction

Different, it depends on predictor
in ensemble 0.5078 13.8182 0.2035 0.0128

INT_AVE [GBT, RF, LSTM] Different, it depends on predictor
in ensemble 0.5073 13.8994 0.2028 0.0019

INT_AVE [GBT, RF,
PHYS(v1&v2)→KNNR, MLP, LSTM]

Different, it depends on predictor
in ensemble 0.5071 13.8928 0.2031 0.0096

RF 1–68, 1A, 2A, 3A 0.4977 14.4916 0.2026 0.0000

GBT→PHYS_v1 1–68, 1A, 2A, 3A 0.4944 14.6231 0.2035 0.0053

LSTM 1–68, 1A, 2A, 3A 0.4932 13.9797 0.2127 0.0109

GBT 1–68, 1A, 2A, 3A 0.4909 14.4610 0.2083 −0.0003

MLP 1–68 0.4894 14.6654 0.2068 0.0057

PHYS(v1&v2)→GBT 1–68, 1A–13A 0.4838 14.8258 0.2091 −0.0015

PHYS(v1&v2)→MLP 1–68, 1A–13A 0.4781 15.0611 0.2105 −0.0008

PHYS_v1 2A 0.4675 14.6101 0.2246 −0.0173

SVR 1–68 0.4617 15.9566 0.2116 0.0143

PHYS(v1&v2)→LSTM 1–68, 1A, 2A, 3A, 12A, 13A 0.4574 15.2485 0.2241 0.0111

PHYS(v1&v2)→KNNR 1A, 2A, 3A, 12A, 13A 0.4548 15.1681 0.2272 0.0366

PHYS_v2 1A 0.4508 15.9984 0.2196 −0.0025

PERSISTENCE 4 0.0000 29.9931 0.3886 −0.0291

Remarks: The best fitting results for each fitting measure are printed in bold in blue. The worst fitting result is
printed in red.

For both wind farms, additional analysis of nMAE error distribution was made. It
concerned hourly periods of prediction using the best forecasting method of “Ensemble
Averaging Without Extremes”. The goal of analysis was to determine whether error
magnitude depends on forecast horizon (from 1 to 24 h) and time of the day. Figure 25
shows the graph of the forecast error (nMAE) depending on the forecast horizon for the
test subset for Wind Farm A and Wind Farm B.

nMAE values presented in Figure 25 are visibly greater for Wind Farm B, which
complies with the results from Tables 9 and 10. nMAE error equals 11.3055% and 13.7552%
for Wind Farm A and B, respectively. The distribution of error values shown in Figure 25
and the distribution of average production of energy in individual hours values shown
in Figure 4a,b are very similar for both wind farms. For Wind Farm A, the correlation
coefficient is equal to 0.9331, and for Wind Farm B, the correlation coefficient is equal 0.9291.
Both autocorrelation coefficients are statistically significant (5% significance level). This
phenomenon is related to a strong non-linear relationship between the energy forecast error
and the wind speed forecast error. The aforementioned non-linear relationship results from
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the fact that the generation of energy in the wind source is a third-degree polynomial of the
wind speed.
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6. Conclusions

Using two wind farms for statistical analyses and forecasting considerably improves
credibility of newly created effective prediction methods and conclusions. The results of
the study are summarized below.

Original ensemble methods, developed for researching specific implementations,
reduced errors of energy generation forecasts for both wind farms as compared to single
methods. The best integration system for ensemble methods for accuracy measure nMAE is
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a new, original integrator developed for predictions, called “Ensemble Averaging Without
Extremes” (method code INT_OUT_EXT), with five methods in the ensemble. The best
integration system for ensemble methods for accuracy measure nRMSE is an original
integrator developed for predictions called “Weighted Averaging As an Integrator of
Ensemble” (method code INT_AVE) with three methods in the ensemble.

A new, original “Additional Expert Correction” reduced errors of energy generation
forecasts for both wind farms. Deep neural network LSTM is the best single method, MLP
is the second best, while using SVR, KNNR, and Physical model is less favourable for both
wind farms. Hybrid methods have worse accuracy measures using nMAE and nRMSE
than ensemble methods for both wind farms.

Using meteo forecasts from two NWP models (ECMWF and GFS) as input data yield
better results than using a single NWP model. Using NWP point forecasts for hourly lags:
−3, −2, −1, 0, 1, 2, 3 (original contribution) as input data is better than using typical lags 0,
1. Using additional input data created, especially input data numbers: 1A, 2A, 3A, reduces
prediction errors of most methods in comparison with base input variables (input data
numbers: 1–68).

For both wind farms, strong positive correlation was determined between distribution
of energy production averages, in particular, hourly periods and distribution of prediction
errors (nMAE). Identifying this relationship is valuable, practical information concerning
the expected value of prediction error depending on the time of the day. The greater the
average generation for a given hour, the greater the prediction error (nMAE) expected.
For both analyzed wind farms, the greatest prediction errors are expected during evening
hours, while the lowest errors are expected between 08:00 a.m. and 2:00 p.m.

Using original SS metric to compare prediction accuracy is useful, as it allows to
incorporate both nMAE and nRMSE into final quality assessment. Both measures are
important for the end user of the prediction, as the former is sensitive to reducing the
average error, while the latter is sensitive to overforecasting and underforecasting.

More research is needed to verify, among other things, the following:

• Does prediction accuracy depend on using forecasts from more than one spot of a
medium-sized wind farm and how the accuracy of forecasts will be affected by other
factors, i.e., data with higher time resolution, e.g., 15 min, using real measurements of
weather as input data?

• Can measurements and weather predictions be used to create a weather-error sensitive
switching regime for models of ensembles?

• Is it possible to reduce the level of high random component in predictions?
• Will the proposed, original method of “Ensemble Averaging Without Extremes” be

equally good for different types of RES predictions (e.g., photovoltaic systems and
hydropower system)?
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Abbreviations
The following abbreviations are used in this manuscript:
ACF Autocorrelation function
ANN Artificial Neural Network
BFGS Broyden–Fletcher–Goldfarb–Shanno algorithm
BPNN Back Propagation Neural Network
CNN Convolutional Neural Network
DNN Deep Neural Network
ECMWF European Center for the Medium-Range Weather Forecast
ELM Extreme Learning Machine
ENN Elman Neural Network
ESN Echo State Network
F Fisher test
GBT Gradient-Boosted Trees
GFS Global Forest System
GRU Gated Recurrent Unit
HRES High-resolution atmospheric model
IEC International Electrotechnical Commission
KNNR K-Nearest Neighbours Regression
LSTM Long short-term memory
ML Machine Learning
MLP Multi-Layer Perceptron
NARX Nonlinear Autoregressive Exogenous Model
nMAE normalized Mean Absolute Error
nMBE normalized Mean Bias Error
NWP Numerical Weather Prediction
PSO Particle Swarm Optimization
p.u. Per unit
R Pearson linear correlation coefficient
R2 Determination coefficient
RES Renewable Energy Sources
RF Random Forest
RNN Recurrent Neural Network
nRMSE normalized Root Mean Square Error
SA Sensitivity analysis
SS Skill Score
SVR Support Vector Regression
SVM Support Vector Machine

Appendix A

Table A1. The results of hyperparameters tuning for chosen single, hybrid and ensemble methods
for Wind Farm B.

Method Code Description of Method, the Name and the Range of Values of Hyperparameters Tuning and Selected Values

LSTM

The number of hidden layers: 1–2, selected: 2, the number of neurons in hidden layer: 4–50, selected: 35–20,
the activation function in hidden layer: ReLU/sigmoid/tanh, selected hyperbolic tangent, the activation function in
output layer: linear, learning algorithms ADAM, RMSprop, selected optimizer: ADAM, lr = 0.001, decay = 1 × 10−5,
epochs: 1500, patience: 100, batch size: 128; shuffle: True. Dropout after each hidden layer: 0/0.2, selected dropout: 0.2

SVR Regression SVM: Type-1, Type 2, selected: Type-1, kernel type: Gaussian (RBF), the width parameter σ: 0.147, the
regularization constant C, range: 1–20 (step 1), selected: 2, the tolerance ε, range: 0.01–1 (step 0.01), selected: 0.05.

PHYS(v1&v2)→KNNR Distance metrics: Euclidean, Manhattan, Minkowski, selected: Euclidean, the number of nearest neighbours k, range: 1–50,
selected: 4.

MLP The number of neurons in hidden layer: 10–80, selected 30, learning algorithm: BFGS, the activation function in hidden
layer: linear, hyperbolic tangent, selected: hyperbolic tangent, the activation function in output layer: linear.

GBT
Considered max depth: 2/4/6/10, selected depth: 6; trees number: 100/200/400, selected number: 100; learning rate:
0.1/0.01/0.001,
selected: 0.1

RF

The number of predictors chosen at random: 30, 35, 40, 45, 50, 55, 60, selected 35 number of decision trees: 1–500, selected:
385. Stop parameters: maximum number of levels in each decision tree: 5, 10, 20, selected 10, minimum number of data
points placed in a node before the node is split: 100, 200, 300, selected 200, min number of data points allowed in a leaf
node: 10, maximum number of nodes: 100.
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