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Abstract: This work presents a control scheme to control a grid-connected single-phase photovoltaic
(PV) system. The considered system has four 250 W solar panels, a non-inverting buck-boost DC-
DC converter, and a DC-AC inverter with an inductor-capacitor-inductor (LCL) filter. The control
system aims to track and operate at the maximum power point (MPP) of the PV panels, regulate the
voltage of the DC link, and supply the grid with a unity power factor. To achieve these goals, the
proposed control system consists of three parts: an MPP tracking controller module with a fuzzy-
based modified incremental conductance (INC) algorithm, a DC-link voltage regulator with a hybrid
fuzzy proportional-integral (PI) controller, and a current controller module using a linear quadratic
regulator (LQR) for grid-connected power. Based on fuzzy control and an LQR, this work introduces
a full control solution for grid-connected single-phase PV systems. The key novelty of this research is
to analyze and prove that the newly proposed method is more successful in numerous aspects by
comparing and evaluating previous and present control methods. The designed control system settles
quickly, which is critical for output stability. In addition, as compared to the backstepping approach
used in our past study, the LQR technique is more resistant to sudden changes and disturbances.
Furthermore, the backstepping method produces a larger overshoot, which has a detrimental impact
on efficiency. Simulation findings under various weather conditions were compared to theoretical
ones to indicate that the system can deal with variations in weather parameters.

Keywords: fuzzy control; grid-connected PV system; incremental conductance algorithm; linear
quadratic regulator; maximum power point tracking; unity power factor

1. Introduction

Renewable energy is emerging as one of the main sources of energy for the future. The
key reason for this is the depletion and pollution of fossil fuels. Renewable energy sources
are available, clean, eco-friendly, and cost-effective. There are various types of renewable
energy sources, of which solar and wind energy systems have become more and more
popular in many countries. According to [1,2], harmonic resonances, which often occur in
grid-connected wind power farms, cause negative effects on the power quality of the grid.

Nowadays, solar energy is widely used around the world and demonstrates impressive
results. To effectively obtain electricity from solar energy, photovoltaic (PV) systems should
be installed. The system efficiency is strongly affected by two major factors, as follow [3,4]:

(a) Weather factors such as the temperature and solar radiation;
(b) Hardware factors such as power electronic devices and system loads.

While the prior factor is uncontrollable, the second one depends on the designer,
system operator and electric grid. To improve the efficiency of the power electronic parts,
appropriate converter topologies together with efficient control schemes are required.
From [5–8], there are two modes of operation for the PV systems, which are:

• Stand-alone mode;
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• Grid-connected mode.

Between these two modes of operation, the grid-connected mode is preferable, as
it can avoid the issues of storage systems in the stand-alone mode. For grid-connected
systems, the following two problems need to be solved simultaneously [7–9]:

• Management of several combined systems;
• Regulation of each power stage or system.

Solving the second problem often requires the following tasks:

• tracking the maximum power point (MPP);
• minimizing the harmonics, which usually cause negative effects on the power grid

and devices;
• maintaining the DC-link voltage within a desired range;
• keeping the unity power factor (PF) at the output of the filter [10].

One of the most important parts of this research is the MPP tracking part, which is
mainly used to find and keep the output power of a PV panel at its maximum value [11–13].
The MPP tracking (MPPT) technique can be divided into two main categories: the perturb
and observe (PO) technique and the incremental conductance (INC) algorithm. The neg-
ative side of the PO algorithm is its high computational complexity, but it leads to high
efficiency. It measures voltage and current values to periodically estimate the power of
the solar panel and compares it with the previous power. If the power of the PV module
has increased (dP/dV > 0), the system will start adjustments in that direction; otherwise,
it will adjust in the opposite way. These operations continue until system finds the MPP.
In fact, the technique depends on perturbations of the voltage, so if the perturbations are
high, the speed of the technique is fast. The advantages of this method are simplicity
without interest in the previous PV characteristics; however, the main drawback is that
oscillations happening near the MPP, which may lead to power losses in varying weather
conditions [10]. The INC type is more advantageous in terms of accuracy in finding and
tracking the MPP compared to the second type; therefore, in this paper, the INC algorithm
is improved by fuzzy control and then implemented in the grid-connected PV system.

Considering current controller strategies, generally, they can be divided into two
main categories: on/off controllers and pulse width modulation (PWM)-based control
techniques [14]. The first group has two subdivisions, which are hysteresis control and
predictive control. Hysteresis control has high dynamics and fast response; however,
its major drawbacks are variations of the switching frequency and high complexity of
the system. Predictive control has positive sides such as less computation time, better
regulation, and a decrease in offset error. On the other hand, it requires identifying a
proper model for the system and the installation cost of the system is high. The second
group can be divided into linear and non-linear control [14]. Proportional-integral (PI)
controller and its different update versions such as multiple generalized integral (MGI) [15]
and Manta Ray Foraging Optimization [16] control are the well-known classical control
techniques, along with their improved versions, which can be easily designed to control
the current. However, the key disadvantage of this controller is its poor compensation of
lower-order harmonics and presence of steady-state errors [17]. The proportional-resonant
(PR) controlled can compensate for the harmonics. Moreover, this type of controller has
high dynamics, is less complex, and can reach a high gain at the resonance frequency.
However, this controller has problems reaching the power factor control, which means that
the system is not able to control the losses in the system [18].

Generally, the power factor is a ratio between working power and apparent power.
Thus, if there is no control/maintenance of a high-power factor, the system efficiency is
consequently low. On the other hand, predictive deadbeat control has a high level of
harmonic compensation and rapid fast-tracking performance. The disadvantage of this
controller is that it requires a lot of computation effort [19]. Harmonic compensation and
steady-state error can also be done by repetitive controllers; their slow tracking response is
their main drawback [20]. In various dynamic conditions, the effectiveness of the third order
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complex filter (TOCF) control algorithm may be demonstrated. This controller serves as a
distribution static compensator, enhances grid power quality by reducing harmonics, and
balances grid currents while maintaining a unity power factor. However, the controller’s
biggest disadvantage is its enormous computational load [21]. Another method which
possibly could be proposed for mitigation of the issue is the model predictive control
(MPC) method [22] and its improved versions [23,24]. However, these methods present
oscillations when the load varies. In addition, the THD of MPC is higher compared to
other methods, which makes the technique unsuitable for implementation in this case.
There exist different kinds of adaptive filtering techniques, such as leaky least mean mixed
norm (LLMMN), least mean mixed norm (LMMN), and least mean square (LMS). However,
all of the above-mentioned adaptive approaches have the drawback of being unable to
maintain acceptable performance in the presence of DC-offset [25]. The combined affine
projection sign algorithm (CAPSA) has high stability and tracking performance, but output
has the same problem as the previous mentioned method, which is the high THD [26].
Artificial neural networks (ANN) also can be implemented as controllers in this system,
but the main disadvantage are their low output power compared to fuzzy logic [27]. Fuzzy
logic controllers (FLC) [14] are one of the popular intelligent control techniques. They are
extensively used in renewable energy systems due to their efficiency and ease of use. They
are also robust and applicable to a wide range of the dynamics systems, from linear to
nonlinear systems. Moreover, this type of controller can perform complex estimations,
which are not possible with conventional methods [11]. The linear quadratic regulator
(LQR) is an effective control method that is applicable for both linear and nonlinear systems.
In this method, the control gain is designed to minimize a quadratic cost function by
selection of appropriate weighting matrices. In our study case, the cost function is the
quadratic function of the tracking error between the current and its reference and the
control efforts. This technique was chosen to be implemented due to its properties such as
stability, robustness, and ease in application. Moreover, the computational complexity of
the LQR controller is not high, which means that it is fairly simple to implement.

This paper proposes a complete control solution for grid-connected single-phase
PV systems based on fuzzy control and an LQR. Our past related research on this topic
was conducted with a different type of controller, namely the backstepping approach.
The present study is a significant extension and improvement of our former research in
terms of enhancing the quality of the control method. The proposed technique is the
LQR in appropriate combination with fuzzy control and improved INC algorithms for
grid-connected photovoltaic systems; furthermore, detailed explanations on developing the
fuzzy association rules of the designed fuzzy logic controllers are newly presented in this
study. The main originality of this paper is to show and prove by comparison of our former
and present control methods that the newly suggested method is more effective in various
aspects. Specific details of the PV system and controllers can be found in our past work
in [28], which was used as the basis for this paper. The major advantage of the LQR method
is its ability to react in a rapid manner to changes of the system, namely, changes in the
module temperature or solar irradiation. In other words, the system can reach its settling
time faster, which is important to stabilize the behavior of output. Moreover, it can be
said that the LQR technique is robust when faced with different disturbances and changes
compared to the backstepping technique and its improved fault tolerant version [29]. In
addition, the backstepping method has a higher overshoot, which significantly impacts
efficiency in a negative way. As was mentioned above, the speed of the LQR is faster,
which makes this kind of controller preferable. These are the key contributions of this
study compared to our past research in [28]. Simulation results under different weather
conditions show that the proposed control system can cope with changes in weather
parameters effectively, and were compared with theoretical ones. Moreover, it was shown
that variations in weather parameters do not significantly affect the performance of the
proposed control system.
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The remains of the paper are organized as follows. Section 2 shows the modeling of
the grid-connected PV system, which includes the system description, PV panel model,
and modeling of power converters. The control system design is depicted in Section 3,
which consists of the MPPT control module, DC-link voltage regulator module, and current
controller module. In addition, Section 4 provides simulation results in MATLAB, in which
the first test case is with a fixed module temperature, and the second test case is with an
unchanged solar irradiation. A detailed comparison and assessment of efficacy between
the LQR control method in this study and the backstepping approach in our past work [28]
is presented in Section 5; brief comparisons between this research and other related works
are also shown in this section. The conclusions are described in the last section.

2. PV Grid-Connected System Modeling
2.1. System Description

This paper considers a grid-connected PV system consisting of two stages of power
conversion. The nominal power of the system is 1 kW. Figure 1 shows the circuitry of the
system; the power generated from the PV array is directed to the non-inverting buck-boost
DC-DC converter. After that, to supply the grid, the obtained result is converted to AC via
the single-phase DC-AC inverter. To remove unwanted noises and disturbances injected to
the grid, the LCL output filter was used [30,31].
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Figure 1. PV single-phase grid-connected system.

2.2. PV Panel Model

The PV panels used in this paper have characteristics as presented in [28]. The
provided data is applicable when the module temperature is 25 ◦C and the solar radiation
is 1000 W/m2. In total, the PV array consists of four panels, where the nominal power of
each panel is 250 W. Figure 2 shows the impacts of module temperature and solar radiation
on the power and voltage of the PV panel, respectively. Table 1 represents MPPs of the PV
panel and array in terms of power and voltage.
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Table 1. Power and Voltage at Maximum Power Points.

MPPs M1 M2 M3/M4 M5 M6

Vp (V) 29.3 30.32 30.4 29.8 28.04

PP,panel (W) 95.9 211.7 250 244.8 225.7

PP,array (W) 383.6 846.8 1000 979.2 912.8

2.3. Modeling of Converters

Figure 1 illustrates all components of the system including the single-phase inverter
and the non-inverting buck-boost converter [7]. The input control signals of the non-
inverting buck-boost converter and the single-phase inverter are αp and βp, respectively.

αp =

{
0; S1 and S2 are OFF
1; S1 and S2 are ON

βp =


1; S3 and S5 are ON, S4 and S6 are OFF

0; S3, S4, S5 and S6 are OFF
−1; S3 and S5 are OFF, S4 and S6 are ON

The modeling technique, specifically averaging, and Kirchhoff’s laws were used to
estimate a mathematical model for the two converters. Equation (1) and Table 2 demonstrate
details of the previously mentioned procedure

.
x1 = 1

Ci

−
I P − α 1

Ci
x2

.
x2 = α 1

L1
x1 − R1

L1
x2 + (α− 1) 1

L1
x3

.
x3 = (1− α) 1

CDC
x2 − β 1

CDC
x4

.
x4 = β 1

L f
x3 −

R f
L f

x4 − 1
L f

x5
.
x5 = 1

C f
x4 − 1

C f
x6

.
x6 = 1

Lg
x5 −

Rg
Lg

x6 − 1
Lg

Vg

(1)

Table 2. Variables.

Variable Symbol in Figure 1 Averaged Variable in (1)

PV array voltage Vp x1
Current through the inductor L1 iL1 x2

DC link voltage VDC x3
Input current of the LCL filter if x4

Voltage on the capacitor Cf VCf x5
RMS value of the electric grid current ig x6

Control signal of the non-inverting
buck-boost DC-DC converter

αp
{0,1}

α
(0,1)

Control signal of the single-phase
DC-AC inverter

βp
{−1,0,1}

β
[−1,1]

PV array current Ip Īp
RMS value of the electric grid voltage Vg Vg

3. Control System Design

The design of the control system considered in this study is shown in Figure 3 and
includes three main parts: the MPPT controller, the DC link voltage regulator, and the
current controller. In this paper, detailed explanations on developing the fuzzy rules of
the two designed fuzzy logic controllers are presented, which are useful as references for
designing other fuzzy controllers.
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3.1. The MPPT Controller Module

The PV array produces its optimal power despite varying weather with the help of
the designed MPPT controller. According to Figure 4, this controller has two parts: the first
fuzzy logic controller (FLC-1) and the proportional-integral (PI-1) controller.
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3.1.1. FLC-1

The main idea of this sub-controller is to improve the conventional INC-MPPT algo-
rithm in terms of response time and efficiency by combining it with a fuzzy logic controller
(FLC-1). According to Figure 5, the FLC-1 has two inputs and one output. The first input
can be one of the following two kinds:

• |Ap(k)|—the absolute value of a modified slope of the power–voltage (P-V) curve as
expressed in (2). This equation also includes a pre-scaling module Gp(k), as shown in (3);

• |dIp(k)|—the change in the current of PV panels in absolute value.

AP(k) = GP(k)[SP(k)] = GP(k)
[

Ip(k) + Vp(k)
dIP(k)
dVP(k)

]
(2)

GP(k) =
1

1 + g1

[
PP(k)
Pmax

P,total

] (3)

where Pmax
P,total = 1000 W is the maximum power of PV panels and g1 is a positive coefficient.

The second input is the INC algorithm’s prior step-size ∆V(k−1). Figure 6 shows the
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detailed flowchart of the proposed method. In addition, the aforementioned scaling module
Gp(k) is used to suitably increase the sensitivity of slope Sp(k) as given in Figure 7.

lim
Pp(k)→0

GP(k) = 1, lim
Pp(k)→Pmax

P,total

GP(k) =
1

1 + g1

PP(k) = VP(k)× IP(k) (4)

dIP(k) = IP(k)− IP(k− 1) (5)

dVP(k) = VP(k)−VP(k− 1) (6)

To avoid significant changes in the step-size and instability of the PV output power, a
switching module is implemented as described in Figure 5. According to the first input,
namely, |Ap(k)| or |dIp(k)|, the system will use the appropriate output coefficient g2 as
shown in Table 3.

Table 3. Switching module operation.

If the Input Is |AP(k)| If the Input Is |dIP(k)|

|AP(k)| > 0.1 |AP(k) ≤ 0.1 g2 = 1 (where every value of
|dIP(k)|)g2 = 0.25 g2 = 0.1

As is known from previous parts of this paper, the inputs are in the range of [0,1]. It
should be noted that all the inputs have the same number of linguistic variables, specifically
five linguistic variables: VS—Very Small, SM—Small, ME—Medium, LA—Large, VL—Very
Large. The output has nine linguistic variables in a range of [−1;1]; in detail, NL—Negative
Large, NM—Negative Medium, NS—Negative Small, NZ—Negative Zero, ZE—Zero,
PZ—Positive Zero, PS—Positive Small, PM—Positive Medium, PL—Positive Large. As a
result, there are 49 fuzzy rules associated in the FLC-1.
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All the association rules of the FLC-1 are shown in Table 4, while the membership
functions of the inputs and output can be referred to in [28]. To explain the fuzzy rules in
Table 4, we can analyze several sample cases as follows. In the first case, when the two
inputs ∆V(k−1) and |dIp(k)| are VS, that means that the PV system is close to the MPP and
the step voltage is also very small; thus, the output of the FLC-1 as the additional voltage
Vadd(k) should be ZE to avoid fluctuations in the PV voltage at the steady state. Whereas, in
another case when ∆V(k−1) is LA and |dIp(k)| is ME, the additional voltage Vadd(k) will
be NZ because the tendency of the PV system is automatically approaching the MPP. On
the other hand, when ∆V(k−1) is vs. and |dIp(k)| is VL, it means that the PV system is
far from the MPP; therefore, the output ∆V(k−1) should be PL to force the PV system to
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quickly move to the MPP. Furthermore, when |dIp(k)| is VL and ∆V(k−1) is VL, the output
∆V(k−1) can be chosen as either PZ or ZE for the PV system to automatically move to the
MPP; in this study, we want to increase the speed for searching the MPP, so the output
∆V(k−1) is set as PZ in this case. In general, the other fuzzy rules in Table 4 can be suitably
interpreted with the same deductive method.

Table 4. Fuzzy association rules for FLC-1.

Vadd(k)
|Ap(k)| or |dIp(k)|

VS SM ME LA VL

∆V(k−1)

VS ZE PZ PS PL PL

SM NZ ZE PZ PM PL

ME NS NZ ZE PS PM

LA NM NS NZ PZ PS

VL NL NM NS ZE PZ

3.1.2. PI-1 Controller

The PI-1 controller with an anti-windup block (refer to [32]) serves as the second
sub-controller of the system. Figures 4 and 8 show detailed schematics of the controller.
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3.2. DC Link Voltage Regulator Module

According to Figure 3, the objective of the DC link voltage regulator is to determine
an appropriate value of the reference grid current Ire f

g used for the current controller
module. We note that the ultimate goal here is to make the DC link voltage VDC reach
its desired value Vre f

DC once the actual grid current Ig is well regulated to its reference

Ire f
g [7,8] by the proposed current controller module using the LQR technique, which

will be shown in detail in Section 3.3. In existing studies, a conventional PI controller
has often been used to generate the reference grid current Ire f

g from the DC link voltage

difference eVdc = Vre f
DC − VDC, as shown in the upper left part of Figure 9. Nevertheless,

it is difficult to manually choose and tune optimal values for the coefficients of the PI-2
controller due to the high nonlinearity of the grid-connected PV system, including a LCL
output filter. Furthermore, the response of the conventional PI-2 controller usually has
fairly large overshoot in the transient state and achieves the steady state in a relatively slow
manner. Thus, this paper proposes a novel hybrid control scheme for the DC link voltage
regulator module using another FLC (named FLC-2) as depicted in Figure 9 to overcome
the above-mentioned drawbacks of the traditional PI-2 controller and remarkably enhance
the response time.
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Firstly, the theoretical relation between the output power of the DC-AC inverter
supplied to the grid PAC and the output power of the PV array PP can be expressed
as follows:

PAC = ηDC−AC × PDC−link = ηDC−AC × (ηDC−DC × PP) = ηExp × PP (7)

where:

ηDC−DC—the efficiency of the buck-boost DC-DC converter can be estimated theoretically
as a ratio value of the DC link power PDC−link and the output power of PV array PP;
ηDC−AC—the efficiency of the DC-AC inverter can be estimated theoretically as a ratio
value of the output power of the inverter PAC and the DC link power PDC−link;
ηExp = ηDC−DC × ηDC−AC—the overall efficiency of the grid-connected PV system.

Equation (7) can be written as:

Vg Ig
(
cos θg

)
= ηExpPP (8)

here cosθg is the PF of the PV system, Vg is the rms value of the grid voltage, and Ig is the
rms value of the grid current. In the normal operation of the grid, the rms value of the grid
voltage is often larger than zero, meaning that Vg > 0 V.

Hence,

Ig = ηExp
PP

Vg(cos θg)
(9)

When the PF = 1, the grid current will reach the following value.

Ig = ηExpPP/Vg (10)

However, the actual overall efficiency ηExp depends not only on the PF, but also on
other component parameters of the DC-DC buck-boost converter and the DC-AC inverter,
as well as the operating conditions of the PV system (e.g., the PV power, temperature,
input voltage, and so forth); as a result, it is difficult to accurately estimate a particular
value for ηExp. We note that Equations (7)–(10) are only explanations of the theoretical
relations among the parameters ηExp, PP, PAC, Ig, and Vg, which are used as the reference
basis for introducing and calculating a new “virtual efficiency” ηvir

exp in our proposed hybrid
control scheme for the DC link voltage regulator module, as depicted in Figure 9. Hence,
the calculated value of the “virtual efficiency” ηvir

exp in this figure and (11) is not the actual
value of the overall efficiency of the PV system ηExp in (7). In this study, we calculate the
“virtual efficiency” value ηvir

exp instead of estimating the actual overall efficiency ηExp.
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To fulfill the above goal, the FLC-2 is designed to frequently update a suitable value
for the “virtual efficiency” ηvir

exp(k) in real-time, as described in (11) and Figure 9. Then, from

(10), an additional value IFLC
g for adjusting the reference grid current Ire f

g can be computed
as IFLC

g (k) = ηvir
exp(k)× PP(k)/Vg(k), as shown in the right part of Figure 9. Finally, this

computed additional value IFLC
g (k) is used to effectively compensate for the output of the

conventional PI-2 controller IPI
g (k) to appropriately determine the reference grid current

Ire f
g (k), as presented in the upper right part of Figure 9; in detail, Ire f

g (k) = IPI
g (k) + IFLC

g (k).
The key aims of IFLC

g (k) generated by our proposed control scheme using the FLC-2 are
to significantly improve the response time for updating a suitable value for the reference
current Ire f

g (k) and to elevate the effectiveness of the conventional PI-2 controller against
effects caused by the high nonlinearity of the PV system.

In fact, using the proposed current controller module (refer to Figure 3 and Section 3.3),
when the grid current Ig(k) is regulated to its reference Ire f

g (k) suitably generated by the
designed PI-Fuzzy hybrid control scheme (see Figure 9), the DC link voltage VDC achieves
its desired value Vre f

DC [7,8]. This means that both the error values of the DC link voltage
(eVdc in Figure 9) and the grid current in (14) and (15) are considered and regulated by the
proposed complete control system, as given in the lower part of Figure 3.

The designed FLC-2 has two inputs and one output.
The two inputs are:

eVdc(k)—error between desired and present DC link voltage;
deVdc(k)—change in error.

The output is:

∆η(k)—step in efficiency, added to the “virtual efficiency” ηvir
exp to reach the desired value:

ηvir
exp(k) = ηvir

exp(k− 1) + ∆η(k) (11)

The two inputs are:
eVdc(k) = Vre f

DC −VDC(k) (12)

deVdc(k) = eVdc(k)− eVdc(k− 1) (13)

All the inputs have the same number of linguistic variables, specifically seven; the
range is [−20;20]: NL—Negative Large, NM—Negative Medium, NS—Negative Small,
ZE—Zero, PS—Positive Small, PM—Positive Medium, PL—Positive Large

The output ∆η(k) has nine linguistic variables, and they range from [−1;1]: NL—Negative
Large, NM—Negative Medium, NS—Negative Small, NZ—Negative Zero, ZE—Zero,
PZ—Positive Zero, PS—Positive Small, PM—Positive Medium, PL—Positive Large. As a
result, there are 49 fuzzy rules formed in the FLC-2.

All the association rules of the FLC-2 are presented in Table 5, while the membership
functions of the inputs and output can be referred to in [28]. To interpret the fuzzy rules in
Table 5, we can analyze and evaluate some sample cases as follows. Firstly, when deVdc(k)
is NL and eVdc(k) is PL, the output of the fuzzy controller ∆η(k) should be ZE since the
tendency of the DC-link voltage Vdc(k) is automatically approaching its reference value. On
the other hand, when deVdc(k) is ZE and eVdc(k) is NL, it means that Vdc(k) is much smaller
than its reference value; thus, the output ∆η(k) should be PL to force Vdc(k) to rapidly
move to the desired value. Furthermore, when deVdc(k) is ZE and eVdc(k) is PS, it means
that Vdc(k) is marginally larger than its reference value; hence, the output ∆η(k) should be
NS to slightly decrease Vdc(k) to its desired value without oscillation at the steady state.
In general, the other fuzzy rules in Table 5 can be appropriately explained with a similar
deductive technique.
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Table 5. Fuzzy association rules for FLC-2.

∆η(k)
eVdc(k)

NL NM NS ZE PS PM PL

deVdc(k)

NL PU PU PL PL PM PS ZE

NM PU PU PL PM PS ZE NS

NS PU PL PM PS ZE NS NM

ZE PL PM PS ZE NS NM NL

PS PM PS ZE NS NM NL NU

PM PS ZE NS NM NL NU NU

PL ZE NS NM NL NL NU NU

3.3. Current Controller Module

In this section, the current controller is designed by an optimal control method. Firstly,
from (2), we have the following dynamic model,

.
x4 = − R

L x4 − 1
L x5 +

u
L.

x5 = 1
C x4 − 1

C x6
.
x6 = 1

Lg
x5 −

Rg
Lg

x6 − 1
Lg Vg

(14)

The main purpose of the current controller is to make the grid current ig (i.e., x6)
converge to its reference x6ref . Then, from the third equation of (14), the error dynamics of
x6 and the reference for x5 (i.e., x5ref ) can be derived as,

.
x6 −

.
x6re f =

1
Lg

((
x5 − x5re f

)
+ x5re f

)
−

Rg

Lg

((
x6 − x6re f

)
+ x6re f

)
− 1

Lg
Vg (15)

Thus, we have
.
x̃6 =

1
Lg

x̃5 −
Rg

Lg
x̃6 −

1
Lg

x5re f (16)

where x5ref is determined by

x5re f = Rgx6re f + vg +
.
x6re f Lg (17)

Similarly, with x5ref achieved from (17), combined with the second equation of (14),

.
x5 −

.
x5re f =

1
C

((
x4 − x4re f

)
+ x4re f

)
− 1

C

((
x6 − x6re f

)
+ x6re f

)
(18)

then
.
x̃5 =

1
C

x̃4 −
1
C

x̃6 (19)

where
x4re f = x6re f +

.
x5re f C f (20)

From x5ref and x4ref , obtained in (17) and (20), respectively, the first equation of (14)
can be rewritten as

.
x̃4 = −R

L
x̃4 −

R
L

x4re f −
1
L

x̃5 −
1
L

x5re f −
.
x4re f +

1
L

u1 +
1
L

u2 (21)

Hence, we have
.
x4 = −R

L
x̃4 −

1
L

x̃5 +
1
L

u1 (22)
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where
u2 = Rx4re f + x5re f + L

.
x4re f (23)

Here, we decompose the control input u into two terms: u1 and u2; in detail, u1 is
used for feedback control to stabilize the error dynamics, whereas u2 is the compensating
term used to compensate for the offset in the reference tracking problem. Finally, the error
dynamics of (15) are achieved by combining (22), (19), and (16), as follows: x4

x5
x6

 =

 −
Rg
Lg

1
Lg

0

− 1
L 0 1

C
0 − 1

L − R
L

+

 0
0
1
L

u1 (24)

Equation (24) is rewritten in the following form:

.
x = Ax + Bu1 (25)

Consider the following cost function:

J(x, u) =
∫ ∞

0
xTQx + uT

1 Qu1 (26)

where Q ≥ 0 and R > 0 are the weighting matrices with appropriate dimensions; that is,
3× 3 and a scalar, respectively. After that, this cost function is minimized by the following
control law:

u1 = −Kx = −R−1BT Px (27)

where K is the controller gain matrix, and P is the positive definite solution of the algebraic
Riccati equation as follows

PA + AT P− PBR−1BT P + Q = 0 (28)

Typically, Q is chosen to be diagonal:

Q =

 q1 0 0
0 q2 0
0 0 q3

 (29)

where its elements and R can be selected by the following criteria,

qi =
1

tsi(ximax)
2 , R =

1

(u1max)
2 , p > 0 (30)

In (30), ximax is the |xi| constraint, uimax is the |ui| constraint, and tsi is the required
settling time of xi.

4. Simulation Results

The simulation performed in MATLAB/Simulink and all related parameters of the
considered PV system can be referred to in [28]. The results with the designed LQR control
are illustrated in Figures 10–13, in which the time unit in the horizontal axis is second.
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4.1. Simulation 1: Constant Module Temperature

This case considers when the PV module temperature is constant at 25 ◦C. Irradiation
starts from 850 W/m2 at a time from 0 s to 0.3 s, then it becomes 1000 W/m2 from 0.3 s to
0.6 s and finally becomes 400 W/m2 from 0.6 s to 0.9 s. Figure 10 shows that the results of
the voltage Vp of the PV array are close to the reference values for the MPPT. The obtained
output powers of the PV array are 847 W, 998 W, and 385 W, which match to the reference
data provided in Table 1. Thus, this means that the power loss is small in this test.

The DC-link voltages correspond to each other in Figure 11. Furthermore, the grid
current is equal to the reference values. Finally, it was shown and proven that the voltage
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and current of the grid are in phase, which means that the power factor of the grid-
connected PV system is nearly unity.

4.2. Simulation 2: Constant Solar Irradiation

In the second case, solar irradiation is constant at 1000 W/m2, but the module temper-
ature is varying. From t = 0 s to 0.3 s temperature is 25 ◦C, next, at 0.3 s the temperature is
45 ◦C, and lastly, at 0.3 s the temperature is 30 ◦C. According to Figure 12, the performance
of the panel is 30.38 V/1000 W, 27.92 V/912.1 W, and 29.76 V/978.8 W, which is highly
close to the values represented in Table 1. Despite the module temperature change, VDC
matched its reference at all times. In addition, the RMS value of Ig is maintained according
to the reference trend, as presented in Figure 13. The phases of the grid voltage and current
match, which means that the system’s power factor is unity.

5. Comparison between LQR and Backstepping Approaches

This research suggests the suitable combination of an LQR and fuzzy control for grid-
connected PV systems. To show the effectiveness of the provided technique, it is important
to make comparisons between some other methods, such as photovoltaic grid-connected
systems using fuzzy logic and backstepping approaches [28] (see this reference paper for the
specific details of simulations). Figures 14–17 present the simulation results of fuzzy control
and the backstepping approach for a grid-connected photovoltaic system with the module
temperature (Figures 14 and 15), and then with constant solar irradiation (Figures 16 and 17),
in which the time unit in the horizontal axis is seconds. The obtained simulation results
should be compared to those of the above-mentioned method. Specifically, the results in
Figures 11 and 13 should be compared with those in Figures 15 and 17, respectively. We
can see that both the control methods have good results.
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5.1. Simulation 1: Constant Module Temperature

It is obvious that the simulation results of the MPPT parts in both the cases are the
same since the main changes were not related to the MPPT controller, but to the LQR.
Thus, the behaviors shown in Figures 10 and 14 are same; the performances presented in
Figures 12 and 16 are also similar. Comparing the DC link voltage regulator module and the
current controller module in both the cases, it can be clearly seen that the LQR case reacts to
the changes in the module temperature and irradiation faster; in other words, the settling
time of the LQR technique is lower compared to the backstepping method. Moreover, the
LQR is robust when faced with different temperature and irradiation changes, which makes
this technique preferable. In addition, in the case of the backstepping method, overshooting
of the signal was observed, which significantly degrades the output and overall efficiency
of the considered PV system. Furthermore, the response speed of the designed LQR is
faster; consequently the rise time and peak time of the LQR are lower than those of the
backstepping approach.

5.2. Simulation 2: Constant Solar Irradiation

In addition, the fuzzy-based INC-MPPT controller (see Figures 3–7 and Table 4) in
this paper is improved from our past method [33], with significant modifications in the
pre-scaling module Gp(k) for increasing the sensitivity of the slope Sp(k), in the fuzzy
association rules for boosting the speed of searching the MPP, and in the control parameter
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values, which are designed and tuned to be more suitable for grid-connected PV systems
with the LCL output filter. The detailed analysis and evaluation of the effectiveness of the
prior related MPPT method for a small stand-alone PV system in various simulations and
experiments can be referred to in Sections 4 and 5 of our past work [33], in which cases
of partial shadow on the PV array were also investigated in experiments. Moreover, the
influence of the module temperature on the performance of the stand-alone PV system and
MPPT controller can be found in Sections 2.2 and 4.3 of the prior study [33]. In fact, our
present paper proposes a complete control solution for grid-connected single-phase PV
systems including the LCL output filter based on fuzzy control and LQR techniques with
multiple objectives as described in Sections 1 and 3 above; thus, it is noted that the separate
assessment of the MPPT controller compared to other MPPT systems is out the scope of
this study.

Due to substantial differences in configurations of considered PV systems and control
objectives between this study and other existing works, it seems inappropriate and difficult
to directly compare the detailed effectiveness of the proposed control scheme in this research
to that of other studies. Therefore, we have only performed the detailed comparison
of the current controller module using the LQR method proposed in the present paper
with our past work using the backstepping approach [28] for evaluation, as described in
Section 5 above. Moreover, for further reference, the current controller module using the
LQR technique in this paper is briefly compared with the PID-fuzzy hybrid controller
introduced in our other study [34], as represented in Table 6.

Table 6. Comparison between the proposed current controller module and the previously introduced
PID-fuzzy controller in [34].

Control Methods The Current Controller Module Using the
LQR in This Paper

The Introduced PID-Fuzzy Hybrid
Controller in [34]

Design and computational
complexity

- Fairly simple design based on an optimal
control method using the algebraic
Riccati equation (see Section 3.3)

- Includes three separate FLCs for
controlling gains Kp, KI, and KD, in which
each FLC consists of 49 association rules.

Field of application in
power systems

- For a complete single-phase
grid-connected PV system including the
LCL output filter with the consideration
of DC link voltage regulation.

- For a simple single-phase grid-connected
PV system including the L output filter
without the consideration of DC link
voltage regulation.

Control objectives,
performance, and
effectiveness

- Can well regulate the grid current with a
unity power factor and DC link voltage
under different operating conditions of
the PV system.

- Very fast response, and small overshoot.
- Has good efficacy and is robust faced

with large variations in solar radiation
and PV module temperature.

- Theoretical analysis of stability of the
LQR controller has been confirmed.

- Can control the active and reactive power
supplied to the grid with the step change
of reference signals for the two powers.

- Quick response and relatively
small overshoot.

- Has not yet been checked with large
variations in solar radiation and PV
module temperature.

- Theoretical analysis of stability of the
hybrid controller has not yet
been performed.

In this grid-connected PV system using a DC-AC inverter and LCL output filter, due to
parasitic capacitance and grounding resistance, the issues of common mode (CM) voltage
and leakage current may become significant if the design and control of the inverter and
LCL filter are not appropriate [35,36]. As presented in other existing studies [37,38], the
issues of CM voltage and leakage current in grid-connected PV systems can be effectively
investigated and reduced using various techniques such as improved PWM methods,
modified topologies of PV inverters with complementary switches [37], design and im-
plementation of CM filters [38,39], active damping control approaches [40], and so forth.
On the other hand, our paper focuses on developing a complete control scheme for grid-
connected single-phase PV systems including an LCL filter based on fuzzy logic and an
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LQR method with three key goals comprising the MPPT, DC link voltage regulation, and
injection of the PV power into the grid with a unity PF. Hence, it should be noted that the
assessment and reduction of the CM voltage and leakage current are beyond the scope of
the present paper; these issues will be thoroughly considered in our future work.

6. Conclusions

Based on fuzzy control and an LQR, this study provides a comprehensive control
solution for grid-connected single-phase PV systems. In terms of improving the quality
of controller methods, this work represents a substantial extension and enhancement of
our past research. For grid-connected solar systems, the suggested approach is an LQR
suitably combined with fuzzy control, in which the design procedures of all the controllers
are also described in detail. The major novelty of this study is to demonstrate and verify
that the newly proposed approach is more successful in different aspects by comparing our
past and present control methods. The LQR technique’s major benefit is its ability to react
quickly to unexpected changes in the system, such as changes in module temperature and
solar irradiation. In other words, the systems achieve their settling period sooner, which is
necessary to steady the output behavior.

Furthermore, as compared to the backstepping approach, the LQR method is more
resistant to various changes in weather conditions. The backstepping approach also has
the greater overrun, which has a detrimental effect on the efficiency of the investigated
PV system. As previously stated, the LQR has the quicker response speed, making this
type of controller more desirable. These are the major contributions of our present work
as compared to the earlier research. Moreover, the results of simulations under different
weather circumstances were compared to theoretical ones, indicating that the proposed
system can cope with variations in weather parameters well. It was also demonstrated
that abrupt changes in weather factors had no significant effects on the proposed control
system’s performance.

In future work, intelligent models based on fuzzy control for effectively predicting
PV power and load demand will be thoroughly studied and implemented to improve the
effectiveness and quality of grid-connected solar energy systems, especially under adverse
conditions such shaded solar PV modules.
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