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Abstract: Greenhouse gas emissions need to be drastically reduced to mitigate the environmental
impacts caused by climate change, and to lead to a transformation of the European energy system.
A model landscape consisting of four final energy consumption sector models with high spatial
(NUTS-3) and temporal (hourly) resolution and the multi-energy system model ISAaR is extended
and applied to investigate the transformation pathway of the European energy sector in the deep
emission mitigation scenario solidEU. The solidEU scenario describes not only the techno-economic
but also the socio-political contexts, and it includes the EU27 + UK, Norway, and Switzerland. The
scenario analysis shows that volatile renewable energy sources (vRES) dominate the energy system
in 2050. In addition, the share of flexible sector coupling technologies increases to balance electricity
generation from vRES. Seasonal differences are balanced by hydrogen storage with a seasonal storage
profile. The deployment rates of vRES in solidEU show that a fast, profound energy transition is
necessary to achieve European climate protection goals.

Keywords: energy system modelling; multi-energy system; optimization; decarbonization; scenario
analysis; final energy consumption; European energy system; European energy transition; renewable
energy; electrification

1. Introduction

To mitigate the environmental impacts caused by climate change, greenhouse gas
(GHG) emissions must be drastically reduced worldwide, leading to a change in energy
supply and consumption. However, concrete transformation pathways of the energy
systems that achieve such large reductions in GHG emissions are often modeled on a
small scale. In Europe, for example, there are numerous scenario analyses at the national
level [1]. Even in recent studies [2–5], neighboring European countries are excluded from
the analysis.

Nevertheless, an isolated national perspective is short-sighted, and it does not do
justice to the complexity of the problem, especially in a highly interconnected energy system
such as Europe. A first but insufficient step to take account of the strong interconnection is to
include the electrical interdependencies between neighboring countries, such as in [1,6–14].
Nevertheless, a more holistic perspective on the European energy system is needed to
consider all the impacts of GHG emission reduction measures.

Approaches to model decarbonization pathways on a European level vary widely.
The authors of [15,16] focus on scenarios with 100% renewables, and [17–27] examine the
implications for the design of the energy system in the case of an 80% to a nearly 100%
reduction in CO2 or GHG emissions relative to 1990 levels. Reduction targets are realized
with a European emissions CAP. Only [23] investigates the effect of multi-objective opti-
mization to minimize system costs while reducing emissions. While a European perspective
is necessary to account for system effects, a high spatial resolution is key to account for local
differences and constraints. While [15] does not consider regionalization, [18,19,21,22,25,27]
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model energy demand and supply at the national level, with some countries divided into
subnational regions. A spatial resolution that deviates from country boundaries and groups
countries into larger regions is used in [17,20,24,26]. The author of [23] divides Europe into
87 regions. Equally important is a high temporal resolution as well as the absolute amount
of time covered. Here, only [15,16,23,25,26] provide hourly time resolution while [17–20,24]
calculate with different time slices of several hours. The authors of [21,22,27] calculate with
annual resolution. Of those with hourly resolution, only [26] analyzes a whole year, while
the rest analyze several typical days or weeks. In contrast, the model landscape used in
this study has both high spatial and temporal resolutions, calculating an entire year.

Therefore, we expanded the FfE model landscape from the national to the European
level in the project eXtremOS (Section Funding). The project’s main aim was to consistently
model European energy system’s transformation pathways under extreme regulatory and
technological developments to evaluate systemic effects. The model landscape was then ap-
plied to calculate an emission mitigation pathway leading to deep GHG emission reduction.
The used model landscape consisted of four final energy consumption (FEC) models and
the linear optimization multi-energy system model ISAaR (integrated simulation model for
unit dispatch and expansion with regionalization) [11,28]. The FEC is quantified bottom-up
in high spatial (NUTS-3) and temporal (hourly) resolution for the EU27 + UK, Norway and
Switzerland (27 + 3). The modeled FEC sectors are industry, transport, private households,
and the tertiary sector. The modeled energy carriers are electricity, (district) heating, hydro-
gen, gaseous hydrocarbons, liquid hydrocarbons, and biomass. In addition, the provision
of CO2 from industrial emissions as feedstock for methanation is considered. In this way,
increased sector coupling measures can be taken into account. While FEC sector models
are stock and flow models, the cost-optimal transformation pathway of the energy sector is
calculated with ISAaR.

However, the energy transition is not solely a techno-economical optimization chal-
lenge. If the models and the corresponding results are to support political decision-makers
and thus have a positive influence on climate change mitigation, the socio-political context
must be considered in addition to technical parameters. The socio-political scenario must
therefore fit the quantitative techno-economic target-based scenario.

Besides the high spatial resolution of the FEC sectors, the consideration of multiple
energy carriers, and the model endogenous expansion of generation units across Europe,
what additionally distinguishes this scenario analysis from the previously mentioned
analyses is the integrated scenario process that guarantees a consistent scenario world
in terms of techno-economic and socio-political parameters as model inputs [29]. The
calculated scenario solidEU represents an ambitious climate change mitigation scenario
that includes GHG emission reduction targets of 55% and 95% compared to 1990, 2030, and
2050, respectively, as envisaged in the European Commission’s Green Deal (COM/2021/550
final). Therefore, the main objective of this study is to quantify the impact of deep GHG
emission reductions on the European energy system.

All models and results were developed within the project eXtremOS (Section Funding).
Sections 2 and 3 are based on the project’s summary report [30], with an additional focus
on regional vRES distribution and the hourly unit dispatch in 2050.

2. Materials and Methods
2.1. Model Landscape

The model landscape deployed for modeling European scenarios at high spatial and
temporal resolutions is composed of the four FEC models and a multi-energy system model.
The four FEC models are SmInd EU for industry, TraM EU for transport, PriHM EU for
households, and TerM EU for the tertiary sector. They are described in detail in [31]. The
models provide FEC demand in high spatial (NUTS-3) and in temporal (hourly) resolution.
In combination with a detailed potential analysis for volatile renewable energy sources
(vRES) [32], the FEC demand serves as input for the multi-energy system model ISAaR.
The used weather year is 2012, which represents an average weather year in respect to
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the years between 1980 and 2019 [30]. An overview of the model landscape as well as the
interconnections within ISAaR (gray background portion) can be seen in Figure 1.
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Figure 1. Model landscape and model interconnection as well as generation and sector coupling
technologies in ISAaR. Own figure based on [11,28,30].

ISAaR is a linear optimization model using perfect foresight, which minimizes the
energy system’s total costs. It is a nodes-edges model in hourly resolution with flexible
spatial resolution [11,28]. In ISAaR, each energy carrier is modeled as a balance between
consumption and generation, the so called “energy carrier balances”. The interplay be-
tween the energy carrier consumption by the FEC sectors, the energy carrier provision by
imports, domestic sources, and renewable energy sources (RES), as well as sector coupling
technologies that connect the energy carrier balances among each other, are shown in
Figure 1. The mathematical formulation of the optimization problem regarding energy
carriers can be found in [11,28]. To reduce computation time, the high spatial resolution
of the FEC models is reduced in ISAaR. Calculations are conducted on the NUTS-0 level
except for the United Kingdom and Denmark, which are further divided into Great Britain
and Norther Ireland and into Denmark West and Denmark East. Due to the high resolution
vRES potential and the regionalization method, however, it is possible to draw conclusions
on the NUTS-3 level regarding installed vRES capacities.

To model the supply side and thus the provision of the energy carriers demanded
by the FEC sectors in all modeled regions, ISAaR has been extended, building upon
the model framework described in [11,28]. The implemented enhancements include the
optimization of unit dispatch and expansion in all 27 + 3 modeled regions, the ability to
exchange hydrogen between modeled regions in addition to electricity, a GHG emissions
balance with variable regional resolution, an additional energy carrier balance for CO2 as a
feedstock, and a revaluation factor for vRES.

To ensure a continuous evolution of the energy system from 2020 to 2050, information
is exchanged between consecutive optimization years. To explain the sequencing, we use
the example of the expansion of vRES capacities from 2020 to 2050 in five-year intervals.
The year 2020 represents the energy system’s status quo and there is no unit expansion.
Beginning in 2025, unit expansion is allowed. Newly built units are carried forward to
subsequent years based on their technical lifetime. When the projected year of decommis-
sioning is reached, the model then decides whether to rebuild or decommission the units.
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In addition to this mechanism, a minimum level of vRES capacities (vRES capacities of
2020) is assumed until 2050. When these stock units reach their life expectancy, they are
always repowered (Figure 2). Apart from stock units, this kind of sequencing is used for all
model endogenously built technologies.
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Figure 2. Sequence for vRES additions in ISAaR. Own figure based on [28,30].

This myopic approach, however, leads to uninformed investment decisions [33]. Espe-
cially for the expansion of vRES, the risk of stranded investments increases as their cost
degression impacts electricity prices. For example, the expansion of generation capacity
may pay for itself in one year but not the following. The investment made is therefore
not refinanced over the plant’s lifetime. To counteract this type of uninformed investment,
a revaluation factor is added to the initial investment costs. Future decreasing revenues
are anticipated and the difference to the levelized cost of electricity (LCOE) is added to
the initial investment costs. This ensures that the investment costs are amortized over the
lifetime of the plant. The adapted investment costs (I0

′) are calculated as

O = I′0 − Σn
t=1Ct·FLH·(1 + i)−t, (1)

where Ct are the initial LCOEs of the future timesteps t, FLH the full load hours and i the
interest rate. The sum over the timesteps runs from one to the end of the technologies’
lifetime n. With this method, it can be guaranteed that each vRES generation unit built
refinances itself during its lifetime, and it is profitable even though the market values for
vRES drop.

2.2. Quantifying the Storyline

The qualitative scenario framework for solidEU is published in [34], and it was de-
veloped using the CIB method [35]. For a better understanding of the results presented in
Section 3, key aspects of the solidEU storyline and their influence on the descriptors are
outlined below. SolidEU describes a socio-political environment characterized by solidarity
in Europe (solidEU). Anthropogenic climate change is fought by all governing institutions
with a strong societal mandate, as it is agreed that climate change poses a serious threat to
prosperity. National governments are rallying behind an ambitious European policy frame-
work to reduce GHG emissions. Figure 3 shows all descriptors addressed by the solidEU
storyline. The “From Word to Value” method is then used to translate the descriptors into
quantitative assumptions [29,31]. Descriptors and their influence on modelling decisions
and parameters in ISAaR are addressed first.
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Figure 3. SolidEU scenario descriptors and trends [30].

According to the descriptor “Climate change policy”, solidEU represents an ambitious
climate change scenario in accordance with current legislative initiatives. Therefore, a re-
duction target of 95% of GHG emissions until 2050 from the baseline set in 1990 is assumed.
In addition, an interim target of 55% GHG emission reduction until 2030 compared to 1990
is set as proposed in the European Green Deal (COM/2021/550 final). Using historical
data, a GHG CAP for the target years is calculated from the EU GHG inventory [36] and
implemented as a boundary condition in ISAaR. In 2050 the CAP amounts to 288 Mt of
CO2-equ. The GHG CAPs for the years between 2030 and 2050 are linearly interpolated.
While the greatest part of the categories of the EU GHG inventory are explicitly covered by
either the FEC models or ISAaR, some categories, e.g., agriculture, remain unaddressed.
GHG emissions not covered explicitly in the model landscape are, nevertheless, considered
in the GHG CAP. For those GHG emissions, a simplified exogenously specified reduction
pathway until 2050 is set. They are reduced by 75% until 2050 compared to the mean
between 2014 and 2018 to account for emission abatement measures, e.g., in agriculture.
Emissions covered by one of the models of the model landscape, on the contrary, are
included in the optimization as energy and feedstock related CO2 emissions. Emissions are
allocated according to the source principle (Figure 1).

According to the descriptor “Cooperation in Europe”, only one GHG CAP is set
for all 27 + 3 regions. No national GHG or sectoral emission targets are considered, as
countries cooperate to achieve the GHG targets. This cooperation is further supported by
the descriptor “public acceptance of renewable energy,” which allows the full potential of
vRES in Europe [32] to be exploited without societal constraints. The potential that can be
tapped in this way represents the upper limit of vRES expansion in ISAaR.

The descriptor “Interconnection of the European electricity grid” strengthens European
electricity market integration. In addition to considering grid expansion projects according
to the TYNDP 2020 [37], net transmission capacities (NTCs) between all regions will be
increased to 70% of their thermal capacities from 2030 onwards. This assumption is made
following the proposal of the European Commission to increase the NTCs to 75% of their
thermal capacity. NTCs thus increase from 129 GW in 2020 to 637 GW in 2050.
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The descriptor “Expansion of nuclear energy” is only slightly positive, signaling a
moderate phase-out of nuclear power generation capacities over time. ISAaR addresses
this descriptor by adopting the TYNDP “National Trends” scenario trajectories for nuclear
power plants [37]. Between 2040 and 2050, decommissioning trends are extrapolated while
commissioning trends are held at 2040 levels. Furthermore, it is assumed that nuclear
power plant expansion is prohibited from 2025 onwards. The same methodology applies to
coal-fired power plants.

The descriptor “Access to strategic and natural resources from abroad” reviews the
influence of the availability of energy carrier imports from outside of Europe. Conditions
for importing energy carriers such as gas and oil improve slightly compared to the status
quo. This will also lead to the possibility of importing synthetic fuels in the future. How-
ever, hydrogen to meet Europe’s hydrogen demand is produced exclusively in Europe.
Hydrogen can be produced with PEM electrolyzers and traded throughout Europe. The
capacity for hydrogen trade between countries is unlimited, but the interconnections be-
tween countries are based on the existing natural gas grid [38]. Losses are assumed to be
0.5% per 100 km [39,40].

Secondly, the status of the following descriptors (Figure 3) translates into FEC model
parameters. Only the main descriptors, beginning with “Demographic development,” are
described, since not all descriptors and their respective attributions can be addressed in
detail. The descriptor “Demographic development” influences the overall development
of sector consumption as a function of growing and shrinking populations in Europe [41],
and it is called “baseline development” in solidEU. In TraM, for example, this determines
the absolute vehicle population; in PriHM the total number of heating systems.

“Innovative capacity of research and enterprises” describes the investment climate for
promising technologies and developments in research and companies in the electricity, heat,
and transport sectors. In solidEU, this descriptor is characterized by increased subsidies,
which has a positive impact on all sectors. In TerM and in PriHM, it favors the replacement
rate of fossil heating systems by heat pumps and the coefficient of performance of the latter.
In TraM, the descriptor increases, among other factors, the replacement rate of combustion
vehicles by battery electric and hydrogen vehicles, and it improves the efficiency of all
vehicle classes. In SmInd EU, it facilitates the phase-in of innovative production routes such
as electrocrackers for the production of high-value-chemicals. Comparable influences can
be addressed to the descriptor “Fuel switching,” that summarizes increased measures to
promote the electrification of current non-electrified processes and the use of synthetic fuels.

The descriptor “Lifestyle” depicts principles that influence people’s ways of living. In
solidEU, these can be described as ecofriendly. In TerM and in PriHM, they are not only
reflected in the increased exchange rate of heat pumps and the renovation rate but also in
decreasing future consumption per capita.

The descriptor “Mobility” means mobility in terms of the amount of environmentally
harmful emissions, and it is set to “promotion of low-emission mobility” in solidEU. This
impacts the exchange rate of battery electric vehicles and the use of overhead trucks, and it
lowers the specific consumption by vehicle class.

“Climate change policy” and “Public acceptance of renewable energy” as described
along with the descriptors in the first part of the section, influence the FEC models as well.
Specifically, they increase the exchange rates of fossil heating systems and combustion
vehicles. In addition, the EU ETS certificate prices are affected by the “climate change
policy” descriptor, as it addresses policies and climate protection targets.

In addition to the mentioned descriptors, parameters of the industry model SmInd EU
are also affected by the descriptors “world market prices for oil,” “economic development—
GDP,” and “economic order”. These descriptors influence parameters such as production
tonnage, gross value added, and the number of businesses developed.

Across all descriptors and model parameters, the matching procedure showed that
the degree of detail in the qualitative storyline is insufficient for providing quantification
guidance for all relevant model exogenous parameters. Hence, in each sector, additional
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research was performed to quantify parameters such as the starting year for measure
implementation for specific process technologies in the industry sector.

3. Results

The results are divided into two sections: Section 3.1 addresses the results of the FEC
sectors industry, transport, private households, and the tertiary sector. Section 3.2 addresses
the results of the energy sector. The analysis will focus on aggregated results for the
27 + 3 regions and the distribution of vRES capacities on NUTS-3 level. Resulting datasets
for individual countries are publicly available on [42,43] (see Data Availability Statement).

3.1. FEC Sectors

The absolute FEC in Europe in solidEU decreases from about 13,200 TWh to about
7800 TWh, as shown in Figure 4a. This development is mainly due to efficiency measures
as well as direct and indirect electrification. These measures are implemented in all sectors,
but the transport sector benefits most. Its FEC can be reduced by about one third. The
framework of high innovation readiness in research and development as well as rapid
energy source change set by the described descriptors leads to a strong sector coupling. This
is most evident in the rapid implementation of battery electric vehicles in passenger and
freight transport, application of heat pumps, and innovative industrial processes such as
electric steam crackers in high value chemical production or directly reduced iron (DRI) in
steel production. The various electrification measures lead to a highly increased electricity
consumption. In solidEU, it increases from about 3100 TWh in 2020 to ca. 5000 TWh
in 2050, as can be seen in Figure 4b. Here, the rapid decline in the dominant share of
fossil fuels, such as oil, coal, and gas, by approximately 65% of the energy mix from 2020
to 2050 becomes visible. In 2050, only approximately 6% of fossil fuels (oil, coal, and
gas) remain in the final energy mix. The share of hydrogen in the energy mix in 2050
amounts to about 800 TWh. In solidEU, hydrogen is used in the industry (~500 TWh) and
in the transport (10% and 40% indirect electrification of cars and heavy trucks in 2050,
respectively) sectors only, representing in total numbers approximately 1.7 million fuel cell
trucks and 35 million fuel cell cars by 2050. In the industry sector, hydrogen is used for
energy and as a feedstock. A total of 160 TWh of hydrogen is consumed in steel production
as feedstock in the DRI process and as a substitute for natural gas in the electric arc furnace.
The remaining ~340 TWh supplies hydrogen burners and CHP plants, and it is used as a
substitute natural gas for process heat provision. A total of 80% of industrial H2 demand
is balanced in the industry branches of iron and steel, chemical and petrochemical, and
non-ferrous metal and non-metallic minerals.
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To delve deeper into the sector model results, we investigate the private household
and the transport sectors in further detail. The main statement of Figure 5a, the share of
applications in the FEC, is the sharp decline of space heating share. This can be traced
back to increased renovation and efficiency measures in the household sector. The shares
of the remaining applications seem to rise, but this is only an effect of the declining space
heating share.
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Figure 5. Share of application (a) and share of energy carriers (b) in the FEC in the private household sector.

Figure 5b shows the shares of energy carriers in the FEC in the private household
sector. While coal is mainly phased out by 2035 in Europe, miniscule shares of oil and gas
remain in the energy mix of 2050. This is due to a small number of fossil heating systems
that have not reached their end of life by 2050, but they will be phased out shortly thereafter.
The shares of electrical applications in the household sector amount to more than 60%
of the energy mix in 2050. The main driver behind this development is the widespread
application of heat pumps in this sector.

In the transport sector, the FEC of passenger cars is reduced by approximately one
third until 2050 (Figure 6a). This is partly a result of the shrinking stock of passenger cars
in Europe, but it is mainly an effect of increasing efficiency and due to the switch to battery
electric vehicles. The second largest impact on the reduction of total FEC can be attributed
to heavy lorries and tractors. In this category, 60% of the vehicle stock in 2050 is powered
through direct electrification (battery electric and overhead line). The other 40% is powered
through indirect electrification using hydrogen. Both measures result in a decrease of FEC
to about one half from 2020 to 2050.
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Figure 6b shows the shares of energy carriers in the FEC of the transport sector. Diesel
and gasoline fade out completely by 2050 due to the replacement of fossil combustion
vehicles by battery electric and hydrogen powered vehicles. Hydrogen for fuel cell electric
vehicles will not be used until 2030, but it will reach a share of 22% in the energy mix by
2050. Railways will also be powered through indirect electrification with hydrogen. The
biggest share in the energy mix of 2050 will be electricity at approximately 65%. Europe
will see approximately 213 million battery electric passenger cars driving on its roads by
2050. The FEC of aviation and navigation remain steady in solidEU. The shares of jet fuel
and oil increase until 2050, but this is a relative effect of shrinking total consumption.

3.2. Energy Sector
3.2.1. Generation Capacities

As described in Section 3.1, the demand for electricity and hydrogen increases from
2020 to 2050. The additional demand must be met by the energy sector. In combination with
the GHG CAP imposed by the emission targets, this leads to a complete transformation
of the energy sector toward RES. While only 417 GW of RES are installed in Europe in
2020 (based on [44]), the installed capacity increases to 3154 GW in 2050. The increase is
dominated by additions of vRES capacities as can be seen in Figure 7. The vRES capacities
increase 9-fold between 2020 and 2050. Offsite solar power plants register the largest
capacity increase. Installed capacity rises from 49 GW in 2020 to 1633 GW in 2050. In
second place is onshore wind power whose capacity increases from 176 GW to 856 GW.
Net additions for offshore wind power amount to 388 GW over the same period.
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Converted to annual net additions, this means that between 2020 and 2050, an average
of 53 GW/a of PV capacity, 23 GW/a of net onshore wind capacity, and 13 GW/a of net
offshore wind capacity will need to be installed. This would far exceed historic record
years for vRES additions. The years with the highest capacity expansions to date are 2011
(PV 21 GW) [45], 2017 (wind onshore 14 GW), and 2019 (wind offshore 9 GW) [46]. Thus,
less than half of the required installation rate of solidEU has been achieved in the past.
It can therefore be concluded that efforts to increase installation rates for vRES must be
intensified to achieve a GHG emission reduction of −95% by 2050 compared to 1990.

As mentioned above, there are two factors that accelerate the expansion of vRES. First,
cost reductions combined with an increase in gross electricity consumption of 819 TWh
drive the additions until 2030. Only in the following years will the additional increase in
gross electricity consumption in combination with the GHG CAP become the main drivers
for the further expansion of vRES capacities until 2050.

Figure 8 shows the spatial distribution (NUTS-3) of vRES capacities in Europe in 2050.
Most wind offshore capacities are concentrated in the North Sea and the Baltic Sea. Here,
electricity production per square kilometer is as high as 65 GWh/km2. The regions with
high electricity production from onshore wind power are concentrated in the north of
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Germany, the Netherlands, and the north of France. Here, electricity production per km2

can be as high as 19 GWh. The regions with the highest electricity production per km2

for PV can be mainly found in Germany and Italy. However, in most European regions,
electricity production per km2 from PV does not exceed 1.2 GWh. Compared to the total
potential available in solidEU, 53% of the PV offsite potential, 14% of the offshore wind
potential, and 6% of the onshore wind potential are developed. This means some countries,
such as Germany (91%) and France (69%), exploit large amounts of their PV offsite potential.
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consideration of curtailment of vRES and exclusion of the Balkan countries as they are not relevant
for the scope of this scenario.

As large amounts of vRES capacity enter the market, the importance of thermal power
plants in power generation declines. While the reduction in installed capacity is only
65 GW, the composition as well as the operating characteristics of thermal generation
units change fundamentally. While nuclear power plants account for 120 GW, coal-fired
power plants for 129 GW, and gas-fired power plants for 252 GW of the 509 GW of thermal
power plants in 2020, in 2050 gas-fired power plants will dominate with 382 GW out of an
installed total of 444 GW. However, nuclear power plants still play a role with an installed
capacity of 51 GW, especially since their generation characteristics differ from other thermal
generation technologies. As can be seen in Table 1, in 2050, nuclear power plants still
generate electricity almost two thirds of the year. For all other technologies, full load hours
(FLH) drop to a few hours per year. Due to the emissions CAP, gas fired power plants
which run on 407 FLH per year must be fueled with carbon-neutral synthetic methane,
which increases their marginal cost. The marginal cost of one MWh of electricity ranges
between €150 and €300, depending on efficiency. Gas-fired power plants are therefore only
used to cover peak load hours.
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Table 1. FLH of thermal power plants per year in solidEU.

Thermal Power Plants 2020 2025 2030 2035 2040 2045 2050

Gas 3518 1346 763 731 715 540 407
Hard Coal 2438 678 585 502 102 43 5

Lignite 4801 3591 2502 2101 1328 37 4
Nuclear 6899 6171 5821 5897 5644 5497 5547

3.2.2. Energy Balance Electricity

As can be seen in Figure 7, the share of RES in gross electricity consumption increases
from 36% in 2020 to 94% in 2050. In total, RES (including hydroelectric dams, which are
not displayed in Figure 7) will generate 6946 TWh of electricity that can be integrated into
the market in 2050. Onshore wind accounts for 36%, PV for 28%, and offshore wind for
26%. Curtailment of vRES amounts to 406 TWh.

However, annual electricity generation volumes do not reflect the complexity of a
power system dominated by vRES. Since electricity generation depends on variables that
cannot be influenced, such as solar radiation or wind, the power system must compensate
with more flexibility for inflexible generation to meet demand. Figure 9 shows the hourly
European energy balance for electricity, ordered by the annual residual load. The residual
load is defined as the electrical load of the FEC sectors minus the electricity generation
from RES.

The drastic change in the energy sector described in Section 3.2.1 can also be under-
stood from the annual residual load curve (Figure 9). In 2020, the residual load is positive in
8760 h of the year. This means that electricity generation from RES is not sufficient to supply
all electricity to the European FEC sectors even in a single hour of the year. This changes in
2050, when the residual load is negative for 6437 h of the year, meaning more electricity is
generated by RES than is demanded by the FEC sectors. The excess electricity is consumed
in sector coupling technologies and storages, making the power system more flexible.
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(a) the year 2020; (b) the year 2050. Electricity generation is plotted on the positive x-axis, while
consumption is plotted in the negative x-axis.

In 2050, with respect to electrical power, a total of 340 GW of electrolysis, 52 GW of
power to heat technologies, 29 GW of power to methane, 31 GW of power to synthetic
fluid hydrocarbons (SynFuel), and 315 GW of electric storages with a capacity of 1624 GWh
are installed. Of the 315 GW electric storages, 246 GW are battery electric storages with
a storage capacity of 865 GWh. Their dispatch correlates negatively to the residual load.
In the hour with the lowest residual load (−685 GWh/h), the demand technologies add
449 GWh/h of electricity demand to the electricity demand from the FEC sectors. Electric
battery storages additionally add 294 GWh/h. This also corresponds to the maximum load
added during the whole year. The maximum electricity demand from the FEC sectors in a
single hour is 1164 GWh/h and the minimum is 316 GWh/h. Additional load from flexible
demand technologies and electric storages lies within these extremes and can therefore
balance the load efficiently.

Interestingly, even in the hours when the residual load is strongly negative, electricity
production from thermal power plants is observed. This behavior is counterintuitive since
electricity production from RES is cheaper than from thermal power plants and should
therefore be preferred. This indicates RES cannot meet electricity demand in all regions,
although from a European perspective, electricity from RES is abundantly available. The
reason for this is the NTCs are limited and insufficient to transport the necessary amounts
of electricity. This indicates a need for further grid expansion.

Even though NTCs may be the limiting factor in some hours of the year, the European
power grid represents great flexibility for the energy system. Overall, the amount of traded
electricity increases from 374 TWh in 2020 to 1571 TWh in 2050.

3.2.3. Hydrogen Generation

Hydrogen demand in solidEU increases from 149 TWh in 2020 to 1079 TWh in 2050. In
addition to the energy use of 795 TWh of hydrogen in the FEC sectors mobility and industry
(Section 3.1), 283 TWh are required in the industry sector for feedstock consumption. To
supply the FEC sectors with hydrogen, a total of 340 GW of electrolysis capacity is necessary.
Electrolyzers run on an average of 5431 FLH and hydrogen is mainly produced from RES
as can be seen in Figure 9.

Hydrogen is, therefore, mainly produced during periods of low demand from the FEC
sectors and high availability of vRES. To provide hydrogen throughout the year, it must be
stored as no hydrogen imports are allowed (Section 2). The storage profile of a fictional
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European hydrogen storage facility is shown in Figure 10, where a clear seasonal profile can
be seen. While the hydrogen storage is emptied in the winter months, it is filled in summer
and fall. A total storage volume of 170 TWh is required. A hydrogen storage facility thus
compensates for seasonal differences in power generation and enables higher integration of
vRES into the energy system. However, this finding needs to be solidified in future research
with the implementation of real hydrogen storage technologies and potentials.
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Figure 10. Annual fill level of a hypothetical European hydrogen storage in 2050 as well as maximum
storage capacities for the years 2030, 2040, and 2050.

4. Discussion

The results show that far-reaching emission reduction targets supported by a solidarity-
based European community have a strong impact on the composition and the level of
the FEC, as well as on energy supply. Of crucial importance for the transformation of the
energy system is the expansion of vRES.

Looking at the composition of the FEC, solidEU clearly identifies as a strong elec-
trification scenario. Combining qualitative and quantitative scenario construction in the
integrated scenario process reveals the sociopolitical aspects which drive technology im-
plementation and therefore influence FEC. The underlying storyline adds meaning to
parameter quantifications and allows the reader to understand how societal developments
facilitate important parameters such as technology implementation rates. This is a consid-
eration that is often neglected when creating different scenarios from a technical point of
view, e.g., electrification vs. green gases. Further research, however, is needed regarding
FEC sectors other than industry, transport, private households, and the tertiary sector. The
development of sectors, such as transformation or agriculture, have only been modeled in
a stylized way and require further investigation in the future.

The first main finding of the results presented is the European vRES potentials are suf-
ficient to meet the increase in gross electricity consumption, even in a strong electrification
scenario. Even with the constraint that European hydrogen demand is produced only in
Europe, not all the potential is realized. On- and off-shore wind potential, especially, remain
abundantly available. Required net annual addition of vRES capacities to meet the GHG
emission target of −95% in 2050 compared to 1990, however, are significantly higher than
the historical record addition [45,46]. Efforts to accelerate the expansion of vRES capacities
must therefore be enforced in order to reach emissions reduction targets that are also in
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accordance with the European Green Deal and “Fit for 55” (COM/2021/550 final). This is
all the truer as it is likely that there will be a slow ramp-up phase of installation capacities,
which will lead to higher installation rates at a later date. The annual peak values for the
installation of vRES could therefore be significantly higher in practice. While according
to their national long-term strategies there are six countries (Austria, Denmark, France,
Germany, Italy, and Sweden) considered to be pace-setting regarding the implementation
of the European climate targets, Bulgaria, Croatia, Latvia and Poland are considered to be
foot-dragging [47]. Since it is difficult to achieve climate targets even in Europe based on
solidarity, as in solidEU, it is even more important that all European countries are convinced
of the necessity to restructure their energy provision. One possibility for achieving this goal
and simultaneously boosting the expansion of RES could be a large-scale subsidization of
RES by the EU for all member countries.

The second main finding relates to the necessary flexibility of the energy system to
integrate additional vRES electricity generation. Besides small amounts of power to heat,
power to methane, and power to SynFuel, flexibility is provided by electrical storages as
well as hydrogen production and hydrogen storage. While electric storages cover short term
fluctuations, hydrogen storages balance seasonal differences. The strong reinforcement of
European NTCs additionally compensates for regional generation differences. This shows
that a stronger coupling of electricity markets is necessary. Increasing the NTCs from
70% to 75% of their thermal capacities could be a viable way forward in the short term,
especially since this measure could be implemented without the often time-consuming
construction of new power grids. In total, the European energy systems need to become
more flexible.

Quantitative statements on the degree of flexibility, however, are difficult as only one
weather year was simulated in this scenario analysis, which means quantitative parameters
may not be robust. Nevertheless, the qualitative conclusion that the degree of flexibility in
the European energy system must increase in the future remains robust. This is even truer
considering that the weather year used, 2012, represents an average weather year in terms
of the years between 1980 and 2019. In more extreme weather years, the need for even
higher degrees of flexibility is very likely. Another limitation is the neglect of the power
grid itself. No grid calculations were performed; therefore, no conclusions can be made
about the ability of the power grid to distribute the additional electricity. Further research
is needed as the actual grid can limit the flexibility of the power system.

Further research is also needed regarding hydrogen production and storage. As
explained in Section 2.1, a hypothetical ideal European hydrogen storage mechanism with
infinite storage capacity was assumed. In the future, real hydrogen storage potentials,
import capacities, and re-electrification must be considered to get a more realistic few of
the role of hydrogen in the European energy system, especially as the discussion about
importing hydrogen from outside Europe gains momentum. Here, it could be interesting to
show that European hydrogen production can improve the integration of vRES electricity
generation into the power system and balance seasonal generation variations.

5. Conclusions

To analyze the European energy system, a model landscape consisting of four FEC
models and the multi-energy system model ISAaR was developed and extended to the
EU27 + UK, Norway, and Switzerland. The high spatial (NUTS-3) and temporal (hourly)
resolutions allow systemic effects to be investigated both at the European level and at the
regional level for all hours of a year.

The model landscape was then used to investigate the impact of the deep GHG
mitigation scenario, solidEU, on the European energy sector. The FEC was found to
decrease by 5400 TWh from 2020 to 2050 mainly due to electrification measures. In 2050,
electricity accounts for two thirds of the FEC, while hydrogen accounts for one tenth. While
complying with GHG emission targets, the energy sector must change significantly to
meet FEC demand, as well as electricity demand from sector coupling technologies such
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as hydrogen, power to heat, power to methane and power to SynFuel. In the year 2050,
the energy sector is dominated by vRES in the solidEU scenario. Installed capacities of
onshore wind, offshore wind, and PV amount to more than 3000 GW, generating more than
6000 TWh of electricity. In 2050, in combination with other RES, they cover 94% of the gross
electricity consumption.

The amount of additional vRES capacity installed thereby exceeds historic record
years. This means that major efforts in expanding vRES capacities are needed to meet
GHG emission targets of –95% compared to 1990 in Europe. Considering the realization of
the European Commission’s Green Deal (COM/2021/550 final) this means all European
countries must accelerate vRES installations. One possibility for achieving this goal may be
a large-scale subsidization of RES by the EU.

To balance the volatile electricity production from vRES, the energy system must
increase its flexibility by adding battery electric storages and sector coupling technolo-
gies. Here, hydrogen can play an important role to compensate for seasonal generation
fluctuations. Hydrogen storages can be filled during times of high electricity production
from vRES while electricity demand from the FEC sectors is low, which is mainly the case
between April and October. In the winter months, the storages can then be emptied.

In summary, in a solidary Europe as outlined in the solidEU scenario, a deep decar-
bonization of the energy system can be achieved. In reality, however, this will require an
enormous effort.
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