Error Compensation Enhanced Day-Ahead Electricity Price Forecasting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Feedforward Deep Neural Network
2.2. Autoregressive Forecasting Model and Model Selection
2.3. Proposed Model Structure
2.4. Case Study and Experiments
2.5. Performance Metrics
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- What Is Price Volatility, Eia.gov. 2021. Available online: https://www.eia.gov/naturalgas/weekly/archivenew_ngwu/2003/10_23/Volatility%2010-22-03.htm (accessed on 11 January 2022).
- Fanelli, V.; Schmeck, M. On The Seasonality in the Implied Volatility of Electricity Options. Quant. Financ. 2019, 19, 1321–1337. [Google Scholar] [CrossRef]
- NRG Editorial Voices. The Relationship between Weather and Energy Prices, NRG Energy. 2021. Available online: https://www.nrg.com/insights/innovation/the-relationship-between-weather-and-energy-prices.html (accessed on 11 January 2022).
- Pereira da Silva, P.; Horta, P. The Effect Of Variable Renewable Energy Sources On Electricity Price Volatility: The Case Of The Iberian Market. Int. J. Sustain. Energy 2019, 38, 794–813. [Google Scholar] [CrossRef]
- Prices and Affordability—World Energy Outlook 2021—Analysis—IEA, IEA. 2021. Available online: https://www.iea.org/reports/world-energy-outlook-2021/prices-and-affordability (accessed on 11 January 2022).
- Van Cleef, H. Electricity Monitor—Power Prices Are Skyrocketing! ABN AMRO Group Economics. 2021. Available online: https://www.abnamro.com/research/en/our-research/electricity-monitor-power-prices-are-skyrocketing1 (accessed on 11 January 2022).
- Bjarghov, S.; Loschenbrand, M.; Ibn Saif, A.; Alonso Pedrero, R.; Pfeiffer, C.; Khadem, S.; Rabelhofer, M.; Revheim, F.; Farahmand, H. Developments And Challenges In Local Electricity Markets: A Comprehensive Review. IEEE Access 2021, 9, 58910–58943. [Google Scholar] [CrossRef]
- Day-Ahead and Real-Time Energy Markets, Iso-ne.com. 2021. Available online: https://www.iso-ne.com/markets-operations/markets/da-rt-energy-markets/ (accessed on 11 January 2022).
- Vivas, E.; Allende-Cid, H.; Salas, R. A Systematic Review of Statistical and Machine Learning Methods for Electrical Power Forecasting with Reported MAPE Score. Entropy 2020, 22, 1412. [Google Scholar] [CrossRef] [PubMed]
- Cincotti, S.; Gallo, G.; Ponta, L.; Raberto, M. Modeling and forecasting of electricity spot-prices: Computational intelligence vs classical econometrics. AI Commun. 2014, 27, 301–314. [Google Scholar] [CrossRef]
- Ferreira, Â.; Ramos, J.; Fernandes, P. A Linear Regression Pattern For Electricity Price Forecasting In The Iberian Electricity Market. Rev. Fac. De Ing. Univ. De Antioq. 2019, 93, 117–127. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Han, J.; Wang, R.; Hou, G. Day-Ahead Electricity Price Forecasting Based On Rolling Time Series And Least Square-Support Vector Machine Model. In Proceedings of the 2011 Chinese Control and Decision Conference (CCDC), Mianyang, China, 23–25 May 2011. [Google Scholar] [CrossRef]
- Bikcora, C.; Verheijen, L.; Weiland, S. Density forecasting of daily electricity demand with ARMA-GARCH, CAViaR, and CARE econometric models. Sustain. Energy Grids Netw. 2018, 13, 148–156. [Google Scholar] [CrossRef]
- Marín, J.; Villada, F. Regionalized discount rate to evaluate renewable energy projects in Colombia. Int. J. Energy Econ. Policy 2020, 10, 332–336. [Google Scholar] [CrossRef]
- Cerjan, M.; Matijaš, M.; Delimar, M. Dynamic Hybrid Model for Short-Term Electricity Price Forecasting. Energies 2014, 7, 3304–3318. [Google Scholar] [CrossRef]
- Marcjasz, G.; Lago, J.; Weron, R. Neural Networks In Day-Ahead Electricity Price Forecasting: Single Vs. Multiple Outputs. arXiv 2020, arXiv:2008.08006. Available online: https://arxiv.org/abs/2008.08006 (accessed on 11 January 2022).
- Jiang, L.; Hu, G. Day-Ahead Price Forecasting For Electricity Market Using Long-Short Term Memory Recurrent Neural Network. In Proceedings of the 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV), Singapore, 18–21 November 2018. [Google Scholar] [CrossRef]
- Khan, Z.; Fareed, S.; Anwar, M.; Naeem, A.; Gul, H.; Arif, A.; Javaid, N. Short Term Electricity Price Forecasting Through Convolutional Neural Network (CNN). In Advances in Intelligent Systems and Computing; Springer: Cham, Switzerland, 2020; pp. 1181–1188. [Google Scholar] [CrossRef]
- Honkela, A. Multilayer Perceptrons. 2001. Available online: https://users.ics.aalto.fi/ahonkela/dippa/node41.html (accessed on 14 January 2022).
- Srivastava, P. Long Short Term Memory|Architecture of LSTM, Analytics Vidhya. 2017. Available online: https://www.analyticsvidhya.com/blog/2017/12/fundamentals-of-deep-learning-introduction-to-lstm/ (accessed on 14 January 2022).
- Smeda, K. Understand the Architecture of CNN, Medium. 2021. Available online: https://towardsdatascience.com/understand-the-architecture-of-cnn-90a25e244c7 (accessed on 14 January 2022).
- Kontogiannis, D.; Bargiotas, D.; Daskalopulu, A. Minutely Active Power Forecasting Models Using Neural Networks. Sustainability 2020, 12, 3177. [Google Scholar] [CrossRef] [Green Version]
- Brownlee, J. A Gentle Introduction to Ensemble Learning Algorithms, Machine Learning Mastery. 2021. Available online: https://machinelearningmastery.com/tour-of-ensemble-learning-algorithms/ (accessed on 14 January 2022).
- Yajnik, A. The Emergence of Hybrid Models in Time Series Forecasting, Medium. 2021. Available online: https://medium.com/@ayushyajnik2/the-emergence-of-hybrid-models-in-time-series-forecasting-31e0341bb538 (accessed on 14 January 2022).
- de Marcos, R.; Bello, A.; Reneses, J. Electricity price forecasting in the short term hybridising fundamental and econometric modelling. Electr. Power Syst. Res. 2019, 167, 240–251. [Google Scholar] [CrossRef]
- Bhagat, M.; Alamaniotis, M.; Fevgas, A. Extreme Interval Electricity Price Forecasting of Wholesale Markets Integrating ELM and Fuzzy Inference. In Proceedings of the 2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA), Patras, Greece, 15–17 July 2019. [Google Scholar] [CrossRef]
- Marcjasz, G. Forecasting Electricity Prices Using Deep Neural Networks: A Robust Hyper-Parameter Selection Scheme. Energies 2020, 13, 4605. [Google Scholar] [CrossRef]
- Alamaniotis, M.; Ikonomopoulos, A.; Alamaniotis, A.; Bargiotas, D.; Tsoukalas, L.H. Day-ahead electricity price forecasting using optimized multiple-regression of relevance vector machines. In Proceedings of the 8th Mediterranean Conference on Power Generation, Transmission, Distribution and Energy Conversion (MEDPOWER 2012), Cagliari, Italy, 1–3 October 2012; pp. 1–5. [Google Scholar] [CrossRef]
- Alamaniotis, M.; Bargiotas, D.; Bourbakis, N.G.; Tsoukalas, L.H. Genetic Optimal Regression of Relevance Vector Machines for Electricity Pricing Signal Forecasting in Smart Grids. IEEE Trans. Smart Grid 2015, 6, 2997–3005. [Google Scholar] [CrossRef]
- Zhang, W.; Cheema, F.; Srinivasan, D. Forecasting of Electricity Prices Using Deep Learning Networks. In Proceedings of the 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Kota Kinabalu, Malaysia, 7–10 October 2018. [Google Scholar] [CrossRef]
- Alamaniotis, M.; Gatsis, N.; Tsoukalas, L. Virtual Budget: Integration of electricity load and price anticipation for load morphing in price-directed energy utilization. Electr. Power Syst. Res. 2018, 158, 284–296. [Google Scholar] [CrossRef]
- Angamuthu Chinnathambi, R.; Mukherjee, A.; Campion, M.; Salehfar, H.; Hansen, T.M.; Lin, J.; Ranganathan, P. A Multi-Stage Price Forecasting Model for Day-Ahead Electricity Markets. Forecasting 2019, 1, 3. [Google Scholar] [CrossRef] [Green Version]
- Chang, Z.; Zhang, Y.; Chen, W. Electricity price prediction based on hybrid model of adam optimized LSTM neural network and wavelet transform. Energy 2019, 187, 115804. [Google Scholar] [CrossRef]
- Su, M.; Zhang, Z.; Zhu, Y.; Zha, D. Data-Driven Natural Gas Spot Price Forecasting with Least Squares Regression Boosting Algorithm. Energies 2019, 12, 1094. [Google Scholar] [CrossRef] [Green Version]
- Atef, S.; Eltawil, A. A Comparative Study Using Deep Learning and Support Vector Regression for Electricity Price Forecasting in Smart Grids. In Proceedings of the 2019 IEEE 6th International Conference on Industrial Engineering and Applications (ICIEA), Tokyo, Japan, 12–15 April 2019. [Google Scholar] [CrossRef]
- Bissing, D.; Klein, M.; Chinnathambi, R.; Selvaraj, D.; Ranganathan, P. A Hybrid Regression Model for Day-Ahead Energy Price Forecasting. IEEE Access 2019, 7, 36833–36842. [Google Scholar] [CrossRef]
- Xu, J.; Baldick, R. Day-Ahead Price Forecasting in ERCOT Market Using Neural Network Approaches. In Proceedings of the Tenth ACM International Conference on Future Energy Systems, Phoenix, AZ, USA, 25–28 June 2019. [Google Scholar] [CrossRef]
- Zhang, C.; Li, R.; Shi, H.; Li, F. Deep learning for day-ahead electricity price forecasting. IET Smart Grid 2020, 3, 462–469. [Google Scholar] [CrossRef]
- Lago, J.; Marcjasz, G.; De Schutter, B.; Weron, R. Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark. Appl. Energy 2021, 293, 116983. [Google Scholar] [CrossRef]
- Tao, C.; Lu, J.; Lang, J.; Peng, X.; Cheng, K.; Duan, S. Short-Term Forecasting of Photovoltaic Power Generation Based on Feature Selection and Bias Compensation–LSTM Network. Energies 2021, 14, 3086. [Google Scholar] [CrossRef]
- Vega-Márquez, B.; Rubio-Escudero, C.; Nepomuceno-Chamorro, I.A.; Arcos-Vargas, Á. Use of Deep Learning Architectures for Day-Ahead Electricity Price Forecasting over Different Time Periods in the Spanish Electricity Market. Appl. Sci. 2021, 11, 6097. [Google Scholar] [CrossRef]
- Jiang, P.; Liu, Z.; Wang, J.; Zhang, L. Decomposition-selection-ensemble forecasting system for energy futures price forecasting based on multi-objective version of chaos game optimization algorithm. Resour. Policy 2021, 73, 102234. [Google Scholar] [CrossRef]
- Li, T.; Qian, Z.; Deng, W.; Zhang, D.; Lu, H.; Wang, S. Forecasting crude oil prices based on variational mode decomposition and random sparse Bayesian learning. Appl. Soft Comput. 2021, 113, 108032. [Google Scholar] [CrossRef]
- Pourdaryaei, A.; Mohammadi, M.; Karimi, M.; Mokhlis, H.; Illias, H.A.; Kaboli, S.H.A.; Ahmad, S. Recent Development in Electricity Price Forecasting Based on Computational Intelligence Techniques in Deregulated Power Market. Energies 2021, 14, 6104. [Google Scholar] [CrossRef]
- Subarna, D. Structure of Neural Network|Artificial Intelligence, Engineering Notes India. 2021. Available online: https://www.engineeringenotes.com/artificial-intelligence-2/neural-network-artificial-intelligence-2/structure-of-neural-network-artificial-intelligence/35410 (accessed on 14 January 2022).
- Ronaghan, S. Deep Learning: Overview of Neurons and Activation Functions, Medium. 2018. Available online: https://srnghn.medium.com/deep-learning-overview-of-neurons-and-activation-functions-1d98286cf1e4 (accessed on 14 January 2022).
- Kurama, V. Regression in Machine Learning: What It Is and Examples of Different Models, Built in. 2019. Available online: https://builtin.com/data-science/regression-machine-learning (accessed on 14 January 2022).
- Weight (Artificial Neural Network), DeepAI. 2021. Available online: https://deepai.org/machine-learning-glossary-and-terms/weight-artificial-neural-network (accessed on 14 January 2022).
- Kostadinov, S. Understanding Backpropagation Algorithm, Medium. 2021. Available online: https://towardsdatascience.com/understanding-backpropagation-algorithm-7bb3aa2f95fd (accessed on 14 January 2022).
- Brownlee, J. Loss and Loss Functions for Training Deep Learning Neural Networks, Machine Learning Mastery. 2019. Available online: https://machinelearningmastery.com/loss-and-loss-functions-for-training-deep-learning-neural-networks/ (accessed on 14 January 2022).
- Keim, R. Understanding Local Minima in Neural-Network Training, All About Circuits. 2020. Available online: https://www.allaboutcircuits.com/technical-articles/understanding-local-minima-in-neural-network-training/ (accessed on 14 January 2022).
- Ippolito, P. Hyperparameters Optimization, Medium. 2019. Available online: https://towardsdatascience.com/hyperparameters-optimization-526348bb8e2d (accessed on 14 January 2022).
- Mack, D. How to Pick the Best Learning Rate for Your Machine Learning Project. 2018. Available online: https://www.freecodecamp.org/news/how-to-pick-the-best-learning-rate-for-your-machine-learning-project-9c28865039a8/ (accessed on 14 January 2022).
- Goyal, C. Regularization|Regularization Techniques in Machine Learning, Analytics Vidhya. 2021. Available online: https://www.analyticsvidhya.com/blog/2021/05/complete-guide-to-regularization-techniques-in-machine-learning/ (accessed on 14 January 2022).
- Vijay, U. Early Stopping to Avoid Overfitting in Neural Network- Keras, Medium. 2019. Available online: https://medium.com/zero-equals-false/early-stopping-to-avoid-overfitting-in-neural-network-keras-b68c96ed05d9 (accessed on 14 January 2022).
- Radečić, D. Time Series From Scratch—AutoRegression Theory and Implementation, Medium. 2021. Available online: https://towardsdatascience.com/time-series-from-scratch-autoregression-theory-and-implementation-f8c614f738f2 (accessed on 14 January 2022).
- Jantana, P.; Sudasna-na-Ayudthya, P. Least Squares and Discounted Least Squares in Autoregressive Process. Available online: https://www.thaiscience.info/journals/Article/SUIJ/10559421.pdf (accessed on 14 January 2022).
- Verma, Y. Complete Guide to Dickey-Fuller Test in Time-Series Analysis, Analytics India Magazine. 2021. Available online: https://analyticsindiamag.com/complete-guide-to-dickey-fuller-test-in-time-series-analysis/ (accessed on 14 January 2022).
- Bevans, R. An introduction to the Akaike Information Criterion, Scribbr. 2020. Available online: https://www.scribbr.com/statistics/akaike-information-criterion/ (accessed on 14 January 2022).
- Analyttica Datalab. What is Bayesian Information Criterion (BIC)? Medium. 2019. Available online: https://medium.com/@analyttica/what-is-bayesian-information-criterion-bic-b3396a894be6 (accessed on 14 January 2022).
- van der Pas, S.; Gruenwald, P. Almost the Best of Three Worlds: Risk, Consistency and Optional Stopping for the Switch Criterion in Nested Model Selection. Stat. Sin. 2018, 28, 229–253. [Google Scholar] [CrossRef] [Green Version]
- Datasets for Day-Ahead Electricity Prices (Version 3). 2020. Available online: https://sandbox.zenodo.org/record/715409#.Ygzs9uhByUk (accessed on 14 January 2022). [CrossRef]
- Bharath, K. Understanding ReLU: The Most Popular Activation Function in 5 Minutes! Medium. 2020. Available online: https://towardsdatascience.com/understanding-relu-the-most-popular-activation-function-in-5-minutes-459e3a2124f (accessed on 14 January 2022).
- Stojiljković, M. Stochastic Gradient Descent Algorithm With Python and NumPy—Real Python. 2021. Available online: https://realpython.com/gradient-descent-algorithm-python/ (accessed on 14 January 2022).
- GitHub—Dimkonto/ERC-DNN: Error Compensation On Deep Neural Network Model for Day-Ahead Electricity Price Forecasting, GitHub. 2022. Available online: https://github.com/dimkonto/ERC-DNN (accessed on 14 January 2022).
- Fürnkranz, J.; Chan, P.; Craw, S.; Sammut, C.; Uther, W.; Ratnaparkhi, A.; Jin, X.; Han, J.; Yang, Y.; Morik, K.; et al. Mean Absolute Error. In Encyclopedia of Machine Learning; Springer: Boston, MA, USA, 2011; p. 652. [Google Scholar] [CrossRef]
- de Myttenaere, A.; Golden, B.; Le Grand, B.; Rossi, F. Mean Absolute Percentage Error for regression models. Neurocomputing 2016, 192, 38–48. [Google Scholar] [CrossRef] [Green Version]
- Chaudhary, M. Python|Mean Squared Error—GeeksforGeeks, GeeksforGeeks. 2019. Available online: https://www.geeksforgeeks.org/python-mean-squared-error/ (accessed on 14 January 2022).
- Hyndman, R.; Koehler, A.B. Another look at measures of forecast accuracy. Int. J. Forecast. 2006, 22, 679–688. [Google Scholar] [CrossRef] [Green Version]
- Hale, J. Which Evaluation Metric Should You Use in Machine Learning Regression Problems? Medium. 2021. Available online: https://towardsdatascience.com/which-evaluation-metric-should-you-use-in-machine-learning-regression-problems-20cdaef258e (accessed on 14 January 2022).
- Maciejowska, K.; Nitka, W.; Weron, T. Day-Ahead vs. Intraday—Forecasting the Price Spread to Maximize Economic Benefits. Energies 2019, 12, 631. [Google Scholar] [CrossRef] [Green Version]
Model | Scenario | MAPE | MSE | RMSE | MAE |
---|---|---|---|---|---|
Base DNN | 10 Epochs | 25.375 | 130.332 | 11.194 | 8.581 |
ERC–DNN | 10 Epochs | 6.456 | 10.367 | 3.206 | 2.137 |
Base-DNN | 100 Epochs | 10.492 | 24.761 | 4.970 | 3.068 |
ERC–DNN | 100 Epochs | 4.688 | 6.165 | 2.481 | 1.507 |
Base-DNN | 1000 Epochs | 7.583 | 16.625 | 4.067 | 2.156 |
ERC–DNN | 1000 Epochs | 3.464 | 4.510 | 2.123 | 1.105 |
Criterio | 24 Lag Window | ACF ≥0.2 | ACF ≥ 0.3 | ACF ≥ 0.4 |
---|---|---|---|---|
AIC H0 | 1.9790 | 1.9292 | 1.9457 | 1.9593 |
AIC H1 | 2.3797 | 2.3523 | 2.3672 | 2.4724 |
AIC H2 | 2.2449 | 2.2150 | 2.2319 | 2.2567 |
AIC H3 | 1.9656 | 1.9224 | 1.9224 | 1.9353 |
AIC H4 | 1.8745 | 1.8592 | 1.8865 | 1.9663 |
AIC H5 | 1.9847 | 1.9182 | 1.9391 | 2.1244 |
AIC H6 | 1.8880 | 1.8673 | 1.8815 | 1.9277 |
AIC H7 | 2.1403 | 2.1229 | 2.1346 | 2.2355 |
AIC H8 | 2.1850 | 2.1650 | 2.2633 | 2.2739 |
AIC H9 | 1.7241 | 1.7407 | 1.8363 | 1.8498 |
AIC H10 | 1.9550 | 1.9456 | 1.9843 | 2.1282 |
AIC H11 | 1.9167 | 1.8956 | 1.9077 | 1.9281 |
AIC H12 | 2.1428 | 2.0839 | 2.0982 | 2.1227 |
AIC H13 | 1.9478 | 1.9120 | 1.9276 | 1.9573 |
AIC H14 | 2.1011 | 2.0691 | 2.0691 | 2.1047 |
AIC H15 | 2.0097 | 1.9600 | 1.9786 | 1.9980 |
AIC H16 | 1.7016 | 1.6398 | 1.6466 | 1.6662 |
AIC H17 | 2.0564 | 2.0659 | 2.0754 | 2.1979 |
AIC H18 | 2.1026 | 2.0382 | 2.0585 | 2.0754 |
AIC H19 | 2.1297 | 2.0518 | 2.0838 | 2.0931 |
AIC H20 | 1.8115 | 1.7889 | 1.8569 | 1.8683 |
AIC H21 | 2.3006 | 2.2009 | 2.2022 | 2.2343 |
AIC H22 | 1.9503 | 1.8856 | 1.8926 | 1.9041 |
AIC H23 | 1.9740 | 1.9508 | 1.9687 | 1.9879 |
Criterio | 24 Lag Window | ACF ≥ 0.2 | ACF ≥ 0.3 | ACF ≥ 0.4 |
---|---|---|---|---|
BIC H0 | 2.0017 | 1.9432 | 1.9736 | 2.0901 |
BIC H1 | 1.9672 | 1.9173 | 1.9173 | 1.9173 |
BIC H2 | 1.9315 | 1.8794 | 1.8915 | 1.9250 |
BIC H3 | 2.1973 | 2.1854 | 2.3153 | 2.3311 |
BIC H4 | 2.0103 | 1.9635 | 1.9782 | 2.0938 |
BIC H5 | 1.9218 | 1.8858 | 1.8889 | 1.9136 |
BIC H6 | 1.8862 | 1.8436 | 1.8553 | 1.8759 |
BIC H7 | 2.2287 | 2.1715 | 2.1715 | 2.1715 |
BIC H8 | 2.0533 | 1.9991 | 2.0230 | 2.2113 |
BIC H9 | 1.7851 | 1.7451 | 1.7534 | 1.7636 |
BIC H10 | 1.9882 | 1.9916 | 2.0489 | 2.0610 |
BIC H11 | 1.9267 | 1.8791 | 1.9633 | 2.0198 |
BIC H12 | 1.9583 | 1.8886 | 1.9166 | 2.0390 |
BIC H13 | 2.2644 | 2.2398 | 2.2596 | 2.2722 |
BIC H14 | 1.9082 | 1.8561 | 1.8827 | 1.9004 |
BIC H15 | 2.0200 | 1.9953 | 2.0252 | 2.0324 |
BIC H16 | 2.2123 | 2.1749 | 2.1958 | 2.2805 |
BIC H17 | 1.9061 | 1.8738 | 1.9013 | 1.9500 |
BIC H18 | 2.2660 | 2.2364 | 2.3039 | 2.3164 |
BIC H19 | 2.2894 | 2.2566 | 2.2606 | 2.2723 |
BIC H20 | 2.0338 | 2.0195 | 2.0519 | 2.1707 |
BIC H21 | 1.9222 | 1.8812 | 1.8894 | 1.8964 |
BIC H22 | 2.1217 | 2.1079 | 2.1177 | 2.1850 |
BIC H23 | 2.2551 | 2.1922 | 2.2201 | 2.2400 |
Criterio | 24 Lag Window | ACF ≥ 0.2 | ACF ≥ 0.3 | ACF ≥ 0.4 |
---|---|---|---|---|
HQIC H0 | 1.7015 | 1.6794 | 1.7168 | 1.7683 |
HQIC H1 | 1.7430 | 1.7622 | 1.9189 | 1.9189 |
HQIC H2 | 1.9680 | 1.8916 | 1.8972 | 1.9285 |
HQIC H3 | 2.1361 | 2.1003 | 2.1188 | 2.1306 |
HQIC H4 | 2.0807 | 2.0603 | 2.0747 | 2.1937 |
HQIC H5 | 2.1427 | 2.0985 | 2.1003 | 2.1074 |
HQIC H6 | 1.9908 | 1.9275 | 1.9384 | 2.0965 |
HQIC H7 | 2.2277 | 2.1472 | 2.1683 | 2.3292 |
HQIC H8 | 1.9853 | 1.9692 | 2.0512 | 2.0531 |
HQIC H9 | 1.7594 | 1.7209 | 1.7608 | 1.7660 |
HQIC H10 | 1.9160 | 1.9157 | 2.0202 | 2.0238 |
HQIC H11 | 1.7992 | 1.7590 | 1.7652 | 1.7720 |
HQIC H12 | 1.7352 | 1.6870 | 1.6892 | 1.6954 |
HQIC H13 | 2.0105 | 1.9698 | 1.9835 | 2.0081 |
HQIC H14 | 2.1561 | 2.1161 | 2.2623 | 2.2693 |
HQIC H15 | 2.2703 | 2.2803 | 2.3123 | 2.3182 |
HQIC H16 | 2.4097 | 2.3869 | 2.4141 | 2.5297 |
HQIC H17 | 1.9114 | 1.8745 | 1.8745 | 1.8745 |
HQIC H18 | 2.3749 | 2.4596 | 2.4653 | 2.4653 |
HQIC H19 | 1.8727 | 1.8393 | 1.8588 | 1.8701 |
HQIC H20 | 1.9275 | 1.8702 | 1.8853 | 2.0014 |
HQIC H21 | 1.9794 | 1.9832 | 2.0800 | 2.0936 |
HQIC H22 | 2.0047 | 1.9994 | 2.1103 | 2.1193 |
HQIC H23 | 2.1320 | 2.0913 | 2.0997 | 2.1247 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kontogiannis, D.; Bargiotas, D.; Daskalopulu, A.; Arvanitidis, A.I.; Tsoukalas, L.H. Error Compensation Enhanced Day-Ahead Electricity Price Forecasting. Energies 2022, 15, 1466. https://doi.org/10.3390/en15041466
Kontogiannis D, Bargiotas D, Daskalopulu A, Arvanitidis AI, Tsoukalas LH. Error Compensation Enhanced Day-Ahead Electricity Price Forecasting. Energies. 2022; 15(4):1466. https://doi.org/10.3390/en15041466
Chicago/Turabian StyleKontogiannis, Dimitrios, Dimitrios Bargiotas, Aspassia Daskalopulu, Athanasios Ioannis Arvanitidis, and Lefteri H. Tsoukalas. 2022. "Error Compensation Enhanced Day-Ahead Electricity Price Forecasting" Energies 15, no. 4: 1466. https://doi.org/10.3390/en15041466
APA StyleKontogiannis, D., Bargiotas, D., Daskalopulu, A., Arvanitidis, A. I., & Tsoukalas, L. H. (2022). Error Compensation Enhanced Day-Ahead Electricity Price Forecasting. Energies, 15(4), 1466. https://doi.org/10.3390/en15041466