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Abstract: The evolution of electricity markets has led to increasingly complex energy trading dy-
namics and the integration of renewable energy sources as well as the influence of several external
market factors contributed towards price volatility. Therefore, day-ahead electricity price forecasting
models, typically using some kind of neural network, play a crucial role in the optimal behavior
of market agents. The most prominent models and benchmarks rely on improving the accuracy of
predictions and the time for convergence by some sort of a priori processing of the dataset that is
used for the training of the neural network, such as hyperparameter tuning and feature selection
techniques. What has been overlooked so far is the possible benefit of a posteriori processing, which
would consider the effects of parameters that could refine the predictions once they have been made.
Such a parameter is the estimation of the residual training error. In this study, we investigate the
effect of residual training error estimation for the day-ahead price forecasting task and propose an
error compensation deep neural network model (ERC–DNN) that focuses on the minimization of
prediction error, while reinforcing error stability through the integration of an autoregression module.
The experiments on the Nord Pool power market indicated that this approach yields improved error
metrics when compared to the baseline deep learning structure in different training scenarios, and
the refined predictions for each hourly sequence shared a more stable error profile. The proposed
method contributes towards the development of more flexible hybrid neural network models and
the potential integration of the error estimation module in future benchmarks, given a small and
interpretable set of hyperparameters.

Keywords: electricity price forecasting; energy; machine learning; deep learning; neural networks;
artificial intelligence; error estimation

1. Introduction

Modern energy markets follow increasingly complex processes in order to perform
efficient electricity trading that balances supply and demand while reacting to the dynamics
derived from the unique characteristics and challenges of each energy system. One of the
main challenges that urge the development of more sophisticated techniques for the coordi-
nated production and supply of electricity is price volatility [1]. The price of electricity can
fluctuate due to several factors and the sudden peaks and valleys in the price curves could
lead to suboptimal energy market agent behavior, hindering the ability of those entities
to execute economic transactions in the electricity market to the best of their envisaged
capacity. Some of the most notable factors that could cause price fluctuations to include
seasonal trends [2], weather conditions [3], penetration of renewable energy sources [4],
challenges involving economic growth and changes in fuel cost [5], supply availability [6]
and neighboring market dynamics [7]. It can be easily observed that load and generation

Energies 2022, 15, 1466. https://doi.org/10.3390/en15041466 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15041466
https://doi.org/10.3390/en15041466
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0001-7452-4083
https://orcid.org/0000-0001-8285-8972
https://orcid.org/0000-0003-1051-6302
https://orcid.org/0000-0002-6547-7454
https://doi.org/10.3390/en15041466
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15041466?type=check_update&version=1


Energies 2022, 15, 1466 2 of 21

dependencies on the time of day or year as well as seasonal trends coupled with extreme hot
or cold temperatures and extreme conditions, such as hurricanes could have a noticeable
impact on the electricity price. Furthermore, the infrastructural development of growing
economies often leads to increased energy demand and electricity costs. Additionally,
electricity price fluctuations could depend on the availability of fossil fuels for sufficient
generation. Price spikes could occur if more expensive forms of electricity generation
are used due to fossil fuel shortages. Since renewable energy sources constitute enticing
alternatives for electricity generation, the stability of each energy source is related to the
stability of electricity prices and the price fluctuation patterns vary for each region. Lastly,
the impact of neighboring markets on price volatility could be attributed to the increased
player participation and decentralization that increases the complexity of price formation.

Real-time energy markets could be negatively affected by price volatility since market
participants could be unable to react proactively when price fluctuations and energy trans-
actions occur throughout the operating day. However, price volatility can be tempered with
the development of day-ahead energy markets that allow buyers and sellers to determine
and secure energy prices before the operating day [8]. Therefore, short-term forecasting
models that predict day-ahead prices are valuable for the successful monitoring of price
trends and coordination of supply and demand. Price data and influential features are
typically collected in the form of time series, following an hourly sampling rate. Statistical
methods and machine learning models contribute greatly towards the development of accu-
rate and robust day-ahead electricity price forecasting models that are capable of processing
time series data efficiently and handling the complexity of those energy markets [9,10].
Forecasting models derived from statistical methods often utilize linear regression [11]
in order to model the target variable as the linear combination of independent features.
Additionally, autoregressive models [12–14] expanded on this concept by highlighting the
importance of autocorrelation between values of the same variable from previous time steps.
Machine learning models for day-ahead forecasting often rely on the development of neural
networks that operate as function approximators and aim to detect the linear and nonlinear
relationships between the input and output features. The primary neural network types
utilized for this forecasting task include the multi-layer perceptron (MLP) [15] and the feed-
forward deep neural network (DNN) [16], long short-term memory networks (LSTM) [17]
and convolutional neural networks (CNN) [18]. The appeal of methods involving the MLP
and DNN [19] can be justified due to the ease of use and the simplicity of structure since
MLPs include fully connected layers of neurons that form a computation path from the
input to the output, resulting in a network that is acyclic in nature. On the other hand,
LSTMs are recurrent neural networks (RNN) [20] that follow a block structure consisting
of gates that interact with the previous and next state of the network. Long short-term
memory networks are more complex when compared to fully connected feed-forward
network types, but their structure could handle temporal dependencies between time series
lags of unknown length more efficiently. Lastly, CNN networks [21] use one-dimensional
convolution to learn patterns within specific time windows and can inspect the data from a
broader perspective through data shuffling. Neural networks constitute impactful short-
term forecasting tools in the energy sector and a plethora of different standalone and
combinatorial structures are studied for fast and accurate predictions [22].

Models derived from the aggregation of previously mentioned networks form the
category of ensemble learning [23] and have substantial forecasting performance benefits.
The combination of different types of models belonging either in the statistical method or
the machine learning class with the integration of modules that contribute towards data
decomposition, feature selection, clustering, or heuristic optimization, form the class of
hybrid forecasting methods [24–26] that often succeed in the analysis of more complex dy-
namics and patterns. Benchmarks in the field of day-ahead price forecasting mainly utilize
autoregressive and deep neural network models since these structures offer state-of-the-art
performance and simplicity of implementation. The evaluation of new approaches and the
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process of model selection through those benchmarks rely primarily on hyperparameter
optimization, feature selection and regularization techniques [27].

Recent research projects and reviews highlighted interesting short-term electricity price
forecasting approaches that utilize elements from statistical and machine learning methods.
Alamaniotis et al. [28] proposed a multiple regression model based on relevance vector
machines for day-ahead electricity price forecasting, contributing towards the develop-
ment of optimal bidding strategies in electricity markets. Moreover, Alamaniotis et al. [29]
developed a hybrid forecasting model featuring relevance vector machines in a linear
regression ensemble method for efficient short-term price forecasting. Zhang et al. [30]
presented a forecasting method that aggregates the combined predictions from CNN and
RNN structures in a gradient boosting regressor yielding improved performance. Addition-
ally, this study highlighted the importance of elastic net regularization for the stability and
reliability of this combinatorial method. Alamaniotis et al. [31] developed a combinatorial
approach that couples load and price forecasting and modifies forecasted load demand
through the implementation of smart scheduling algorithms. Chinnathambi et al. [32]
developed a multi-stage day-ahead forecasting model based on the autoregressive inte-
grated moving average (ARIMA) statistical approach and the consequent residual error
forecast that improves the performance of the initial predictions for different time periods.
This research project provides some useful insights on the utilization of post-processing
factors, such as the error for the improvement of statistical methods. Chang et al. [33] pro-
posed a forecasting model that utilizes wavelet transform and an LSTM network featuring
the stochastic gradient optimizer Adam, demonstrating that a well-optimized recurrent
neural network could capture and process the nonlinear patterns in this task efficiently.
Su et al. [34] utilized the least squares regression boosting algorithm to predict natural
gas spot prices, outperforming existing approaches, such as linear regression. Atef and
Eltawil [35] conducted a comparison between support vector regression (SVR) and LSTM
electricity price forecasting models, concluding that while both methods could be suitable
for this predictive task, the deep learning approach outperforms the regression model
in terms of error metrics. Bissing et al. [36] investigated the different combinations of
regression, namely the ARIMA and Holt-Winters models, for day-ahead forecasting and
provided some interesting results regarding the performance benefits of hybrid implemen-
tations. Xu and Baldick [37] compared different neural network architectures and some
state-of-the-art statistical methods, concluding that neural network models could perform
better for price forecasting while yielding lower mean absolute error. Zhang et al. [38]
studied the performance of deep recurrent neural networks for electricity price forecasts in
a deregulated market, providing useful insights on the suitability of this neural network
type as a multivariate time series model. Lago et al. [39] presented a review of state-of-the-
art price forecasting models covering statistical, machine learning and hybrid approaches.
Furthermore, this research work provided a useful open-access benchmark including a
regression and a deep neural network model that utilize hyperparameter optimization for
future model comparisons. Tao et al. [40] proposed a bias compensation LSTM network
utilizing the LightBGM algorithm for feature selection. This work contributed significantly
towards the development of hybrid short-term forecasting models since the introduction
of residual error analysis for recurrent neural networks is a novel approach that could
refine time series predictions. Vega-Márquez et al. [41] approached the electricity price
forecasting task from a univariate time series perspective and tested well-known deep
learning and statistical methods through hyperparameter optimization, distinguishing
LSTM, CNN and regression tree methods as the most performant. Jiang et al. [42] utilized a
decomposition-selection-ensemble forecasting system that adapts to different data charac-
teristics and focuses on accurate and stable price predictions. Li et al. [43] presented a price
forecasting model based on variational mode decomposition and sparse Bayesian learning
of time series, showing that aggregate predictions derived from components featuring
simple characteristics could outperform state-of-the-art models. Pourdaryaei et al. [44]
investigated the impact of different optimization methods for day-ahead price forecasting.
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This research work focuses mostly on the pre-processing and learning steps, while the
impact of post-processing optimization techniques remains unexplored.

After a thorough overview of the literature, it is important to note that while a plethora
of forecasting models exist and deep neural networks have been some of the most frequently
used models, the effect of error compensation for the state-of-the-art feed-forward DNN
is not sufficiently covered. We can observe that benchmarks and relevant studies utilize
hyperparameter optimization as well as feature selection to tune the models and achieve
lower error metrics, but fewer studies have applied post-processing techniques in order to
refine and improve the predictions. Therefore, while there are recent studies that utilize
error residuals for this short-term forecasting task, the application of this technique on the
simple yet highly performant DNN is not thoroughly explored. As a result, the potential
utilization of an error estimation module for benchmarks utilizing the DNN model as an
additional tuning tool remains an open question. In this study, we identified these research
gaps and developed a hybrid error compensation deep neural network model, the ERC–
DNN, which utilizes a feed-forward deep neural network for day-ahead electricity price
predictions, as well as an autoregression module, which operates on the hourly residual
error sequences and performs a step-by-step error estimation to refine the predicted prices.
The main goals of this research project are: (i) to showcase the improvement of price
predictions in terms of error metrics; (ii) to investigate the stability of hourly predicted
sequences after the error refinement; and (iii) to provide insights into the suitability of error
estimation modules in modern benchmarks for future integration, when the appropriate
parameters are defined. This hybrid approach was evaluated on the dataset of the Nord
Pool market following the guidelines of the benchmark presented in [39], and through
different training scenarios that highlight the positive impact of error refinement. Moreover,
the resulting error metrics of this approach are compared to a baseline DNN structure
developed using well-known configuration and training practices in order to achieve a
similar score to the DNN benchmark with a static set of hyperparameters that does not
alter the tests and produces consistent results during recalibration. Additionally, the error
metrics of ERC–DNN are compared to the benchmark scores despite the differences in
training epochs and hyperparameter optimization in order to highlight the overall effect of
the error estimation module.

Section 2 presents the main methods utilized in the implementation of the proposed
forecasting approach with references to the core components of the network, as well as
information regarding the dataset and the configuration of the experiments. Furthermore,
this section defines the error metrics used to evaluate the performance of ERC–DNN.
Section 3 discusses the results of the experiments and compares performance metrics to
the baseline and benchmark models. Finally, in Section 4, the advantages, as well as the
challenges of this hybrid model, are outlined. Additionally, comments regarding the impact
of this model as a standalone project, the potential expansion of the proposed architecture,
and the integration of this model to more complex forecasting structures and open-access
benchmarks in the future are included, in the hope that they contribute to the intelligence
gathered in this area of research.

2. Materials and Methods
2.1. Feedforward Deep Neural Network

The feedforward deep neural network is an acyclic artificial neural network [45] that
follows a simple layer structure and extends the MLP architecture for the purposes of
function approximation. The base unit of the feedforward DNN is the neuron which is a
node designed to receive a specified number of inputs, perform computations and pass the
output to connected nodes found deeper in the network. The value of the output at each
node is determined by activation functions, such as the rectified linear unit and hyperbolic
tangent [46]. The neurons of the DNN are organized into layers and the connections of those
layers denote the computation path from the input to the output. The simplest and most
frequently used DNN structure contains the input layer, where input features are passed to
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the first set of neurons, several hidden layers that perform additional computations and
tune the learnable parameters of the network, and the output layer where one or more
output values are generated at each node. For the purposes of this study, we consider the
role of the feedforward DNN for the supervised learning task of regression [47] since we
focus on the prediction of the electricity price for the next day. Based on this task, the goal of
the DNN is to learn the mapping function that describes the complex relationship between
the input variables and the output variables. As a general example, we consider the fully
connected DNN presented in Figure 1. The DNN features an input layer i containing k
inputs, a variable number f of hidden layers h, where each one contains a variable number
of neurons z and, finally, an output layer o containing j neurons for the predictions of
j outputs.
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The main learnable parameters of the DNN are the weights and biases [48]. Those
parameters are initially randomized and iteratively refined through the training process
since the network will be able to predict the output after several passes of the training
dataset, called epochs. Weights quantify the influential strength that a change in the input
could have on the output and biases denote the difference between the generated output
and the desired output, essentially quantifying the extent to which the network assumes
that the output should have specific values. The training process of the DNN mainly follows
the back-propagation algorithm [49] where the generated output values are compared to
the desired output and the value of error, which is calculated by a plethora of pre-specified
loss functions [50], is fed back to the network, in order to adjust the weights. Since the goal
of this training process is to minimize the error function and consequently discover the
best weights, optimization methods, such as gradient descent need to be specified for the
training process.

The DNN architecture shows an impressive performance in time series forecasting
tasks and it is widely used in the energy sector as a standalone network or as a member
of hybrid and ensemble learning methods. However, the default configuration of this
structure may not always be sufficient for the generation of accurate predictions due to
several training scenarios that need to be avoided, such as the existence of local minima [51]
of the error function that could hinder the convergence of the network and the occurrence
of overfitting or underfitting that are connected to the relative complexity of the model
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and the dataset structure. Most deep learning models achieve optimal performance ei-
ther by following a set of best practices or by exhaustively searching for the best training
configuration through hyperparameter optimization [52]. Some of the most important hy-
perparameters include the number of neurons and layers, the choice of activation function,
the choice of optimizer and the associated learning rate [53], the number of training epochs,
regularization [54] and the application of early stopping [55]. The search space of those
hyperparameters could be large and the total training time needed for the derivation of
the best set of hyperparameters could be restrictive for models aimed at short-term and
real time forecasts. Therefore, while we often see meticulous and time consuming hyper-
parameter optimization approaches being suitable for benchmarks, many deep learning
approaches rely on the results of experiments with different combinations of best practices
complemented by feature selection techniques, in order to derive their baseline models
and conduct comparisons. The interpretation of those results, given a specified set of
parameters, requires considerable effort towards the practical evaluation of a network
and the overall demystification of the black-box structure that provides added value to
research work.

2.2. Autoregressive Forecasting Model and Model Selection

Autoregressive models constitute a class of simple time series models used to forecast
future values of the target variable based on previous observations of the same variable,
called lags [56]. The target variable is linearly dependent on the lags and this relationship
occurs due to some degree of correlation between lags of adjacent time steps. The number
of lags utilized in the construction of an autoregressive model determines the order of
the model and it is usually derived from the inspection of partial autocorrelations. The
maximum lag at time step t− n beyond which all other partial autocorrelations are close
to zero is often used as an indicator of the order, and the model is expected to perform
adequately when including lags up to that time step. The definition of the autoregressive
model is made complete by the estimation of the coefficients ϕi that are multiplied by each
lag, the constant term c as well as the error term εt. The estimation of those parameters is
usually achieved with the use of the ordinary least squares method [57]. In order to present
a general example, we consider the autoregressive model of order p for the prediction of
the value yt on the next time step of the sequence formed by the variable y with time lags
ranging from yt−1 to yt−p. The formula that defines this autoregressive model given the
previously mentioned parameters is the following:

yt = c +
p

∑
i=1

ϕi ∗ yt−i + εt (1)

Since autoregressive models are widely used forecasting tools with several applications
in the energy sector, a few core elements need to be explored for optimal performance and
the fairness of the model selection process. First, the stationarity of the data needs to be
investigated since statistical models often perform better when no trend or seasonality is
present. Different implementations of the autoregressive model take into consideration
constant and time-dependent trends but the potential inaccurate detection of the trends and
their effects on the time series forecast could sometimes lead to larger error terms. In this
situation, the augmented Dickey–Fuller test [58] is utilized to determine the stationarity
of a time series. According to this method, the null hypothesis assumes that a unit root
exists in a time series sample and the alternate hypothesis rejects the previous assumption
and considers that the time series is stationary. The p-value of the statistic results in the
rejection of the null hypothesis when it is lower than 0.05. Alternatively, the comparison is
between the values of the statistic and the critical values of the Dickey–Fuller t-distribution,
where the value of the statistic must be more negative than the critical values to confirm
stationarity. The stationarity criterion imposes restrictions to the autoregressive model
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that could often be seen as necessary countermeasures towards the overall reduction
of uncertainty.

Second, the selection of the best autoregressive model plays a crucial role towards the
minimization of forecasting error and several information criteria could be considered for
the statistical evaluation of fitness to the data, such as the Akaike Information Criterion
(AIC) [59], the Bayesian Information Criterion (BIC) [60] and the Hannan–Quinn Informa-
tion Criterion (HQIC) [61]. The Akaike information criterion provides an estimation of
information loss given the number of estimated model parameters k and the maximum
value L̂ of the likelihood function for the model with the following formula:

AIC = 2k− 2 ln
(

L̂
)

(2)

Furthermore, the Bayesian Information Criterion follows a similar formula with a
slightly altered first term that features the sample size n of the observed data:

BIC = k ln(n)− 2 ln
(

L̂
)

(3)

Lastly, the Hannan–Quinn Information Criterion utilizes the previously mentioned
parameters in order to derive a more consistent fitness evaluation metric when compared
to the AIC and follows the formula:

HQIC = 2k ln(ln(n))− 2 ln
(

L̂
)

(4)

The selection of models with the lowest values of information criteria and the search
for lags that have high autocorrelation values could result in a more accurate estimation of
the target variable.

2.3. Proposed Model Structure

This research project focused on the design and implementation of a hybrid day-ahead
electricity price forecasting model based on the well-known feedforward deep neural
network architecture, with an additional error compensation module that estimates the
prediction error and contributes towards the refinement of the final prediction. At the
first step, the dataset of the model is constructed, and market data is processed in order
to derive the input features, consisting of electricity price lags and exogenous variables
relevant to the price time series, as well as the output features of the targeted electricity
price sequences for the next day. The dataset is split into training and validation sets,
undergoes normalization and is fed to the input layer of the feedforward deep neural
network. At the second step, the deep neural network is trained for m epochs featuring an
early-stopping mechanism that monitors the decrease of the loss function for the avoidance
of overfitting with a specified patience interval, proportional to the number of epochs.
Consequently, after m epochs or after the loss function stops decreasing in that patience
interval, 24 sequences are generated at the output layer, each one denoting the electricity
price prediction for the ith hour of the next day.

At the third step, the sequences are inverted back to their original values and the
residual forecasting error for each hourly sequence is calculated from the training set. The
definition of the residual training error at every hour h for the price p of the day of interest
d given the known values of the training dataset and the predicted output is defined by
the formula:

presidual
d,h = pexpected

d,h − ppredicted
d,h (5)

Following this step, the residual error sequences are fed to an autoregressive model
for their step-by-step estimation, resulting in the derivation of coefficients that are used
to predict the error value of the next hour based on historical error data. The final price
prediction is derived from the addition of the estimated error and the price forecast of the
feedforward DNN. The structure of this model is presented in Figure 2 and this forecasting
approach is used in our case study featuring several experiments on different training
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scenarios for the interpretation and analysis of the error compensation process. We refer to
this model as ERC–DNN in the remainder of this paper.
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2.4. Case Study and Experiments

In this section, we present a case study consisting of several experiments used to test
the forecasting performance of the proposed ERC–DNN model and investigate the impact of
error compensation in the stability of error profiles for each hour in the day-ahead electricity
price prediction task. The dataset used for our experiments contains hourly observations
of day-ahead electricity prices, as well as the exogenous sequences that represent the day-
ahead forecast of load and the day-ahead forecast of wind generation for the Nord Pool
energy market during the time period between 1 January 2013 and 24 December 2018. The
dataset is freely available in [62] and was used by the open access benchmark of [39] to
evaluate the performance of the standard feedforward deep neural network. The data
is organized according to the feature formation proposed by the benchmark. The input
features include historical day-ahead prices from the previous three days as well as the
prices from one week ago labeled as pd−1,h, pd−2,h, pd−3,h and pd−7,h, respectively, where d
denotes the day of interest and h denotes the hour ranging from 1 to 24. Additionally, the
day-ahead forecasts of the two exogenous variables are included for the day of prediction,
made available on the previous day and labeled as x1

d,h and x2
d,h, essentially defining a set of

48 features. Furthermore, historical values of each exogenous variable for the previous day
and one week ago, labeled as x1

d−1,h, x1
d−7,h, x2

d−1,h and x2
d−7,h. Lastly, a feature representing

the day of the week as a binary vector with 7 elements is included, resulting in a total of
241 input features. The output features consist of the 24 h of day-ahead electricity prices.
The dataset is split into a training set of the first 3 years, including the hourly observations
from 2013 through 2016 and a validation set of the last 2 years, including years 2017 and
2018 similar to the benchmark model. According to the review and benchmark of [39], the
recommended minimum testing period for the evaluation of electricity price forecasting
models includes one year of observations since the common practice of including a total
of four weeks, one for each season, could be unsuitable due to inadequate representation
of the average model performance, the potential exclusion of extreme events that could
have an impact on dataset values and the possibility of selecting only the weeks where the
model shows improved performance. Therefore, following these recommendations and
acknowledging the two-year period used in the benchmark, we believe that the selection of
testing period in this review is a suitable evaluation practice and utilize it for the evaluation
of our model. Moreover, we acknowledge that the training period varies between price
forecasting models and select the maximum available historical data in the remainder of
this dataset for our case study in order to have a sufficient number of observations for the
convergence of the deep neural network.
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Following the guidelines of the open access benchmark, we first constructed a baseline
feedforward deep neural network of 4 layers for this multivariate time series forecasting
task. The base DNN implements a set of best practices and consists of a fixed set of hyperpa-
rameters in order to exclude the performance benefits of hyperparameter optimization and
isolate the effects of error compensation in our comparison. The exclusion of hyperparame-
ter tuning at the preprocessing and training steps highlights the role of error estimation as
an additional computational layer that reinforces the interpretability of the performance
improvement through a smaller and simpler set of parameters. It is evident that the best
set of hyperparameters for a forecasting model designed to perform well on a specific
machine learning task is dependent on several factors including the dataset, the forecast-
ing horizon, system or application constraints and the intended architecture. The search
space for those optimal parameters is large and the resulting optimal set is often chosen
based on the improvement of error metrics without having a direct and easily interpretable
association to the architecture of the model. On the other hand, error estimation presents
the simple concept of error refinement through the discovery of the coefficients that define
the polynomial which best fits to the residual error sequences, providing a prediction of
the error value that could correct the final prediction of the network by bringing the initial
forecast to a value closer to the target. Therefore, error estimation operates independently
from the computational structure of the deep neural network and the search goal shifts
towards the selection of parameters that could prevent the values of error from exhibiting
large variations and irregular patterns instead of proposing a set of parameters that attempt
to configure a black-box approach.

The baseline model achieves comparable performance to the open-access benchmark
in terms of error metrics as we will analyze in the following sections. The DNN structure
contains an input layer of 241 neurons, two fully connected hidden layers with 100 and
52 neurons, respectively, and an output layer with 24 neurons for the prediction of the
24 hourly sequences of the day-ahead prices. The activation function is the rectified linear
unit (ReLU) [63] and the optimizer is based on stochastic gradient descent [64] with a
learning rate of 0.0005 for the avoidance of local minima. The dataset is normalized using
min-max normalization and the neural network features an early-stopping mechanism
with a patience interval that is equal to 10% of the total number of epochs in order to ensure
the stability of predictions and the avoidance of overfitting. Figure 3 presents the structure
of the baseline DNN, which is used to derive the day-ahead price predictions as a core
component of the ERC–DNN model.

The DNN is trained and the sequences for price prediction are generated at the output.
The experiments presented in this work consider three training scenarios, with 10, 100 and
1000 epochs, respectively, for the investigation of error compensation in a scenario where
the values of error are large and the network is not near convergence, a moderate scenario
where the error has improved but there is still room for further training and a training
scenario where the error of the network could marginally improve after a large number of
epochs. In all three experiments, the residual error sequences for each hour are calculated
and their stationarity is verified by the augmented Dickey–Fuller test. Additionally, the
inspection of the partial autocorrelation function for each error sequence reveals that
after the first 24 lags the partial autocorrelations decay to values near zero. The results
of the stationarity test as well as the observation of the partial autocorrelation function
encourage the integration of an autoregressive model for the estimation of each error
sequence. Therefore, the residual error sequences are passed to an AR model utilizing a
window of 24 lags for the prediction of the next value of error in each sequence. After
the fitting of the model to the data, the autoregression coefficients are computed and
the estimated hourly error sequences are added to the electricity price forecasts for the
refinement of the final prediction. Furthermore, the information criteria of AIC, BIC and
HQIC were examined for the suitability of the 24-lag autoregressive model and the potential
refinement of the model selection process when a threshold for feature autocorrelation is
set at 0.2, 0.3 and 0.4. This additional experiment could contribute towards the appropriate
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selection of hyperparameters that could be included in future benchmarks adopting this
technique for post-prediction processing of the model. Since hyperparameter optimization
for this type of forecasting task already considers a sizable set of hyperparameters, the
choice between the window length and the more complex threshold inspection based on
information criteria could often be an important decision that could determine the size
of the search space and the overall computational burden for the recalibration of a model
or benchmark, given that short-term and real-time forecasting models need to recalibrate
relatively fast. Figure 4 presents the diagram for the autoregressive model of the ERC–DNN
used in the experiments.
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The ERC–DNN model and the experiments analyzed in this research project were
developed in Python 3.8.8, using pandas 1.2.3, numpy 1.19.2 and scikit-learn 0.24.1 for data
analysis, tensorflow 2.3.0 and keras 2.4.3 for the implementation of the deep neural network
model, statsmodels 0.12.2 for the implementation and evaluation of the autoregressive
error estimation model and matplotlib 3.3.4 for the visualization of results. The project
was executed on a desktop computer with an AMD Ryzen 1700X processor, 8 gigabytes
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of RAM, and a NVIDIA 1080Ti graphics processor. The code of this day-ahead electricity
price forecasting model is publicly available on GitHub (Supplementary Materials) [65].

2.5. Performance Metrics

In this section, we define the performance metrics utilized in our experiments for
the comparison of forecasting error and the examination of the error refinement on the
stability of error metrics for each hourly sequence of this day-ahead forecasting task. For
the purposes of this study, four error metrics were used to cover different characteristics of
the performance evaluation process. Mean absolute error (MAE) [66] provides an easily
interpretable and natural error metric that is indifferent to the direction of errors. This
performance metric was used as a loss function for the training of the deep neural network,
the configuration of the early-stopping mechanism, as well as the evaluation of the ERC–
DNN approach. Given the predicted values yi and real values xi in a set of n samples, the
mean absolute error is computed by the formula:

MAE =
∑n

i=1|yi − xi|
n

(6)

Furthermore, mean absolute percentage error (MAPE) [67] was used as a scale inde-
pendent performance metric since it is a widely used measure for time series regression
tasks and could provide a generalized percentage score for forecasting models. Given the
same parameters for the calculation of MAE, MAPE is computed by the formula:

MAPE =
100
n

n

∑
i=1

∣∣∣∣yi − xi
xi

∣∣∣∣ (7)

Moreover, the error metrics of mean squared error (MSE) [68] and root mean squared
error (RMSE) [69] is included in the performance evaluation of the experiments since they
provide quadratic loss functions that measure the forecasting uncertainty while focusing
on the impact of large errors. The values of MSE could express the sum of the variance
and square value of bias, further contributing to the performance analysis of a model.
Additionally, the values of RMSE increase with the variance of the frequency distribution
of error magnitudes, resulting in larger values when large error values are present [70].
Given the same parameters used for the computation of the previously described error
functions, the formulae for MSE and RMSE are the following:

MSE =
1
n

n

∑
i=1

(yi − xi)
2 (8)

RMSE =

√√√√ n

∑
i=1

(yi − xi)
2

n
(9)

3. Results

In this section, we present the results of the experiments with the inclusion of figures
featuring a comparison of error metrics between the ERC–DNN and the baseline DNN
for each training scenario. This comparison provides an overview of the stability and
performance refinement that occurred in each hourly price sequence after the autoregressive
error compensation module is added to the DNN architecture. Additionally, the overall
performance of the model for each scenario is presented based on aggregated error metrics,
in order to examine the generalized improvement in prediction accuracy stemming from
the error estimation process. Furthermore, the exploration of information criteria for the
selection of a refined autoregressive model is investigated and the value of implementing a
threshold method instead of the window of lagged error observations for error estimation
is discussed. Since the performance metrics did not fluctuate greatly after consecutive
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executions, the results presented in this section constitute averages from 10 executions for
each experiment. It is worth noting that the baseline DNN structure presented in this work
performs similarly to the DNN model of the open access benchmark [39] since it achieves
a MAE of 1.987, a MAPE of 6.895 and an RMSE score of 3.877 after 4000 training epochs,
while the DNN benchmark configuration with the lowest error metrics achieved a MAE of
1.797, a MAPE of 5.738 and an RMSE of 3.474 after hyperparameter optimization. Therefore,
the resulting ERC–DNN model is utilizing a highly performant neural network component
for the experiments.

First, we consider the training scenario of 10 epochs. The main purpose of this
experiment is to present the effect of error compensation on the DNN forecast when the
error has larger values that fluctuate greatly from sequence to sequence. In the simple
univariate case, we could assume that this scenario refers to a network that has not reached
convergence and could be unstable or not properly trained, while in the multivariate case
we could observe that each output sequence differs greatly from the desired values and
error magnitudes vary for each hour. Error compensation has the greatest impact on this
scenario, as the accurate error estimation leads to a larger prediction refinement. In the
subplots of Figure 5, we can observe that after the implementation of error compensation,
large errors are no longer present, and this greatly improves the MSE and RMSE scores
of the model. Moreover, the error profile for each hourly sequence is stabilized, resulting
in an average model performance that is close to the model performance for each hourly
predicted sequence.

The second experiment considers the training scenario of 100 epochs. In this task,
the neural network reaches a more acceptable forecasting performance with each hourly
sequence having similar error metrics. As can be observed from the subplots of Figure 6,
there are slight error variations between the hourly sequences showing that the network
is still unable to predict every hour of the day-ahead prediction equally well. The effect
of error compensation in the ERC–DNN improves the forecasting performance and the
error metrics are lower than those presented in the open-access benchmark. Since neural
network models on sufficiently large datasets do not typically converge after 100 epochs
and the values of error are not distinctly high, the slight error variations observed in the
baseline evaluation are passed down to the ERC–DNN. Therefore, when compared to the
10-epoch scenario, the performance of the model improved in a similar way but the stability
improvement of error among hourly sequences was not as drastic.

The third scenario considers 1000 training epochs and refers to models that are near
finalization, where the model converges to predicted values close to the target output and
the error metrics remain relatively low. Through this experiment, we can observe that
the error metrics could follow more consistent patterns, in this case denoting that the first
hourly sequences of the day-ahead forecasting task are predicted more accurately when
compared to the last few hours. This phenomenon could be a cause of concern when the
model is deployed for real-world applications since the model could generate substantially
divergent values for the last few hours of each day. The error compensation improves the
performance of this model and flattens the previously described effect, resulting in more
consistently accurate predictions. However, it is worth noting that as the neural network
is close to reaching convergence, the error values are considerably lower, and the overall
refinement of predictions is smaller for larger numbers of epochs. The subplots of Figure 7
visualize this scenario.
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Overall, we can observe that across all four performance metrics, the integration of the
error compensation module refined the predictions and resulted in improved performance
in every training scenario, denoting that better and substantially more stable error metrics
can be derived even in situations where the neural network is not close to convergence.
Table 1 presents the overall error metric comparison that cohesively depicts the impact of
this post-processing error estimation model.

Table 1. Error metrics for the performance evaluation of the baseline DNN and the proposed
ERC–DNN.

Model Scenario MAPE MSE RMSE MAE

Base DNN 10 Epochs 25.375 130.332 11.194 8.581
ERC–DNN 10 Epochs 6.456 10.367 3.206 2.137
Base-DNN 100 Epochs 10.492 24.761 4.970 3.068
ERC–DNN 100 Epochs 4.688 6.165 2.481 1.507
Base-DNN 1000 Epochs 7.583 16.625 4.067 2.156
ERC–DNN 1000 Epochs 3.464 4.510 2.123 1.105

Hyperparameter optimization considers a large space of training parameters in search
of a combination that produces optimal error metrics after training. These parameters are
specified before the training process starts and affect the error of the model during the
training iterations. After the inspection of the results presented in this work, the argument
for the inclusion of parameters that regulate error estimation and affect the error after the
initial training is complete, such as the window of lagged observations for the definition
of an autoregressive model, or the choice of error estimation method could be valid as
future benchmarks could consider the full spectrum of error optimization, in an attempt at
setting the new standard for model comparisons, where prediction refinement becomes one
of the core final steps. However, expanding the search space and introducing additional
hyperparameters is not always a viable option, especially when we consider the poten-
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tial lack of computing power or the time restrictions imposed by the short recalibration
period of real-time models. In this study, the consideration of an autoregressive model
utilizing a window of 24 lagged observations for error estimation was a reasonable and
computationally inexpensive choice, since the total execution time of the experiments
was not dramatically increased. Additionally, the execution of the experiments consid-
ered the parameters that could encourage the usage of an autoregressive model for this
task, such as the augmented Dickey–Fuller test of stationarity, the computation of partial
autocorrelations, and the computation of information criteria for the error estimator.

While the search for the optimal window size based on partial autocorrelations could
be regarded as an important step in model selection, and as a potential hyperparameter in
more complex optimization problems, the investigation of different model selection criteria
could introduce additional hyperparameters is equally necessary. This work explored the
information criteria threshold selection method as an alternative to the simpler window
selection. The information criteria threshold selection method iteratively fits the autore-
gressive model using lagged observations that surpass a specified autocorrelation function
threshold (ACF). The three information criteria scores of AIC, BIC and HQIC are computed
and the model that achieves the lowest score for each hourly error sequence is selected.
After examining the scores extracted from this alternative model selection approach in
Tables 2–4, we observed that in the scenario of 10 epochs, where the error compensation
model achieves the greatest prediction refinement, not all error sequences led to improved
information criteria when lagged observations over a certain autocorrelation threshold
were selected since the values depend on the error sequences generated by the DNN. This
also holds true for the 100 and 1000 epoch scenarios. Furthermore, the improvement of
the information criteria is negligible when compared to the 24-lagged window method.
Consequently, in the scenario where all hourly error sequences were able to benefit from
the threshold method, the increase in forecasting performance would not be impactful
enough to justify the computational burden of iteratively searching for the model that
satisfies that criteria. Hence, the simplicity of the window method for autoregressive error
estimation would be the preferred method for ERC–DNN and the window size would be
an appropriate hyperparameter to tune that model.

Table 2. Comparison between the 24-lag window method and the threshold method based on AIC
scores for the 10-epoch scenario of ERC–DNN. Cells colored in green denote an improvement in
information criteria score while cells colored in blue denote worse overall scores when compared to
the window method.

Criterio 24 Lag Window ACF ≥0.2 ACF ≥ 0.3 ACF ≥ 0.4
AIC H0 1.9790 1.9292 1.9457 1.9593
AIC H1 2.3797 2.3523 2.3672 2.4724
AIC H2 2.2449 2.2150 2.2319 2.2567
AIC H3 1.9656 1.9224 1.9224 1.9353
AIC H4 1.8745 1.8592 1.8865 1.9663
AIC H5 1.9847 1.9182 1.9391 2.1244
AIC H6 1.8880 1.8673 1.8815 1.9277
AIC H7 2.1403 2.1229 2.1346 2.2355
AIC H8 2.1850 2.1650 2.2633 2.2739
AIC H9 1.7241 1.7407 1.8363 1.8498
AIC H10 1.9550 1.9456 1.9843 2.1282
AIC H11 1.9167 1.8956 1.9077 1.9281
AIC H12 2.1428 2.0839 2.0982 2.1227
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Table 2. Cont.

Criterio 24 Lag Window ACF ≥0.2 ACF ≥ 0.3 ACF ≥ 0.4
AIC H13 1.9478 1.9120 1.9276 1.9573
AIC H14 2.1011 2.0691 2.0691 2.1047
AIC H15 2.0097 1.9600 1.9786 1.9980
AIC H16 1.7016 1.6398 1.6466 1.6662
AIC H17 2.0564 2.0659 2.0754 2.1979
AIC H18 2.1026 2.0382 2.0585 2.0754
AIC H19 2.1297 2.0518 2.0838 2.0931
AIC H20 1.8115 1.7889 1.8569 1.8683
AIC H21 2.3006 2.2009 2.2022 2.2343
AIC H22 1.9503 1.8856 1.8926 1.9041
AIC H23 1.9740 1.9508 1.9687 1.9879

Table 3. Comparison between the 24-lag window method and the threshold method based on BIC
scores for the 10-epoch scenario of ERC–DNN. Cells colored in green denote an improvement in
information criteria score while cells colored in blue denote worse overall scores when compared to
the window method.

Criterio 24 Lag Window ACF ≥ 0.2 ACF ≥ 0.3 ACF ≥ 0.4
BIC H0 2.0017 1.9432 1.9736 2.0901
BIC H1 1.9672 1.9173 1.9173 1.9173
BIC H2 1.9315 1.8794 1.8915 1.9250
BIC H3 2.1973 2.1854 2.3153 2.3311
BIC H4 2.0103 1.9635 1.9782 2.0938
BIC H5 1.9218 1.8858 1.8889 1.9136
BIC H6 1.8862 1.8436 1.8553 1.8759
BIC H7 2.2287 2.1715 2.1715 2.1715
BIC H8 2.0533 1.9991 2.0230 2.2113
BIC H9 1.7851 1.7451 1.7534 1.7636

BIC H10 1.9882 1.9916 2.0489 2.0610
BIC H11 1.9267 1.8791 1.9633 2.0198
BIC H12 1.9583 1.8886 1.9166 2.0390
BIC H13 2.2644 2.2398 2.2596 2.2722
BIC H14 1.9082 1.8561 1.8827 1.9004
BIC H15 2.0200 1.9953 2.0252 2.0324
BIC H16 2.2123 2.1749 2.1958 2.2805
BIC H17 1.9061 1.8738 1.9013 1.9500
BIC H18 2.2660 2.2364 2.3039 2.3164
BIC H19 2.2894 2.2566 2.2606 2.2723
BIC H20 2.0338 2.0195 2.0519 2.1707
BIC H21 1.9222 1.8812 1.8894 1.8964
BIC H22 2.1217 2.1079 2.1177 2.1850
BIC H23 2.2551 2.1922 2.2201 2.2400

Table 4. Comparison between the 24-lag window method and the threshold method based on HQIC
scores for the 10-epoch scenario of ERC–DNN. Cells colored in green denote an improvement in
information criteria score while cells colored in blue denote worse overall scores when compared to
the window method.

Criterio 24 Lag Window ACF ≥ 0.2 ACF ≥ 0.3 ACF ≥ 0.4
HQIC H0 1.7015 1.6794 1.7168 1.7683
HQIC H1 1.7430 1.7622 1.9189 1.9189
HQIC H2 1.9680 1.8916 1.8972 1.9285
HQIC H3 2.1361 2.1003 2.1188 2.1306
HQIC H4 2.0807 2.0603 2.0747 2.1937
HQIC H5 2.1427 2.0985 2.1003 2.1074
HQIC H6 1.9908 1.9275 1.9384 2.0965
HQIC H7 2.2277 2.1472 2.1683 2.3292
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Table 4. Cont.

Criterio 24 Lag Window ACF ≥ 0.2 ACF ≥ 0.3 ACF ≥ 0.4
HQIC H8 1.9853 1.9692 2.0512 2.0531
HQIC H9 1.7594 1.7209 1.7608 1.7660
HQIC H10 1.9160 1.9157 2.0202 2.0238
HQIC H11 1.7992 1.7590 1.7652 1.7720
HQIC H12 1.7352 1.6870 1.6892 1.6954
HQIC H13 2.0105 1.9698 1.9835 2.0081
HQIC H14 2.1561 2.1161 2.2623 2.2693
HQIC H15 2.2703 2.2803 2.3123 2.3182
HQIC H16 2.4097 2.3869 2.4141 2.5297
HQIC H17 1.9114 1.8745 1.8745 1.8745
HQIC H18 2.3749 2.4596 2.4653 2.4653
HQIC H19 1.8727 1.8393 1.8588 1.8701
HQIC H20 1.9275 1.8702 1.8853 2.0014
HQIC H21 1.9794 1.9832 2.0800 2.0936
HQIC H22 2.0047 1.9994 2.1103 2.1193
HQIC H23 2.1320 2.0913 2.0997 2.1247

4. Discussion

This paper presented an error compensation deep neural network for the task of day-
ahead electricity price forecasting. The proposed model used an autoregressive module
to estimate hourly residual error sequences and refine and improve the predictions of the
neural network model. This approach was tested in three different training scenarios, where
the values of the error were high, moderate, and low in order to cover several potential
network behaviors, ranging from fairly unstable to nearly convergent. The ERC–DNN
yielded impressive results, with improved error metrics in every training scenario when
compared to the baseline model. In detail, the error compensation method stabilized the
performance of the poorly trained network in the first scenario, decreasing the value of MAE
from 8.581 to 2.137. Additionally, significant performance improvements were observed
in the moderate and the longer training scenarios with the values of MAE decreasing
from 3.068 to 1.507 in the 100-epoch experiment and from 2.156 to 1.105 in the 1000-epoch
experiment. This forecasting approach resulted in improved error metrics when compared
to the benchmark results presented in [39].

The improvement of forecasting performance is not the only benefit provided by
this approach, since the error compensation method manages to create more consistent
predictions, resulting in multivariate models that can predict each hourly sequence at a
similar level of accuracy. The inclusion of an autoregressive module resulted in a clear
and interpretable approach to error improvement since it operates on the output of neural
networks. Therefore, error estimation and refinement through this approach could be easily
associated with the analysis of hourly residual error sequences instead of searching for the
optimal combination of structural parameters that configure complex deep neural networks
in a black-box approach. The design, implementation and testing of this method provides
some useful insights towards the development of more robust and stable hybrid models,
as well as the integration of error compensation as an additional optimization option for
benchmarks during post-processing. However, one potential disadvantage of this method
is the dependence on the error sequences and their characteristics. In this project, we
implemented several methods, such as stationarity and autocorrelation analysis to ensure
that the autoregressive module would behave appropriately. In scenarios where those
methods would yield inconsistent results, this approach may not result in substantial error
improvements. As a result, we believe that the analysis of error sequences is a crucial part
that precedes the integration of that data in post-processing techniques and should not be
omitted. Since most hybrid models and benchmarks utilize hyperparameter optimization
to search for the optimal combination of parameters that minimize the error metrics, the
integration of error compensation could introduce a wide set of additional parameters
that would increase the overall complexity of the models and potentially render that
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refinement more computationally expensive. While the simple choice of the window size
in an autoregressive error estimation model seems to be an appropriate hyperparameter for
the configuration of this method, the consideration of more complex estimation methods
could result in refinement techniques that greatly hinder the execution time of those models.

The contribution of this work is not limited to the research and development of
electricity price forecasting models since there are several ways this approach could benefit
market participants and the grid. Firstly, this approach could reduce the price uncertainty
of generators while assisting them indirectly in the maximization of profit. Since generators
often need to select the highest price after inspecting offers from different markets in order
to sell the production [71], this method could lead to more informed decisions due to
the increased stability and forecasting performance. Secondly, trading companies could
develop more robust short-term contracts due to the availability of more accurate price
estimates. Lastly, the grid could benefit from more stable and accurate price predictions
since the effect of price volatility could lead to more blackouts and the urgent usage
of reserves.

This project attempted to cover several research gaps through the investigation of the
error compensation effect on the well-known DNN structure used in open-access bench-
marks and several forecasting applications. While recent studies shared a similar direction
in the implementation of error compensation on the LSTM structure [40] as well as more
traditional statistical methods for different forecasting tasks, this study considered the
feedforward deep neural network as the building block for the development of performant
forecasting models that include error estimation. The examination of the results in conjunc-
tion with recent research findings derived from statistical and machine learning models
reinforces the concept that error estimation is a beneficial post-processing technique for
deep learning models in the energy sector. There are several additional aspects regarding
this method that could be explored in future work. First, a wide comparison of error
estimation models ranging from simple statistical approaches to the increasingly complex
neural network models could contribute towards the optimal model selection of the error
refinement module post-training. Second, the ERC–DNN model could be tested on many
electricity markets that display different price characteristics, such as different levels of
price fluctuations in an attempt to study the effects of the unique price curve behavior on
the training error. Additionally, the inspection of distinctly different error sequences could
result in useful insights into the behavior of the model and the adaptability to different
market dynamics. Lastly, the benefits of hyperparameter optimization could be studied in
combination with error compensation, in an attempt to quantify the overall performance
improvement and the computational tradeoff for short-term and real-time applications.

Supplementary Materials: The implementation of this research project in Python code is available
online at https://github.com/dimkonto/ERC-DNN. referenced in [65] (accessed on 14 January 2022).
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