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Abstract: A growing number of wind turbines are equipped with vibration measurement systems
to enable the close monitoring and early detection of developing fault conditions. The vibration
measurements are analyzed to continuously assess the component health and prevent failures that
can result in downtimes. This study focuses on gearbox monitoring but is also applicable to other
subsystems. The current state-of-the-art gearbox fault diagnosis algorithms rely on statistical or
machine learning methods based on fault signatures that have been defined by human analysts. This
has multiple disadvantages. Defining the fault signatures by human analysts is a time-intensive
process that requires highly detailed knowledge of gearbox composition. This effort needs to be
repeated for every new turbine, so it does not scale well with the increasing number of monitored
turbines, especially in fast-growing portfolios. Moreover, fault signatures defined by human analysts
can result in biased and imprecise decision boundaries that lead to imprecise and uncertain fault
diagnosis decisions. We present a novel accurate fault diagnosis method for vibration-monitored
wind turbine components that overcomes these disadvantages. Our approach combines autonomous
data-driven learning of fault signatures and health state classification based on convolutional neural
networks and isolation forests. We demonstrate its performance with vibration measurements from
two wind turbine gearboxes. Unlike the state-of-the-art methods, our approach does not require
gearbox-type-specific diagnosis expertise and is not restricted to predefined frequencies or spectral
ranges but can monitor the full spectrum at once.

Keywords: wind energy; fault detection and diagnosis; vibration-based condition monitoring; wind
turbines; gearboxes; convolutional neural networks

1. Introduction

The capacity of globally installed wind power is constantly growing due to interna-
tional efforts to limit the global mean temperature rise by replacing fossil fuels [1]. A major
fraction of the levelized cost of wind energy consists of the operation and maintenance
costs of wind farms [2]. The continuous health monitoring of wind turbine components
forms an important part of the work of wind farm operators as it helps to limit the extent
of unforeseen maintenance costs. To reduce the operation and maintenance costs of their
wind farms, many operators and asset managers are applying remote condition monitoring
techniques to detect incipient faults before they result in major damage.

Gearboxes are among the most critical and costly components to replace in a wind
turbine in terms of the equipment, replacement work and downtime costs per failure [3–6].
Therefore, a growing number of wind turbine gearboxes is being equipped with vibration
measurement systems to enable the close monitoring and early detection of developing
fault conditions in the gearbox components [7–9]. The vibration-monitoring signals require
analysis and interpretation to prevent failures. Numerous approaches have been proposed
to assess the vibration signals from wind turbine gearboxes in the time and frequency
domains. Examples include the time-domain monitoring of waveform features such as
root mean square deviations, peak-to-peak amplitudes, and kurtosis. In the frequency

Energies 2022, 15, 1514. https://doi.org/10.3390/en15041514 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15041514
https://doi.org/10.3390/en15041514
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0003-4120-3827
https://doi.org/10.3390/en15041514
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15041514?type=check_update&version=1


Energies 2022, 15, 1514 2 of 13

domain, methods such as spectral line analysis, envelope and sideband analysis have
been proposed [8–11]. Thus, the state-of-the-art vibration diagnostics methods applied for
wind turbine (WT) gearboxes in practice rely on the extraction of hand-crafted features
from the gearbox vibration signals. The features need to be defined by a human analyst
before they can be extracted. Only after they have been defined and extracted from the
vibration measurements can the features be used to infer information about potential faults
in gearbox components based on statistical methods or machine learning models [12,13].
Typical handcrafted features that are in use for WT gearbox fault diagnostics are the position
and amplitude of spectral lines corresponding to characteristic frequencies of gearbox
components, such as gear mesh frequencies, and other characteristic metrics such as the root
mean square deviation and kurtosis of parts of the vibration time series [8–11]. However,
these state-of-the-art vibration diagnostics methods have multiple disadvantages. First,
they require a labor-intensive upfront conception and handcrafting of feature definitions,
which constitutes a significant time and workforce effort. Second, many state-of-the-art
approaches and feature definitions require a highly detailed knowledge of the gearbox type,
manufacturer, composition and dimensions, its bearing and gear types, gear teeth numbers,
and so on. This information needs to be gathered for every single gearbox before the start
of the monitoring. As a result, the state-of-the-art fault diagnostics and feature extraction
approaches can generally not be transferred straightforwardly to new turbine types added
to an operator’s wind power portfolio. For every new turbine entering the portfolio,
detailed turbine composition information needs to be collected from the manufacturer
and the vibration features need to be reviewed, adapted and extracted. This constitutes a
large, resource-intensive initial effort that many wind farm operators and asset managers
are hesitant to make. Third, after a feature definition and extraction method has been
implemented, thousands of characteristic spectral values per turbine gearbox need to be
stored and monitored, which requires costly storage resources and computing time in the
remote monitoring centers of the turbine operators and asset managers. Fourth, the state-
of-the-art approaches do not analyze the full vibration spectrum but focus on monitoring
only isolated aspects thereof, such as a set of characteristic frequencies, or they focus on the
global metrics of the vibration time series or spectrum. Unlike the proposed approach, they
do not support the automated, simultaneous vibration monitoring of the full spectral range.
Lastly, features defined by human analysts can lead to imprecise decision boundaries and
less accurate fault diagnostics predictions than features that have been learnt by machine
learning algorithms themselves [14]. The state-of-the-art feature definition and extraction
methods may result in lower diagnostics accuracy, more false alarms and false negatives,
especially in ambiguous boundary cases that require additional inspection and decision
making by remote monitoring staff, than fault diagnostics methods which learn and extract
the optimal features themselves. A reliable feature definition and extraction is essential to
the fault diagnostics process. For an illustrative example of how the chosen upfront feature
definitions can affect fault detection quality, we refer to the study presented by [11].

The research gap addressed by this study is the development of a fault diagnostics
method for vibration-monitored wind turbine gearboxes that:

(1) Learns and extracts an optimal set of discriminative features in an automated manner,
not requiring any feature engineering;

(2) Analyzes the full vibration spectrum, rather than focusing only on isolated predefined
aspects thereof;

(3) This is even applicable if only a few fault observations are available.

Consequently, the objective of this paper is to introduce and demonstrate a novel fault
diagnostics approach for vibration-monitored wind turbine gearboxes that can overcome
the discussed disadvantages of the state-of-the-art methods. In particular, the novel ap-
proach is expected to learn optimal discriminative features in an automated manner and
classify the gearboxes’ health conditions based on these features without requiring any
human feature definition and extraction. It is also expected to analyze the full vibration
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spectrum and be applicable even in situations where sufficient model training data for
fault-type classification are unavailable.

This paper is organized as follows. Section 2 introduces the proposed fault diagnostics
approach. Section 3 describes the method applied and data employed in a gearbox failure
case study, whereas Section 4 discusses the analysis and results. Our conclusions are
presented in Section 5.

2. Fault Diagnosis Method

The proposed fault diagnosis method comprises two stages. The first stage performs
an unsupervised anomaly detection on the features learnt and extracted from spectrograms
of each monitored gearbox component (Figure 1). This stage one accounts for the fact that
many WT operators have access to only a few or even no sensor measurements from actual
gearbox fault incidents, as these are relatively rare events and can arise from a range of
different causes. While methods that require labeled observations of gearbox faults (as in
proposed stage two below) may be less beneficial to such operators, anomaly detection
methods based on measurements taken in the normal healthy operation state will still be
available and highly useful to them, even in absence of labeled fault observations.
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Figure 1. Stage one of the proposed method. Anomaly detection based on features extracted by
convolutional and pooling layers from spectrograms of the monitored components in their healthy
state. An isolation forest model is trained on the extracted features. The trained model is subsequently
employed for detecting anomalous spectra, indicated as red nodes in the isolation trees shown on the
right-hand side of the chart.

The second stage of the presented approach employs a multi-label classification
method to diagnose specific gearbox fault types based on past fault observations (Figure 2).
This stage mainly benefits operators who have access to measurements from observed gear-
box faults that enable the training of a corresponding fault type classification model. There-
fore, the proposed stage two is performed only if sufficient fault observations are available
to the operator’s remote monitoring staff in charge of implementing the proposed approach.

Fault diagnoses are made based on features extracted from vibration spectrograms. To
this end, vibration measurements are taken continuously from numerous accelerometer-
monitored gearbox components and are accessed through the turbine’s condition monitor-
ing system (CMS). The accelerometer measurement time series are subjected to short-time
Fourier transforms (STFT) to monitor the temporal evolution of the vibration spectra in
the time-frequency domain. The resulting spectrograms from all accelerometer-monitored
gearbox components serve as inputs to feature extraction neural networks composed of
convolutional and pooling layers, as described below. Unlike the state-of-the-art fault
diagnostics methods, the proposed approach does not require gearbox-type-specific infor-
mation. Therefore, it can be introduced to even larger WT portfolios without the upfront
efforts and investments required for existing methods.
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health state classification in wind turbine gearboxes is a fully connected multi-label neural network,
as shown on the right-hand side of the chart.

The operators will be informed both in stages one and two in case a significant
deviation from healthy component spectrograms is diagnosed. Importantly, both stages of
the proposed fault diagnostics approach rely on automated feature learning and extraction
that is performed by an algorithm rather than a human analyst. This is achieved by the
application of convolutional neural networks (CNNs) [14,15], as shown in Figures 1 and 2.
We refer to [16] for a technical introduction to CNNs. CNNs were selected for the proposed
health state classification approach because, unlike other models, they are capable of
learning and extracting features from image data without human assistance.

CNNs are computational models that are capable of extracting the relevant features
without any human assistance. They accomplish this by learning optimal convolutional
filters based on historical training data, in this case vibration measurements and fault
observations. Due to this property, CNNs have enabled major performance improvements
in fields such as speech recognition and object detection in recent years [14,15]. CNNs
are artificial neural networks that consist of convolutional and pooling layers trained to
perform feature learning and extraction based on past observations. These layers are
subsequently linked to fully connected layers to perform desired classification or regression
tasks based on the previously extracted features. During model training, the CNN weights
optimization algorithm effectuates automated feature learning and extraction to construct
a low dimensional representation of the input spectra, which is subsequently fed to the
anomaly detection model (stage one, Figure 1) or the fault type classification network (stage
two, Figure 2).

In the first stage of the presented fault diagnostics approach, the feature extraction
part is succeeded by an isolation forest model (Figure 1) for detecting anomalous spec-
trograms in an automated manner. The extracted features serve as input to the isolation
forest algorithm [17] that is adapted to distinguish anomalous from normal spectrograms
with regard to the component health state based on historical accelerometer measurements.
The isolation forest algorithm identifies potential anomalies by how quickly the input
spectrograms can be isolated from the rest of the spectrograms using a decision-tree-based
approach. A health-state classifier is trained using examples from only one class, namely
observations from healthy gearbox components only. This is a highly relevant scenario in
practice because fault observations of WT gearbox components are often lacking: Wind
farm operators usually have a large amount of CMS sensor observations from different
parts of the drive train from multiple months or years of operation. Typically, the vast
majority of these measurements from the CMS system are taken under normal operating
conditions from healthy components. Fault conditions and damages occur relatively rarely
in commercial turbines that are operated and maintained in accordance with the manu-
facturer’s recommendations. Therefore, there is a relative lack of such fault observations,
which strongly restricts the training and application of machine learning models for fault
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type classification because those models require a significant amount of training data.
Therefore, machine learning models trained only on observations from healthy gearbox
components tend to be more widely applicable in practical applications and are highly
relevant when comprehensive fault observations are lacking.

To train the health-state classifier using only observations from healthy gearbox com-
ponents, we compared two anomaly detection approaches: the isolation forest algorithm
introduced above and one-class support vector machines [18]. The isolation forest approach
is known for its fast computational training time [17]. In the case study presented below, it
outperformed the one-class SVM by more than a factor of 30 in terms of required training
time but provided no advantages in terms of prediction performance. Therefore, our dis-
cussion of the case study below focuses on the developed isolation forest model with its
more attractive training times and accordingly larger practical relevance.

In stage two of the proposed fault diagnostics method, our goal is to train a health-
state classifier to diagnose specific fault conditions in gearbox components using both
accelerometer measurements from both healthy and damaged components. The features
extracted by the convolutional and pooling layers serve as input to train multi-label fault
type classifiers, as illustrated in Figure 2.

Multi-label classification [19–22] is especially beneficial when accelerometer mea-
surements taken during evolving and evolved past gearbox damage are available for the
gearbox types of interest. A multi-label classification model is estimated for monitor-
ing multiple gearbox components simultaneously based on high-frequency acceleration
measurements from accelerometers attached in close proximity to the monitored compo-
nents. The multi-label classification enables a joint classification of multiple damage types,
wherein each data instance is simultaneously assigned multiple labels. Each label indi-
cates the membership status in one of multiple classes in a binary manner. More formally,
a multi-label classification algorithm estimates a map f : Rk → Rn based on a training
set

{
(x1,i, . . . , xk,i, y1,i, . . . , yn,i), i = 1, . . . , m

}
of size m wherein the coordinates of any

y ∈ Rn can take binary values only, yj ∈ {0, 1} ∀ j = 1, . . . , n.

3. Case Study

The proposed fault diagnosis approach is demonstrated and tested based on vibration
measurements from multiple gearbox components taken while the gearbox was operating
on a test rig. The proposed approach is demonstrated, and its performance is tested using
accelerometer measurements from the gearboxes of two 750 kW wind turbines operated on
a WT test rig at the National Renewable Energy Laboratory (NREL), Golden, CO, USA. The
data were collected by NREL for its Gearbox Condition Monitoring Round Robin study [23].
The accelerometer measurements were taken over a ten-minute period from two identical
gearboxes of the 750 kW wind turbines with one of the gearboxes in a healthy unimpaired
state and the other gearbox suffering from multiple damaged components after an oil loss
event which had caused moderate damage to the gearbox gears and bearings. Each of the
two gearboxes has a transmission ratio of 1:81.491 and comprises a low-speed planetary
stage and two parallel stages. Figure 3 shows a schematic of the gearbox. We refer to [23,24]
for a detailed description and visualization of the test stand, gearbox, monitoring system
and measurement setup.

To demonstrate the fault diagnostics approach and automated feature learning and
extraction, the following components were selected for this case study in an arbitrary
manner from the set of components monitored in the NREL study [23]: Accelerometer 1
was attached to the ring gear (component 1) at a bottom-facing location in both the healthy
and damaged gearbox to measure radial accelerations. Accelerometer 2 was attached to
the low-speed shaft bearing (component 2) to also measure radial accelerations, whereas
accelerometer 3 monitored the radial accelerations of the high-speed shaft downwind
bearing (component 3). All three components—the ring gear, low-speed shaft bearing and
high-speed shaft bearing—exhibited different degrees of damage in the damaged gearbox
such as scuffing. In total, readings from six sensors were considered. The accelerometer
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measurements at the undamaged gearbox and damaged gearbox were each taken at a
40 kHz sampling frequency under a constant load, 22.09 rpm low-speed shaft and 1800 rpm
high-speed shaft speed for a duration of 10 min.
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4. Discussion

To create the spectrograms that will be input to the CNN for feature extraction, the
accelerometer measurements were split into four segments per second and a separate
short-time Fourier transform (STFT) was computed for each segment. A short-time Fourier
transform enables the frequency analysis of a signal as it changes over time [25,26]. The
length of four segments per second was selected by investigating the tradeoff between
time and frequency resolution so as to maintain a high-frequency resolution and sufficient
temporal resolution, as shown in Figure 4. The frequency resolution should be sufficient
for resolving typical spectral differences arising between healthy and damaged states of the
monitored components. The STFTs were computed with an overlap of 0.2 s for adjacent
segments. However, the length of the overlap had no significant effect on the performance of
the subsequent anomaly detection and classification models. Given the 40 kHz sampling rate,
vibration frequencies up to the Nyquist frequency of 20 kHz can be resolved. For the present
fault diagnostics case study, we focused the analysis on vibration frequencies up to 1 kHz.

Prior to the model training, we sampled segments from the resulting spectrograms
with replacement in order to augment the training dataset. We sampled segments of one
second in length to ensure that short vibration measurement periods (of only one second)
were sufficient as input to the fault diagnostics model when it was used for inference
in a condition monitoring software or CMS system. One-second intervals were found
to be sufficiently representative of this amplitude variability when examining the STFT
amplitude variability over time for all frequencies up to 20 kHz, as shown in Figure 5. To
test the sensitivity of the presented fault diagnostics approach with regard to the temporal
length of the sampled spectrogram segments, we performed our analysis for spectrograms
with time lengths of up to 6 s, finding that this choice did not significantly affect the results.
After sampling the one-second segments from the vibration spectra of healthy and faulty
components, the resulting dataset was randomly shuffled and partitioned into training,
validation and test sets. The training set in this case study contained 80,000 instances. The
classification method was validated using a validation set of vibration measurements from
healthy and damaged components based on 10,000 instances. The test set also contained
10,000 instances.
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Figure 5. One-second intervals were found to be sufficiently representative of the STFT amplitude
variability when examining this variability over a range of intervals, including 1, 5, 10 and 60 s, as
shown in the subpanels, for all frequencies up to 20 kHz. For illustration, the amplitude variability is
only shown for frequencies in the range of 100 to 200 Hz.

Figure 6 shows subsets of the spectrograms derived from the vibration measurements
of the three accelerometers at the healthy and the damaged gearbox components. Two
healthy and two damaged instances are shown for each of the three components for illustra-
tion. As can be seen in the figure, the spectral differences between vibration measurements
from the healthy and the damaged components were sufficiently resolved by Fourier
transforms, enabling discriminative feature learning.
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Figure 6. Subsets of the spectrograms derived from the vibration measurements of the three ac-
celerometers at the healthy and the damaged gearbox components. Two healthy and two damaged
instances are shown for each of the three components. For instance, “Healthy 1” labels two different
1 s spectrogram segments of component 1 in healthy state. Each spectrogram segment runs over 1 s
and displays logarithmic STFT amplitudes for frequencies up to 400 Hz.

Stage 1: Isolation forests for detecting anomalous vibration spectra. The spectro-
grams prepared as outlined above served as input to the convolutional and pooling layers
of a CNN that learned and extracted discriminative features in an automated manner.
For feature learning and extraction, we defined a network architecture consisting of one
convolutional layer with 16 convolutional filters of 3-by-3 pixels, followed by a max pooling
layer with a window size of 2-by-2 pixels and batch normalization [27]. This architecture is
of low complexity and enabled a high classification accuracy in the multi-label classification
of stage two of the presented fault diagnostics approach.

The extracted features were input to an isolation forest algorithm for one-class clas-
sification [17], which identified spectral anomalies based on how hard it is to isolate a
particular spectrum from the rest of the spectra in the training set. A forest containing
100 isolation trees was trained on the extracted features. The model parameters are sum-
marized in Table 1. The training dataset contained features from the spectrograms of only
healthy components. We specified the fraction of anomalous data instances estimated to be
present in the training data to less than one over the training set size. The anomaly score
computed by the model for each training, validation and test set instance corresponded to
the number of splits averaged across the isolation tree forest that were needed to isolate
a data point (Figure 1). Thus, the anomaly score is the average path length from the root
to leaf node in an isolation tree. As shown in Figure 7, the spectra from the healthy and
damaged components are clearly separable using the computed anomaly scores; therefore,
the isolation forest model is well-suited for identifying components with anomalous health
states, even for high dimensional feature spaces, as in the present case study.

Table 1. Parameters of the trained isolation forest model (stage one) and of the convolutional neural
network (stage two).

Model Model Parameter

Isolation forest Number of isolation trees equals 100; Threshold for outliers fraction equals 0.0001

Convolutional neural network
One convolutional layer with four 3-by-3 filters followed by a 2-by-2 max pooling layer and

batch normalization, and then a dense layer of four fully connected nodes and a 3-node
output layer; 10% drop out rate.
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Figure 7. Anomaly detection based on anomaly scores computed with the isolation forest algorithm.
The training set contains only spectra from healthy component states, corresponding to the absence
of anomalies as indicated by a positive anomaly score (left panel). We tested the model using
additional spectra from healthy component states (middle panel) and from damaged component
states (right panel). In the latter case, the anomaly scores were negative, indicating anomalies as
expected. Healthy and damaged components are clearly separable with this approach.

The differentiation of health states is performed in an unsupervised manner to make
it applicable to WT operators whose remote condition monitoring team does not have
sufficient amounts of fault observations. Since we are actually in possession of such
observations in this case study, we employed a test dataset that had not been used in
model training (Figure 7) and estimated performance metrics based on the test dataset. We
found both recall and precision to be 100% on the test dataset for the proposed isolation
forest approach and model architecture. Recall is a performance metric that designates the
fraction of true positives over all actual positives, in this case the fraction of all correctly
identified instances of a given fault type over all actual occurrences of that fault type.
Precision is an alternative performance metric that denotes the fraction of true positives
over all instances that were identified as positive. In other words, the precision states what
fraction of the identified observations of a given fault type were correctly identified as
observations of that fault type.

We repeated the analysis with the same feature learning and extraction architecture
employed in stage two below, which naturally resulted in the same extracted feature set
as used in the multi-label classification step. Specifically, this architecture comprised one
convolutional layer with only four convolutional 3-by-3 filters, followed by a 2-by-2 max
pooling layer and batch normalization. As before, the extracted features were then input
into the isolation forest algorithm for detecting anomalous spectra. The change in feature
extraction architecture had no significant effect on the spectra’s anomaly scores (Figure 7)
and also resulted in 100% recall and precision.

In addition, one-class support vector machines (SVMs) [18] were investigated as a
further approach for the vibration-based anomaly detection in this study. However, the
SVM algorithm required more than 30 times more model training time than the isolation
forest on the same training set and processor—an AMD EPYC 7B12 2.25 GHz processing
unit—though no improvement in detection performance was observed.

Stage 2: Multi-label classification for fault-type diagnostics. As in stage one, the
spectrograms were subjected to convolutional and pooling layers to enable feature learning
and extraction based on the training dataset. Subsequently, a fault-type classification was
performed with the extracted features using fully connected neural network layers. Jointly,
the convolutional, pooling and fully connected layers established the convolutional neural
network for the multi-label fault type classification. Once trained, the CNN predicts the
probabilities of all three fault types considered in this case study being diagnosed, based
on a given spectrogram.

To arrive at the final CNN structure (Table 1), we started from a more complex CNN ar-
chitecture and successively reduced the number of convolutional and pooling layers, filters
and fully connected layers while maintaining maximal validation set accuracy. We selected
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the least complex CNN architecture that could achieve the highest possible classification
accuracy on the validation set. In this case study, the resulting CNN architecture comprises
one convolutional layer with four 3-by-3 filters, followed by a 2-by-2 max pooling layer
and batch normalization. This first part ensures the learning and extraction of features,
based on which the subsequent classification can be performed. Two fully connected
layers were added to the network and a 10% dropout rate applied to avoid overfitting the
training data [28]. The first fully connected layer comprised four nodes and the output
layer consisted of three nodes with a sigmoid activation function for the output layer. The
model predicts three binary labels, one of which is for each of the monitored gearbox
components, and indicates whether or not a fault was detected in the respective component.
The output layer with the three neurons and the sigmoid activation functions provides
the probabilities for a given spectrum to belong to a particular fault-type class. The model
parameters were determined iteratively with the Adaptive Moment Estimation (Adam)
optimization algorithm [29] by optimizing a binary cross-entropy loss function. In doing so,
multiple binary classification decisions can be optimized at once. The model training was
performed for 20 epochs with a batch size equal to 32. Different batch sizes did not affect
the classification accuracy. Logarithmic transformations of the input spectra also had no
effect on the classification accuracy. This architecture enabled a 100% classification accuracy
for all three component fault type classes on the validation and test sets. We arrived at
this architecture through a grid search by starting from a more complex CNN with the
number of nodes equal to powers of two, and then reducing the network complexity while
maintaining a high accuracy of 100% on the validation set, as described above. The test
set classification accuracy of 100% was achieved both with and without the logarithmic
transformation of the spectrogram segments inputs to the convolutional and pooling layers
(Figure 6). The models trained as part of the hyperparameter optimization converged to a
loss function minimum within 20 epochs without overfitting.

With regard to the limitations and the future research needs arising from the present
study, we point out that, first, all acceleration measurements in the present study were taken
under constant speed and load conditions on a test stand. The introduced fault detection
approach should be field tested under variable speed and load conditions in future work.
In practice, the wind speed driving the turbine fluctuates, which results in a variable
load and shaft speed and may cause frequency smearing in the spectral representation [9].
However, this condition can be overcome by synchronizing the measurements with the
wind turbine’s rotational speed, for instance by sampling under identical wind and load
conditions. Second, for applications in operating wind turbines, the performance of the
fault type classification model should also be investigated for a significantly larger number
of monitored components and fault types and for damage processes that are evolving over
time. This investigation will require more comprehensive field or laboratory measurement
datasets. Third, attention also needs to be paid to the avoidance of possible data imbalance
issues when training a fault diagnostics model. While this does not affect stage one
of the proposed fault diagnosis approach, it may be relevant in the application of the
methods introduced for stage two. Data imbalance refers to situations where there is a
disproportionate number of observations in the output classes. For instance, there may
be a large number of observations for one class, for instance fault type 1, but only few
observations for another class. In the presented case study, all fault types were represented
with similar numbers of observations. This may not always be the case in practice. Typically,
more vibration measurements will be available from healthy components because fault
situations are less common than WT gearboxes operating in normal health states. Vibration
measurements from damaged components or components in which a damage starts to
develop are typically in the underrepresented class. One method to address data imbalance
is by over- or undersampling to arrive at an augmented and more balanced training
dataset. This may be achieved, for example, by random resampling with replacement
(statistical bootstrapping) from the available fault observations, so that all monitored WT
components are equally represented, both in healthy and damage states, in the training,
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validation and test datasets. This approach relies on the assumption that the data used for
the bootstrapping are sufficiently representative of the underlying data-generating process.
A more comprehensive discussion of methods for addressing data imbalance is not in the
scope of this work, and we refer to the work of other authors, e.g., [30].

5. Conclusions

An increasing number of wind turbines are equipped with vibration-measurement
systems to enable a close monitoring and early detection of developing fault conditions in
gearboxes. Gearboxes are among the most critical and costly components to replace in wind
turbines. The current state-of-the-art gearbox fault diagnostics algorithms rely on upfront
definitions of fault signatures by human analysts. The state-of-the-art diagnostics methods
have in common that, for each of them, a human analyst has investigated and designed a
particular feature (fault signature) to be extracted from the vibration measurements. Each
feature has been defined so as to capture a particular aspect that starts to build up in the
time- or frequency-domain signals when an incipient fault starts to evolve and intensify
in an originally healthy component. For instance, local surface damage on a gear tooth is
typically diagnosed based on changes in the residual signal obtained after the gear mesh
frequencies and harmonics have been removed. These feature-engineering approaches have
multiple disadvantages, as discussed above. They require a time-intensive handcrafting of
fault diagnostics features and detailed knowledge of the monitored component. Therefore,
they lack scalability with the increasing number of monitored turbines, with different
component types and configurations present, each of which has its own characteristic
frequencies. Fault signatures defined by human analysts can result in biased and imprecise
decision boundaries in the fault diagnostics process.

We presented a novel, accurate fault diagnostics framework for wind turbine gear-
boxes that overcomes these disadvantages and can be easily incorporated into condition
monitoring software or CMS systems for autonomous fault diagnostics decision support.
This is based on high-frequency vibration measurements from multiple accelerometers and
monitored components. The proposed two-stage framework combines the autonomous
data-driven learning of fault signatures and health state classification based on convo-
lutional neural networks and isolation forests. In stage one of the presented approach,
an isolation forest algorithm detects anomalous component health states based on the
features that have been automatically learnt and extracted from the gearbox component
spectrograms. This is particularly suitable for operators and monitoring centers that do
not have access to sufficient amounts of accelerometer measurements from gearbox fault
events. On the other hand, the availability of such observations is required in stage two,
which involves a multi-label classification by fault types based on spectrogram features
extracted from past fault observations.

We have demonstrated and tested the proposed fault diagnostics framework by appli-
cation to gearbox vibration measurements from two wind turbine drivetrains. The case
study performed to this end used accelerometer measurements from a test rig measurement
campaign for three different fault types and achieved high fault diagnostics accuracy.

Unlike the state-of-the-art approaches [8–11], the presented method enables automated
feature learning and extraction without a human analyst. As demonstrated, given suitable
training data, accurate fault diagnosis is possible without any human feature engineering
and without the need for storing thousands of spectral characteristics and threshold values
to be predefined by monitoring center staff for every turbine. Moreover, the presented fault
diagnostics approach does not require detailed knowledge of the gearbox type, manufac-
turer, composition, gear dimensions, teeth numbers, characteristic bearing frequencies, and
so on. Therefore, it can be applied to arbitrary gearbox types, compositions and manu-
facturers. In summary, the proposed framework is advantageous over the state-of-the-art
approaches, such as the monitoring of spectral lines and other characteristic metrics, in that
the fault diagnosis features are learnt by the algorithm, so that no gearbox-type-specific
diagnostics expertise and no corresponding human-featured engineering are required.
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Moreover, it is not restricted to predefined frequencies or spectral ranges but monitors the
full vibration frequency spectrum of interest.
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