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Abstract: For medium and high-powered applications, modular multilevel converters have become
the most promising converter application. In this paper, a sliding mode controller based on an RBF
neural network is proposed for a modular multilevel converter. The RBF neural network is designed
to approximate the uncertainty mathematical model of a modular multilevel converter. The main
innovation of the proposed method is that it does not require any model parameters and control
parameters during the whole control process. This means that parameter changes caused by the
external environment will not influence the controller performances. Finally, by comparing with a
conventional PI controller, the simulation proves the feasibility and effectiveness of the proposed
control method. In addition, the experimental results show that the grid-side current can become
stable immediately while the active power is stabilized after 20 ms when the set value is changed.

Keywords: modular multilevel converter; sliding mode control; RBF neural network; uncertainty
mathematical model

1. Introduction

With the development of power electronic devices, DC transmission devices have
also changed from two-level converters to three-level converters and finally to modular
multilevel converters (MMC).

However, the intricated structure of the MMC makes it difficult to control and analyze
effectively [1,2]. In order to improve its operating performance, extensive research has
been conducted in recent years to address the technical challenges and MMC operation
and control [3,4]. For this purpose, conventional proportional-integral controllers (PI) [5]
and proportional-resonant (PR) control [6] have been proposed based on classical control
theory and the mathematical model of the MMC. Although the classical controller can
control the internal dynamics of the MMC, due to the strong nonlinearity of the MMC
and the complex coupling, it is necessary to use nonlinear control techniques to obtain a
better output [7–11]. Then, various nonlinear control techniques, such as sliding mode
control [7], Lagrange multiplier-based optimal control [8], model-based input–output
linearization [9], and developed feedback linearization [10], have also been proposed
and researched. Another control approach is model predictive control [12–14]. It was
originally proposed by Richalet and Cutleris and now is widely used in power electronics.
However, the main drawback of MPC is the high performance of the computer. When
applied in MMC, the GPU frequency required is higher due to the larger number of sub-
modules. That is, the MPC algorithm should be able to evaluate all possible capacitor
voltage combinations within one sample period. In other words, higher GPU will also
increase the cost. In addition, conventional nonlinear controller-based techniques rely on a
precise mathematical model of the system, which is difficult to achieve in real life.

Furthermore, there are frequently unknown nonlinear functions in nonlinear sys-
tems. Because of its universal approximation of any unknown smooth nonlinear function,
the neural network (NN) is commonly utilized in nonlinear systems. Ref. [15] used NN
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to approximate the nonlinear part in the APF. Ref. [16] also introduces the same idea.
Refs. [17–19] used NN to approximate the mathematical model of MMC and then con-
trol using MPC. However, the MPC and NN have increased the cost and the burden on
the computer.

Power electronic converters are variable structure systems due to the switching devices.
Therefore, the sliding mode controller (SMC) is suitable for power electronic converters as
a variable structure controller. SMC were first proposed in 1950 [20,21]. SMC is a nonlinear
control method. It is suitable for the control of power converters and can achieve better
regulation and dynamic performance over a wider range of operating conditions. The main
reason is that the nonlinear controller design does not require a linear model of the power
converter. Sliding mode controllers are widely used in DC-DC converters. Mazumder
et al. firstly proposed an integral variable structure sliding mode controlled parallel buck
converter based on a fixed frequency PWM [22]. This technique was later extended to the
application of controlled voltage regulation modules [23]. Later, a unified PWM-based
fixed-frequency direct sliding mode voltage control design scheme was proposed for buck,
boost, and buck–boost converters [24]. However, the sliding mode controller has the
problem of jitter, which will reduce stability [25]. Therefore, if the sliding mode controller is
applied to AC-DC, it will increase the harmonics of the grid current and the output power
will be jittered. In this paper, NN solves the jitter problem of sliding mode control by fitting
the sliding mode control law.

RBFSMC was first proposed in 2006 [26]. The RBF is used to adjust the controller
parameters of the SMC or to fit the nonlinear part of the controlled object. Nowadays,
RBFSMC is mainly used in Ship’s Heading [27], robotics [28,29], and aeronautical remote
sensing stable platforms [30]. Motivated by the above studies, a sliding-mode controller
using the RBF neural network (RBFNN) structure is proposed for the current control of
MMC. In this paper, RBF is mainly used to fit the SMC control law. The main advantages
of using an RBF neural network-based sliding mode control in this paper are as follows:
(i) no device parameters are required; (ii) no controller parameters are required; (iii) no
jitter; (iv) stable operation when the grid voltage drops; (v) suitable for all MMC systems.
Finally, simulation and experimental results verify the effectiveness of RBFSMC.

2. Mathematical Model of MMC

The topology of three phases MMC is shown in Figure 1. Three phase MMC mainly
consist of an upper and a lower arm as well as two small coupling inductances. Each arm
has the same number of sub-modules (SMs). The SM consists of two IGBT half bridges
with anti-parallel diodes and one parallel capacitor.

In Figure 1, making use of Kirchhoff’s law, the mathematical model of MMC can
be obtained: 

usa = ua − L0(disa/dt)− R0isa
usb = ub − L0(disb/dt)− R0isb
usc = uc − L0(disc/dt)− R0isc

(1)

udc = ump + ujn + 2Li
dicirj

dt
(2)

In addition, the port voltages of upper arm and lower arm can be expressed as{
uip = udc/2− ui − ucirj
uin = udc/2 + ui − ucirj

(3)

Transforming Equation (1) into dq coordinate, we can obtain:{
ud = usd + ωL0isq − R0isd − L0

disd
dt

uq = usq + ωL0isd − R0isq − L0
disq
dt

(4)
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where, usm/ ism represent three-phase output voltages/currents; um represent three-phase
AC voltages on the converter side; R0 and L0 are the line resistance and inductance; ujP
and ujN are the port voltages of the upper arm and lower arm; icirj is the circulation current;
ucirj is the voltage drop caused by icirj; Li is the inductance of the bridge arm; udc is the DC
voltage; m = a, b, c, d, q. i = a, b, c.
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Figure 1. Topology of the MMC. 
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Figure 1. Topology of the MMC.

By defining x1 = isd, x2 = isq, Equation (4) can be transformed as{ .
x1 = f1(x1, x2) + bud.
x2 = f2(x1, x2) + buq

f1 (x1, x2 ) =
usd
L0

+ ωx2 − R0
L0

x1

f2 (x1, x2 ) =
usq
L0

+ ωx1 − R0
L0

x2

(5)

3. Control Strategy Design
3.1. Design of PI Controller

According to Equation (4), the PI controller can be designed as ud = Kp

(
isdre f − isd

)
+ Ki

∫ (
isdre f − isd

)
dt + ωLoisq + usd

uq = Kp

(
isqre f − isq

)
+ Ki

∫ (
isqre f − isq

)
dt−ωLoisd + usq

(6)

Applying the Laplace transform theory, the open-loop transfer function of the current
loop is obtained

G(s) = Ki(τis+1)
s(1.5Tss+1)(R0+sL0)

τi =
Kp
Ki

(7)

where, Kp and Ki are the controller parameters and Ts is the switching times.
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Applying the Mr minimum criterion method, letting τi
1.5Ts

= 1, the closed-loop transfer
function of the current loop is obtained

G1(s) =
Ki
L

s2 + R
L s + Ki

L

(8)

According to the 2nd order system theory, we obtain the range of PI controller parameters{
0 < ε = R0

2ωnL0
< 1ωn =

√
Ki
L0

Kp > 0
(9)

3.2. Design of Sliding Mode Controller

The goal of the SMC is to ensure high dynamic tracking performance. According to
the SMC theory, the sliding mode surface is designed as{

s1 = x1 − x1re f = isd − isdre f
s2 = x2 − x2re f = isq − isqre f

(10)

where, isqref is the reference current of the q-axis and isdref is the reference current of
the d-axis.

In fact, in power electronic systems, the d-axis reflects active power and the q-axis
reflects reactive power. Therefore, the reference current can be given by Equation (11) idre f =

2
3 ×

Pre f
usd

iqre f = − 2
3 ×

Qre f
usd

(11)

where, Pref and Qref are the setting values of active and reactive power.
To compensate for the effect of the lumped uncertainties, we design the exponential

reaching law as follows { .
s1 = −ε1sgn(s1)− q1s1.
s2 = −ε2sgn(s2)− q2s2

(12)

where, ε and q are positive constants.
With derivative Equation (10) and combined with Equation (12), we can obtain{

ud = − 1
b × ( f1(x1, x2) + ε1sgn(s1) + q1s1)

uq = − 1
b × ( f2(x1, x2) + ε2sgn(s2) + q2s2)

(13)

In order to reduce the high frequency jitter of the SMC, the saturation function sat(·) is
used instead of the sign function sgn(·) in the ideal sliding mode, and Equation (13) can be
transformed as 

ud = − 1
b × ( f1(x1, x2) + ε1sat(s1) + q1s1)

= − 1
b × F1(x2, s1)

uq = − 1
b × ( f2(x1, x2) + ε2sat(s2) + q2s2)

= − 1
b × F2(x1, s2)

(14)

In addition, under unbalanced grid voltage, Equation (14) can be transformed in
positive and negative orders

u+
d
= − 1

b × ( f+
1
(x+

1
, x+

2
) + ε1sat(s1) + q1s1)

= − 1
b × F+

1
(x+

2
, s1)

u+
q = − 1

b × ( f+
2
(x+

1
, x+

2
) + ε2sat(s2) + q2s2)

= − 1
b × F+

2
(x+

1
, s2)

(15)
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u−

d
= − 1

b × ( f−
1
(x−

1
, x−

2
) + ε3sat(s3) + q3s3)

= − 1
b × F−

1
(x−

2
, s3)

u−q = − 1
b × ( f−

2
(x−

1
, x−

2
) + ε4sat(s4) + q4s4)

= − 1
b × F−

2
(x−2 , s4)

(16)

3.3. Stability Analysis

To prove convergence and stability of the proposed SMC, the matrix S is defined as

S =
[

s(t) 0
]

(17)

Consider the following positive definite Lyapunov candidate function

V = SST = [s(t)]2 (18)

Taking the derivative of Equation (18), and combining Equation (12) results in

.
V = 2s(−εsat(s)− qs) = −

(
ε
∣∣∣s∣∣∣+qs2

)
(19)

Because the controller parameters ε and q are positive, we can find V > 0 and
.

V < 0.
In other words, the controlled system satisfies the reaching condition.

Practically, MMC is constantly influenced by a variety of unknown disturbances and
parametric variations caused by aging inductors and capacitors, which must be accounted
for in the system model. However, the parametric variations caused by aging inductors
and capacitors is a nonlinear function. As f1(x1, x2) and f2(x1, x2) in Equation (14) are
unknown, it is impossible to implement the control law Equation (14). In addition, the ε
and q will also affect the stability of the controller, which should be considered. RBFNN
can fit arbitrary nonlinear functions due to its specific neuron structure. RBFNN was used
to fit Equation (14) in this paper.

4. RBF Neural Network-Based Sliding Mode Control
4.1. Design of RBF NN

The input layer, hidden layer, and output layer are the basic three layers of forward
structure in RBF NN. Basic RBF NN is shown in Figure 2.
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It can be seen in Figure 2 that the input of RBF NN is Equation (20)

x =
[
x1, x2, . . . xj

]T, j = 1, 2, . . . , n (20)
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The output of each neuron in the middle layer is Equation (21)

hi = exp

(
−‖x− ai‖2

2b2
i

)
, i = 1, 2, . . . , m (21)

where, ai = [ai1, . . . , ain] is the center vector of the i-th hidden layer neuron. The width
vector of Gauss function is bi = [b1, b2, . . . , bm]

T.
According to the rules of neural network calculation, the output is Equation (22)

y = wTh (22)

where, ωT is the weight of NN, hi = [h1, h2, . . . , hm]
T.

(1) Number of neurons: When the control system is confirmed, the number of input and
output neurons is also determined. In this paper, the input values of the d-axis are x2 and
s1 and the q-axis are x1 and s2, so the number of input neurons of d-axis and q-axis nodes
is 2. The output variable of the d-axis is ud and the variable of the q-axis is uq. There is no
currently uniform formula to determine the number of middle layer neurons. According to
simulation results, the best results are obtained when the number of neurons in the middle
layer is 8. The input and output layers are 2 and 1, respectively.

(2) Parameter Setting: The settings of ai and bi also affect the output of RBFNN. When
the input is close to ai, the value of Gauss function is sensitive and bi is the mapping range
of the Gauss function. In this paper, ai is 0 and bi is 1.

4.2. RBF NN Sliding Mode Controller

The RBFNN is used to approximate the nonlinear functions F1(x2, s1) and F2(x1, s2).
Take F1(x2, s1) as an example. The RBF neural network-based sliding mode control
(RBFSMC) block diagram of the d-axis (q-axis) is shown in Figure 3.
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The input of RBFSMC shown in Figure 3 is

O(1)
p = x(p), p = 1, 2, (23)
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where, x(1) = x2, x(2) = s1;
The input of the hidden layer is

net(2)r = x, x = (x(1), x(2)) (24)

The output of the hidden layer is

O(2)
r (k) = g

(
net(2)r (k)

)
, r = 1, 2 . . . 8 (25)

To distinguish across layers, superscripts (1)–(3) are used to denote input, hidden,
and output layers, respectively. The Gauss function is g(x).

The input of RBFSMC’s output layer is

net(3)r (k) =
8

∑
r=1

w(3)
lr O(2)

r (k) (26)

Finally, the output of RBFSMC is F1:

F1 = O(3)
r (k) = f

(
net(3)v (k)

)
, v = 1 (27)

5. Simulation Results

To show the validity of the suggested controller, we built the model in MATLAB/Simulink
according to Figures 1 and 4. The system parameters and controller parameters are listed
in Tables 1 and 2.
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5.1. Steady-State Performance

Figure 5 shows the three-phase grid-side current of MMC. As can be seen in Figure 5,
the grid-side current has almost no setting time to become stable using the controller
proposed in the paper. To determine the harmonic content of the grid-side currents, fast
Fourier transforms (FFT) of Phase A of the grid-side current are shown in Figure 6. From
Figure 6, the FFT of the grid-side current have good performance under RBFSMC.
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Table 1. Simulation experiment parameters.

System Parameter Value

Grid voltage 20 kV
DC voltage 20 kV

Filter inductors 5 mH
Line equivalent resistance 0.047 Ω

Number of single bridge arm sub-modules 10
Arm inductance 5 mH

Active power 7 MW (9 MW)
Reactive power 0 Var

Switching frequency 2 KHz

Table 2. Controller parameters.

Controller Parameter Value

Number of neurons in the middle layer 8
Number of neurons in the input layer 2

Number of neurons in the output layer 1
ai,bi 0.1
Kp 5
Ki 0.5
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Figure 6. FFT analysis of the grid-side current.

Figure 7 shows the circulating current of Phase A. As can be seen in Figure 7, the circu-
lating current is suppressed after 0.005 s and the peak value is 35 A at 0.002 s. Submodule
capacitance voltage is a key parameter in the MMC. The submodule capacitance voltage
of A phase is shown in Figure 8. The submodule capacitance voltage is stable at 4000 V
and varies in the same trend. The results illustrate that the RBFSMC can work well with
traditional capacitor voltage control as well as the loop current suppression.
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Figure 9 shows the active and reactive power of MMC under RBFSMC. It can be
seen from Figure 9 that the active and reactive power can be stable. The overshoot of the
active power is 4.7% and the setting time is 0.03s. The reactive power is constant without
fluctuations in operation
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Figure 9. Waveforms of active and reactive power.

Figure 10 shows the d-axis and q-axis components of grid currents. In Figure 10a,b,
the d-axis component and q-axis component can track the reference values quickly without
delay. The results show that the dynamic performance and tracking performance is good
under RBFSMC.
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In addition, to verify that RBFSMC is not affected by grid voltage, the grid voltage
was changed to 18 kV (grid voltage drops 10%). Figure 11 shows the grid-side current and
power when the grid voltage is 18 kV. As can be seen in Figure 11, the current and power
can still become stable quickly. That means the changes in grid voltage have little effect on
the current and power.
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5.2. Dynamic Performance

To verify the speed and effectiveness of controller, the active power increases abruptly
from 7 to 9 MW at 0.2 s in this paper and compared with conventional PI control. Figure 12
shows waveforms of the grid-side current from 0.18 to 0.23 s. Simulation result analysis
of grid-side current is shown in Table 3. As can be seen in Figure 12, the amplitude of the
grid current is larger when the active power reference changes. The grid current fluctuates
when the set value changes and it takes about 1 ms to become stable. However, PI control
needs 10 ms and the waveforms are worse than RBFSMC.
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Table 3. Simulation result analysis of grid-side current.

Grid-Side Current Dynamic Response Time FFT

RBFSMC 1 ms 1.35%

PI control 10 ms 1.7%

Figure 13 shows waveforms of the d-axis and q-axis current under active power
changes. In Figure 13a, because of the set value changes, idref will change from 235 to 300 A.
The id under RBFSMC can track the signal immediately at 0.2 s without any fluctuation
and overshoot. However, the id under PI control has a big overshoot when MMC starts
and takes about 10 ms to become stable after 0.2 s. In addition, it can be seen in Figure 13b
that the value of iqref is 0 and there is no fluctuation at 0.2 s under RBFSMC. From Table 4,
we find that the result is better than PI control.

Figure 14 shows waveforms of active and reactive power of MMC. Simulation result
analysis of power is shown in Table 5. It can be seen in Figure 14 that the peak value of
active value is 9.098 MW and the setting time is 0.02 s when the active power changes. The
reactive power is still constant with no fluctuation at 0.2 s. The results show that RBFSMC
proposed in this paper has good dynamic performance and faster response than PI control.
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5.3. Unbalanced Grid Voltage Performance 

Figure 13. The response of d-axis and q-axis components under RBFSMC and PI control: (a) d-axis
component; (b) q-axis component.

Table 4. Simulation result analysis of dq current.

d-Axis and q-Axis Current Maximum Inrush Current Dynamic Response Time

RBFSMC
d-axis current (id) 245 A 0.5 ms (started), 1 ms (changed)

q-axis current (iq) 3.5 A 0 ms (started), 0 ms (changed)

PI control
d-axis current (id) 330 A 30 ms (started), 20 ms (changed)

q-axis current (iq) 182 A 30 ms (started), 20 ms (changed)

5.3. Unbalanced Grid Voltage Performance

In this paper, the voltage of phase A dropped by 10% (20 kV→18 kV), while phase B
and phase C maintained the original voltage. Because of the unbalanced grid voltage, it is
found that the instantaneous power of MMC is changed as follows:
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 (28)

where, um
sn is the positive and negative sequence components of the output voltage on the

AC side in the d/q axis, respectively; im
sn is the positive and negative sequence components of

the output current on the AC side in the d/q axis, respectively; P(Q)s0, P(Q)s2 sin, P(Q)s2 cos
are the direct flow of active (reactive) power, the two sine components of the secondary
fluctuation, and the cosine component of the secondary fluctuation, respectively. Noted
that the superscript m represents the symbol +, − and n represent the symbols d and q.
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Figure 14. Waveforms of active and reactive power under active power changes: (a) RBFSMC;
(b) PI control.

Table 5. Simulation result analysis of power.

Power Maximum Power Dynamic Response Time

RBFSMC
Active power 9.098 MW 20 ms

Reactive power 0 Var 0 s

PI control
Active power 9.2 MW 35 ms

Reactive power 0.14 MVar 30 ms

When the grid voltage is unbalanced, the grid-side current will fluctuate. Therefore,
the reference current should be changed according to Equation (28)

i+d ref = 2
3

u+
sqPs0+u+

sdQs0

(u+
sd)

2
+(u+

sq)
2

i+qref
= 2

3
u+
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sdQs0

(u+
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2
+(u+

sq)
2

(29)

Figure 15 shows the waveforms of the grid-side current under unbalanced grid voltage,
respectively. Simulation result analysis of grid-side current under unbalanced voltage is
shown in Table 6. As can be seen from Figure 15, the current unbalance factor (CUF) of
three-phase grid current under RBFSMC control is 0.8%, while the CUF under PI control is
1.7%. The peak current under RBFSMC is 405 A, while the peak current under PI control is
454 A. Therefore, RBFSMC is better than PI control.



Energies 2022, 15, 1634 14 of 18

Energies 2022, 15, x FOR PEER REVIEW 14 of 19 
 

 

In this paper, the voltage of phase A dropped by 10% (20 kV→18 kV), while phase B 

and phase C maintained the original voltage. Because of the unbalanced grid voltage, it is 

found that the instantaneous power of MMC is changed as follows: 

s0 s sq s s

s2sin s s sq s sd

s2cos s s s s sq

s0 s s sq s sd

s2sin s s s sq sq

s2cos s s s s

3

2

d d q

q d d

d q d q

q d d

d q d

q d d q

P u u u u

P u u u u i

P u u u u i

Q u u u u i

Q u u u u i

Q u u u u

+ + − −

− − + + +

− − + + +

+ + − − −

− + + +

− − + +

  
    − −       =  − −      − −    
 −    







  (28) 

where, 𝑢sn
𝑚  is the positive and negative sequence components of the output voltage on 

the AC side in the d/q axis, respectively; 𝑖sn
𝑚  is the positive and negative sequence compo-

nents of the output current on the AC side in the d/q axis, respectively; 𝑃(𝑄)s0, 𝑃(𝑄)s2sin, 

𝑃(𝑄)s2cos are the direct flow of active (reactive) power, the two sine components of the 

secondary fluctuation, and the cosine component of the secondary fluctuation, respec-

tively. Noted that the superscript m represents the symbol +, − and n represent the sym-

bols d and q. 

When the grid voltage is unbalanced, the grid-side current will fluctuate. Therefore, 

the reference current should be changed according to Equation (28) 

( ) ( )

( ) ( )
ref

s s0 s s0

 ref 2 2

s s

s s0 s s0

2 2

s s

2

3

2

3

q d

d

d q

q d

q

d q

u P u Q
i

u u

u P u Q
i

u u

+ +

+

+ +

+ +

+

+ +

 +
=

+


+
=

+

  (29) 

Figure 15 shows the waveforms of the grid-side current under unbalanced grid volt-

age, respectively. Simulation result analysis of grid-side current under unbalanced volt-

age is shown in Table 6. As can be seen from Figure 15, the current unbalance factor (CUF) 

of three-phase grid current under RBFSMC control is 0.8%, while the CUF under PI con-

trol is 1.7%. The peak current under RBFSMC is 405 A, while the peak current under PI 

control is 454 A. Therefore, RBFSMC is better than PI control. 

Table 6. Simulation result analysis of grid-side current. 

Grid-Side Current CUF FFT Maximum Inrush Current 

RBFSMC 0.8% 1.4% 405 A 

PI control 1.7% 1.93% 454 A 
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Figure 15. Waveforms of grid-side current under unbalanced voltage control: (a) RBFSMC; (b) PI control.

Table 6. Simulation result analysis of grid-side current.

Grid-Side Current CUF FFT Maximum Inrush Current

RBFSMC 0.8% 1.4% 405 A

PI control 1.7% 1.93% 454 A

Figure 16 shows the waveforms of power under unbalanced grid voltage, respectively.
Simulation result analysis of power is shown in Table 7. The maximum active power is
10.7 MW while it is 12.7 MW under PI control. The active power fluctuation is less than PI
control. Reactive power fluctuations under PI control are also more frequent.

Table 7. Simulation result analysis of power.

Power Maximum Power Dynamic Response Time

RBFSMC
Active power 10.7 MW 30 ms

Reactive power 0.05 MVar 22 ms

PI control
Active power 12.7 MW 36 ms

Reactive power 0.2 MVar 33 ms
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Figure 16. Waveforms of active and reactive power under unbalanced grid voltage: (a) RBFSMC; (b)
PI control.

6. Experiment Results

In order to verify the effectiveness of the proposed RBFSMC, the hardware-in-the-
loop experiment was built on the RT-LAB OP5700 platform. The controller uses DSP
TMS32F28335 made by TI company, and the output waveform from RT-LAB is viewed by
an oscilloscope and host. The RT-LAB OP5700 platform is shown in Figure 17.
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In this paper, RT-LAB is used to simulate the topology shown in Figure 1. The RBFSMC
proposed in this paper is implemented on the DSP. When the RT-LAB is running, the current
and voltage signals will be passed to the DSP, and the DSP will generate PWM signals to
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the RT-LAB after calculation to form a closed loop. In this experiment, the DSP sampling
frequency was set to 1 MHz. Experimental parameters were consistent with the simulation.

Figure 18 shows grid voltages and line currents of MMC. The grid current signals are
sinusoidal and have no phase difference with the grid voltage. When the active power
setting value increases, the amplitude of grid current will also change. However, there is
no ripple while the setting value changes like the simulation. These results confirm that the
RBFSMC can operate well in MMC.
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Figure 19 shows grid-side active and reactive power of MMC. When the active power
setting value increases from 7 to 9 MW, the reactive power does not fluctuate. The active
power reached stability after 20 ms. Therefore, when the reference value changes it does
not change the fact that the power factor is the unit.
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7. Conclusions

A new approach to the implementation of sliding mode controller based on RBF
design was proposed in this paper. As such, the benefits of sliding mode control and RBF
can be combined. In this sense, the controller parameter problems were explicitly dealt
with, and the system robustness performance could be enhanced. Compared with the
conventional SMC strategies, the novelty of the proposed methodology was that it did not
require precise mathematical models and can identify the system dynamics, facilitate the
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successful suppression of performance deterioration caused by parameter variations and
model inaccuracy. Finally, the simulation verification shows that the proposed RBFSMC for
MMC can be assessed by steady-state and dynamic performance.

Author Contributions: X.Y. established the original conception, provided the technical guidance and
checked the data. H.F. modeled the system, designed the algorithms of control strategy and wrote
the paper. All authors have read and agreed to the published version of the manuscript.
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Abbreviations

MMC Modular multilevel converter;
CUF Current unbalance factor;
PI Proportional-integral controller;
PR Proportional resonant;
MPC Model predictive control;
NN Neural network;
THD Total Harmonic Distortion;
RBF Radial basis function;
RBFNN RBF neural network;
RBFSMC RBF neural network-based sliding mode control;
SM Sub-modules;
FFT Fast Fourier transforms.
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