Using Finite Element Method for Stress-Strain Evaluation of Commonly Used Buried Pipelines in Fault
Abstract
:1. Introduction
2. Finite Element Analysis Model
2.1. Material Parameter Setting
2.1.1. Pipe Material
2.1.2. Soil Materials
2.2. Meshing
2.3. Boundary Conditions and Load Application
3. Simulation Result Analysis
3.1. Stress and Strain Cloud Diagram
3.2. Stress and Strain Cloud Diagram
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FEA | Finite Element Method |
ANSYS | A general calculation software |
FKN | Penalty Stiffness Factor in ANSYS |
FTOLN | Maximum Permeability Tolerance in ANSYS |
SOLID45 | Solid element parameter in ANSYS |
CONTA174 | Contact element parameter in ANSYS |
TARGE170 | Target surface element parameter in ANSYS |
References
- Xu, X.; Wang, C.; Zhou, P. GVRP considered oil-gas recovery in refined oil distribution: From an environmental perspective. Int. J. Prod. Econ. 2021, 235, 108078. [Google Scholar] [CrossRef]
- Xu, X.; Lin, Z.; Li, X.; Shang, C.; Shen, Q. Multi-Objective robust optimisation model for MDVRPLS in refined oil distribution. Int. J. Prod. Res. 2021, 21, 1–21. [Google Scholar] [CrossRef]
- Tsatsis, A.; Gelagoti, F.; Gazetas, G. Performance of a buried pipeline along the dip of a slope experiencing accidental sliding. Geotechnique 2018, 68, 968–988. [Google Scholar] [CrossRef]
- Karamitros, D.K.; Bouckovalas, G.D.; Kouretzis, G.P. Stress analysis of buried steel pipelines at strike-slip fault crossings. Soil Dyn. Earthq. Eng. 2007, 27, 200–211. [Google Scholar] [CrossRef]
- Newmark, N.M.; Blume, J.A.; Kapur, K.K. Seismic Design Spectra for Nuclear Power Plants. J. Power Div. 1973, 99, 287–303. [Google Scholar] [CrossRef]
- Kennedy, R.P.; Chow, A.M.; Williamson, R.A. Fault movement effects on buried oil pipeline. Transp. Eng. J. Am. Soc. Civ. Eng. 1977, 103, 617–633. [Google Scholar] [CrossRef]
- Wang, L.R.L.; Yeh, Y.-H. A refined seismic analysis and design of buried pipeline for fault movement. Earthq. Eng. Struct. Dyn. 1985, 13, 75–96. [Google Scholar] [CrossRef]
- Nejad, A.F.; Alipour, R.; Rad, M.S.; Yahya, M.Y.; Koloor, S.S.R.; Petru, M. Using Finite Element Approach for Crashworthiness Assessment of a Polymeric Auxetic Structure Subjected to the Axial Loading. Polymers 2020, 12, 1312. [Google Scholar] [CrossRef] [PubMed]
- Jalali, H.H.; Rofooei, F.R.; Attari, N.K.A.; Samadian, M. Experimental and finite element study of the reverse faulting effects on buried continuous steel gas pipelines. Soil Dyn. Earthq. Eng. 2016, 86, 1–14. [Google Scholar] [CrossRef]
- Zhang, K.; He, Z.; Zheng, K.; Yuan, S. Experimental verification of anisotropic constitutive models under tension-tension and tension-compression stress states. Int. J. Mech. Sci. 2020, 178, 105618. [Google Scholar] [CrossRef]
- Yu, G.Q.; Wang, F.; Du, G. Finite Element Analysis of Stamped Tees Stress in Directly Buried Heating Pipeline. Appl. Mech. Mater. 2013, 405, 997–1001. [Google Scholar] [CrossRef]
- Wang, M.; Zhong, M.; Long, Y.; Ding, K.; Xie, X.; Ying, L. Study on Dynamic Strain Regularity and Influencing Factors of Shallow Buried Metal Pipe under Collapse Impact Load. Shock Vib. 2018, 2018, 8792564. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, H.; Chen, J.; Wu, X.; Wang, Y.; Gao, D.; Liang, Y. Influence of Coil Current and Oil Film Thickness on Hopf Bifurcation of MLDSB. Energies 2022, 15, 848. [Google Scholar] [CrossRef]
- Fadaee, M.; Farzaneganpour, F.; Anastasopoulos, I. Response of buried pipeline subjected to reverse faulting. Soil Dyn. Earthq. Eng. 2020, 132, 106090. [Google Scholar] [CrossRef]
- Fahmy, M.W.; Namini, A.H. A survey of parallel nonlinear dynamic analysis methodologies. Comput. Struct. 1994, 53, 1033–1043. [Google Scholar] [CrossRef]
- Zhao, H.Y.; Jeng, D.S.; Guo, Z.; Zhang, J.S. Two-Dimensional Model for Pore Pressure Accumulations in the Vicinity of a Buried Pipeline. J. Offshore Mech. Arct. Eng. 2014, 136, 042001. [Google Scholar] [CrossRef]
- Avci, O.; Bhargava, A. Investigation of Uplift Pressures on a Drainage Shaft Using ANSYS SOLID185 Elements and Drucker–Prager Failure Criterion for the Surrounding Rock Stratum. J. Perform. Constr. Facil. 2020, 34, 04019083. [Google Scholar] [CrossRef]
- Khair, J.A.; Jaswar, K.; Effendi, A.; Fitriadhy, A. Buckling Criteria for Subsea Pipeline. J. Teknol. 2015, 74, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Rasouli, H.; Fatahi, B. (Eds.) Effect of Burial Depth on Pipeline-Fault Rupture Interaction Mechanism and Mitigation Technique Using Geofoam Blocks. In Challenges and Innovations in Geomechanics, Proceedings of the International Conference of the International Association for Computer Methods and Advances in Geomechanics, Turin, Italy, 5–8 May 2021; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Tohidifar, H.; Jafari, M.K.; Moosavi, M. Downwards force—Displacement response of buried pipelines during dip–slip faulting in sandy soil. Can. Geotech. J. 2021, 58, 377–397. [Google Scholar] [CrossRef]
- Yu, C.; Han, C.; Xie, R.; Wang, L. Mechanical behavior analysis of buried pipeline under stratum settlement caused by underground mining. Int. J. Press. Vessel. Pip. 2020, 188, 104212. [Google Scholar] [CrossRef]
Soil Type | Modulus of Elasticity /MPa | Density/k g/m3 | Poisson’s Ratio | Cohesion/ MPa | Internal Friction |
---|---|---|---|---|---|
Stiff Clay | 10 | 1800 | 0.15 | 0.06 | 56 |
Model | Number | Diameter/mm | Wall Thickness/mm |
---|---|---|---|
L245 | 111 | 168.3 | 4.5 |
112 | 5.0 | ||
113 | 5.5 | ||
114 | 6.0 | ||
L245 | 121 | 219.1 | 6.0 |
122 | 6.3 | ||
123 | 7.0 | ||
124 | 7.5 | ||
L245 | 131 | 323.9 | 7.1 |
132 | 7.5 | ||
133 | 8.0 | ||
134 | 8.5 | ||
L360 | 211 | 168.3 | 4.5 |
212 | 5.0 | ||
213 | 5.5 | ||
214 | 6.0 | ||
L360 | 221 | 219.1 | 6.0 |
222 | 6.3 | ||
223 | 7.0 | ||
224 | 7.5 | ||
L360 | 231 | 323.9 | 7.1 |
232 | 7.5 | ||
233 | 8.0 | ||
234 | 8.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, N.; Zhou, L.; Zheng, W.; Song, H.; Sun, Z.; Wang, Z.; Wang, G.; Wang, G.; Zhang, L.; Zhou, X. Using Finite Element Method for Stress-Strain Evaluation of Commonly Used Buried Pipelines in Fault. Energies 2022, 15, 1655. https://doi.org/10.3390/en15051655
Tan N, Zhou L, Zheng W, Song H, Sun Z, Wang Z, Wang G, Wang G, Zhang L, Zhou X. Using Finite Element Method for Stress-Strain Evaluation of Commonly Used Buried Pipelines in Fault. Energies. 2022; 15(5):1655. https://doi.org/10.3390/en15051655
Chicago/Turabian StyleTan, Ning, Liang Zhou, Weibo Zheng, Honglin Song, Zhibin Sun, Zhiyin Wang, Guisheng Wang, Guanjun Wang, Liming Zhang, and Xingyu Zhou. 2022. "Using Finite Element Method for Stress-Strain Evaluation of Commonly Used Buried Pipelines in Fault" Energies 15, no. 5: 1655. https://doi.org/10.3390/en15051655
APA StyleTan, N., Zhou, L., Zheng, W., Song, H., Sun, Z., Wang, Z., Wang, G., Wang, G., Zhang, L., & Zhou, X. (2022). Using Finite Element Method for Stress-Strain Evaluation of Commonly Used Buried Pipelines in Fault. Energies, 15(5), 1655. https://doi.org/10.3390/en15051655