Potential Use of Pruning Residues from Avocado Trees as Energy Input in Rural Communities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Collection of Samples
2.3. Measuring Residual Biomass with a Destructive Method
2.4. Determining the Thermochemical Properties of Pruning Residues
- Sample Preparation
- Moisture content
- Proximate analysis
- Elemental analysis
- Calorific value
2.5. Energy Potential and End Uses
3. Results and Discussion
3.1. Allometric Analysis
- (a)
- Periods since the last pruning is correlated with tree crown diameter (Pearson correlation coefficient of 0.60);
- (b)
- Mean pruned mass per plantation is highly correlated with crown diameter (0.65), as well as with total tree height (0.60);
- (c)
- Somewhat surprisingly, tree age is not particularly correlated with any variable, including pruned mass; this makes it uninteresting for inclusion.
- Light to intensive pruning:
- Rejuvenation pruning:
3.2. Residual Biomass
3.3. Thermochemical Properties of Pruning Residues
3.4. Energy Potential, Sensitivity Analysis, and End Uses
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Bw | percentage of woody biomass in branches |
Bl | percentage of leafy biomass in branches |
ml | biomass of branches with leaves |
mw | biomass with no leaves |
Dt | tree trunk diameter at the height of the first branch |
H | total tree height |
Hc | crown height |
Dc | crown diameter |
HHV | superior calorific value |
BQI | general biomass quality index |
PQI | parameter quality index from a specific biomass |
DM | dry matter |
SD | standard deviation |
GJ | gigajoule |
References
- Tauro, R.; Serrano-Medrano, M.; Masera, O. Solid biofuels in Mexico: A sustainable alternative to satisfy the increasing demand for heat and power. Clean Technol. Environ. Policy 2018, 20, 1527–1539. [Google Scholar] [CrossRef]
- Velázquez-Martí, B.; Cazco-Logroño, C. Structure analysis and biomass models for plum tree (Prunus Domestica L.) in Ecuador. Exp. Agric. 2017, 54, 1–9. [Google Scholar] [CrossRef]
- SIAP-Servicio de Información Agroalimentaria y Pesquera, Gobierno de México. 2020. Available online: http://infosiap.siap.gob.mx/gobmx/datosAbiertos_a.php (accessed on 8 December 2021).
- Fu, T.; Ke, J.H.; Zhou, S.; Xie, G.H. Estimation of the quantity and availability of forestry residue for bioenergy production in China. Resour. Conserv. Recycl. 2020, 162, 104993. [Google Scholar] [CrossRef]
- Velázquez-Martí, B.; Fernández-González, E.; López-Cortes, I. Salazar-Hernández DM. Quantification of the residual biomass obtained from pruning of vineyards in Mediterranean area. Biomass Bioenergy 2011, 35, 3453–3464. [Google Scholar] [CrossRef]
- Velázquez-Martí, B.; Fernández-González, E.; López-Cortes, I. Salazar-Hernández DM. Quantification of the residual biomass obtained from pruning of trees in Mediterranean olive groves. Biomass Bioenergy 2011, 35, 3208–3217. [Google Scholar] [CrossRef]
- Velázquez-Martí, B.; Fernández-González, E.; López-Cortes, I.; Salazar-Hernández, D.M. Quantification of the residual biomass obtained from pruning of trees in Mediterranean almond groves. Renew. Energy 2011, 36, 621–626. [Google Scholar] [CrossRef]
- Estornell, J.; Velázquez-Martí, B.; López-Cortés, I.; Salazar, D.; Fernández-Sarría, A. Estimation of wood volume and height of olive tree plantations using airborne discrete-return lidar data. GISci. Remote Sens. 2014, 51, 17–29. [Google Scholar] [CrossRef]
- del Mar Contreras, M.; Romero, I.; Moya, M.; Castro, E. Olive-derived biomass as a renewable source of value-added products. Process. Biochem. 2020, 97, 43–56. [Google Scholar] [CrossRef]
- Velázquez-Martí, B.; Fernández-González, E. The influence of mechanical pruning in cost reduction, production of fruit, and biomass waste in citrus orchards. Appl. Eng. Agric. 2010, 26, 531–540. [Google Scholar] [CrossRef]
- Velázquez-Martí, B.; Fernández-González, E.; López-Cortés, I.; Callejón-Ferre, A.J. Prediction and evaluation of biomass obtained from citrus trees pruning. J. Food Agric. Environ. 2013, 11, 1485–1491. [Google Scholar]
- García-Vargas, M.C.; Contreras, M.D.M.; Castro, E. Avocado-derived biomass as a source of bioenergy and bioproducts. Appl. Sci. 2020, 10, 8195. [Google Scholar] [CrossRef]
- Sokal, R.R.; Rohlf, F.J. Biometry: The Principles and Practice of Statistics in Biological Research, 4th ed.; W.H. Freeman and Company: New York, NY, USA, 2012; p. 937. ISBN 0-7167-8604-4. [Google Scholar]
- Ricker, M. Solving linear regression without skewness of the residuals’ distribution. Commun. Stat. Simul. Computation 2021, 50, 2482–2495. [Google Scholar] [CrossRef]
- UNE-EN 18134-1; Determination of Moisture Content-Method of Oven Drying-Part 1: Total Humidity. AENOR: Madrid, Spain, 2010. Available online: https://www.en-standard.eu/une-en-iso-18134-1-2016-solid-biofuels-determination-of-moisture-content-oven-dry-method-part-1-total-moisture-reference-method-iso-18134-1-2015/ (accessed on 30 January 2022).
- UNE-EN ISO 18122; Method for the Ash Content Determination. AENOR: Madrid, Spain, 2015. Available online: https://www.en-standard.eu/une-en-iso-18122-2016-solid-biofuels-determination-of-ash-content-iso-18122-2015/ (accessed on 30 January 2022).
- ASTM E872−82; Standard Test Method for Volatile Matter in the Analysis of Particulate Wood Fuels. ASTM International: West Conshohocken, PA, USA, 2013. Available online: https://www.techstreet.com/standards/astm-e872-82-2019?product_id=2042233 (accessed on 30 January 2022).
- Rutiaga-Quiñones, J.G.; Pintor-Ibarra, L.F.; Orihuela-Equihua, R.; Gonzalez-Ortega, N.; Ramírez-Ramírez, M.A.; Carrillo-Parra, A.; Navarrete-García, M.A.; Ruíz-Aquino, F.; Rangel-Méndez, J.R.; Hernández-Solís, J.J.; et al. Characterization of Mexican waste biomass relative to energy generation. BioResources 2020, 15, 8529–8553. [Google Scholar] [CrossRef]
- 993.13-1996; Test Method: Nitrogen (Total) in Fertilizers. Combustion Method. AOAC: Rockville, MD, USA, 1997. Available online: http://www.aoacofficialmethod.org/index.php?main_page=product_info&products_id=561 (accessed on 30 January 2022).
- UNE-EN 18125; Solid Biofuels-Determination of Calorific Value. AENOR: Madrid, Spain, 2018. Available online: https://www.en-standard.eu/une-en-iso-18125-2018-solid-biofuels-determination-of-calorific-value-iso-18125-2017/ (accessed on 30 January 2022).
- Cherney, J.H.; Verma, V.K. Grass pellet Quality Index: A tool to evaluate suitability of grass pellets for small scale combustion systems. Appl. Energy 2013, 103, 679–684. [Google Scholar] [CrossRef]
- Rocha, S.; Candia, O.; Valdebenito, F.; Espinoza-Monje, J.F.; Azócar, L. Biomass quality index: Searching for suitable biomass as an energy source in Chile. Fuel 2020, 264, 116820. [Google Scholar] [CrossRef]
- Vasileiadou, A.; Zoras, S.; Iordanidis, A. Fuel Quality Index and Fuel Quality Label: Two versatile tools for the objective evaluation of biomass/wastes with application in sustainable energy practices. Environ. Technol. Innov. 2021, 23, 101739. [Google Scholar] [CrossRef]
- Paniagua, S.; Reyes, S.; Lima, F.; Pilipenko, N.; Calvo, L.F. Combustion of avocado crop residues: Effect of crop variety and nature of nutrients. Fuel 2021, 291, 119660. [Google Scholar] [CrossRef]
- Medina, P.; Berrueta, V.; Cinco, L.; Ruiz-García, V.; Edwards, R.; Olaya, B.; Schilmann, A.; Masera, O. Understanding household energy transitions: From evaluating single cookstoves to “clean stacking” alternatives. Atmosphere 2019, 10, 693. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-García, V.M.; Edwards, R.D.; Ghasemian, M.; Berrueta, V.M.; Princevac, M.; Vázquez, J.C.; Johnson, M.; Masera, O.R. Fugitive emissions and health implications of plancha-type stoves. Environ. Sci. Technol. 2018, 52, 10848–10855. [Google Scholar] [CrossRef]
- Compressed Wood or Compressed Bark in Natural State-Pellets and Briquettes, Requirements and Test Specifications. In ÖNORM M 7135; The Pellet Handbook, Earthscan: London, UK, 2000.
- Rodríguez, J.L.; Álvarez, X.; Valero, E.; Ortiz, L.; de la Torre-Rodríguez, N.; Acuña-Alonso, C. Influence of ashes in the use of forest biomass as source of energy. Fuel 2021, 283, 119256. [Google Scholar] [CrossRef]
- Velázquez-Martí, B.; Gaibor-Cházvez, J.; Niño-Ruiz, Z.; Narbona-Sahuquillo, S. Complete characterization of pruning waste from the lechero tree (Euphorbia laurifolia L.) as raw material for biofuel. Renew. Energy 2018, 129, 629–637. [Google Scholar] [CrossRef]
- Martín-Lara, M.A.; Ronda, A.; Zamora, M.C.; Calero, M. Torrefaction of olive tree pruning: Effect of operating conditions on solid product properties. Fuel 2017, 202, 109–117. [Google Scholar] [CrossRef]
- Taylor, M.J.; Alabdrabalameer, H.A.; Michopoulos, A.K.; Volpe, R.; Skoulou, V. Augmented Leaching Pretreatments for Forest Wood Waste and Their Effect on Ash Composition and the Lignocellulosic Network. ACS Sustain. Chem. Eng. 2020, 8, 5674–5682. [Google Scholar] [CrossRef]
- Morales-Máximo, M.; García, C.A.; Pintor-Ibarra, L.F.; Alvarado-Flores, J.J.; Velázquez-Martí, B.; Rutiaga-Quiñones, J.G. Evaluation and Characterization of Timber Residues of Pinus spp. as an Energy Resource for the Production of Solid Biofuels in an Indigenous Community in Mexico. Forests 2021, 12, 977. [Google Scholar] [CrossRef]
- Obernberger, I.; Brunner, T.; Bärnthaler, G. Chemical properties of solid biofuels—significance and impact. Biomass Bioenergy 2006, 30, 973–982. [Google Scholar] [CrossRef]
- Suriyati, B.S.; Julie, P.F.; Tooran, K.S.; Zsuzsa, S.; Brian, B.H.; Helge, E.; Nikolai, D.M.; Peter, A.J.; Peter, G.; Kim, D.J. Release of Chlorine and Sulfur during Biomass Torrefaction and Pyrolysis. Energy Fuels 2014, 28, 3738–3746. [Google Scholar] [CrossRef]
- Biocombustibles Sólidos. Especificaciones y Clases de Combustibles. Parte 5: Clases de Leña de Madera. ISO 17225-5:2014; AENOR: Madrid, Spain, 2014. Available online: https://www.en-standard.eu/une-en-iso-17225-5-2014-solid-biofuels-fuel-specifications-and-classes-part-5-graded-firewood-iso-17225-5-2014/ (accessed on 30 January 2022).
- Biocombustibles Sólidos. Especificaciones y Clases de Combustibles. Cáscaras de Frutos. UNE-164004; AENOR: Madrid, Spain, 2014. Available online: https://www.en-standard.eu/une-164004-2014-biocombustibles-solidos-especificaciones-y-clases-de-biocombustibles-cascaras-de-frutos/ (accessed on 30 January 2022).
- Tauro, R.; García, C.A.; Skutsch, M.; Masera, O. The potential for sustainable biomass pellets in Mexico: An analysis of energy potential, logistic costs and market demand. Renew. Sustain. Energy Rev. 2018, 82, 380–389. [Google Scholar] [CrossRef]
- Vega-Nieva, D.J.; Garcia-Maraver, A.; Ortiz, L. Slagging and fouling risks derived from the combustion of solid biofuels. WIT Trans. State Art Sci. Eng. 2015, 85, 137–147. [Google Scholar] [CrossRef]
- Mindy, S.C.; Darius, M.A.; Claire, A.M.; David, S. The potential rural development impacts of utilizing non-merchantable forest biomass. For. Policy Econ. 2017, 74, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Amirante, R.; Bruno, S.; Distaso, E.; La Scala, M.; Tamburrano, P. A biomass small-scale externally fired combined cycle plant for heat and power generation in rural communities. Renew. Energy Focus 2019, 28, 36–46. [Google Scholar] [CrossRef]
No. | Parameter | Units | Threshold Value (xthreshold) | Optimal Value (xoptimal) | Reference |
---|---|---|---|---|---|
1 | Moisture | %wt | 20 | 12 | [21,22] |
2 | Ash | %wt | 3.0 | 0.7 | |
3 | C | %wt | 49 | 60 | |
4 | HHV | MJ kg−1 | 14.5 | 22 | |
5 | N | %wt | 1.5 | 0.1 | |
6 | S | %wt | 0.2 | 0.04 |
Light to Intensive Pruning | Rejuvenation Pruning | |
---|---|---|
Regression equation | ||
Regression results with transformed dependent variable (M) | ||
Applicable range | ||
Mean parameters | m | m |
Expected mass at mean parameters | 42.7 kg | 187.7 kg |
95% confidence interval | 36.6 to 49.1 kg | 171.2 to 206.1 kg |
Residuals from mean without regression | Total range: −42.7 to 89.4 kg, interquartile range: −33.2 to 25.6 kg, standard deviation: 39.0 kg | Total range: −103.2 to 261.6 kg, interquartile range: −74.9 to −24.0 kg, standard deviation: 128.6 kg |
Residuals from OLS regression after back-transformation | Total range: −44.5 to 67.5 kg, interquartile range: −15.0 to 13.5 kg, standard deviation: 22.4 kg | Total range: −26.7 to 63.4 kg, interquartile range: −18.6 to 24.5 kg, standard deviation: 28.0 kg |
Reduction of residuals with regression | Total range: −20.2 kg (−15.3%), interquartile range: −30.3 kg (−51.6%) | Total range: −274.6 kg (−75.3%), interquartile range: −7.9 kg (−15.4%). |
Crop | Annual Biomass per Hectare (kg ha−1) * | Biomass per Tree (kg árbol−1) * | Reference |
---|---|---|---|
Citrus trees (mechanical pruning) | 1360 | 2.3 | [11] |
Citrus trees (post-mechanical manual pruning) | 2316 | 4.8 | |
Citrus trees (traditional pruning) | 3516 | 5.9 | |
Almond tree | 1340 ** | 12.6–3.5 | [5] |
Citrus trees (orange Valencia Late) | 4700 | 9.4 | [11] |
Citrus trees (orange Naveline) | 2970 | 5.4 | |
Citrus trees (orange N. Washington) | 2400 | 4.1 | |
Citrus trees (mandarin Clementine) | 3490 | 5.1 | |
Citrus trees (mandarin Hybrid) | 4050 | 5.1 | |
Citrus trees (mandarin Satsuma) | 3330 | 4.9 | |
Ciruelo (plum trees) | 2000 ± 800 | 2.34 ± 0.97 | [2] |
Parameter | Branches | Leaves | Branches with Leaves | ANOVA | |||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | ||
HHV (MJ kg−1) | 19.7 | 0.1 | 20.1 | 0.1 | 19.7 | 0.1 | F = 10.11, d.f.= 2, P = 0.012 |
Moisture content (%) | 69.7 | 1.2 | 63.3 | 0.2 | 73.6 | 0.6 | F = 121.6, d.f.= 2, P = 0.000001 |
Ash content (%) | 3.4 | 0.1 | 6.9 | 0.5 | 6.3 | 0.2 | F = 1148, d.f.= 2, P = 0.000000017 |
Volatile matter (%) | 88.1 | 0.6 | 81.7 | 0.7 | 79.9 | 0.5 | F = 122.1, d.f.= 2, P = 0.0000138 |
Fixed carbon (%) | 8.4 | 0.4 | 10.8 | 0.3 | 12.4 | 0.3 | F = 35.14, d.f.= 2, P = 0.000487 |
C (%) | 46.5 | 2.1 | 45.7 | 1.6 | 47.1 | 0.1 | NA |
N (%) | 0.5 | 0.1 | 2.6 | 0.3 | 2.2 | 0.1 | NA |
S (%) | <0.01 | NA | 0.16 | 0.01 | 0.13 | 0.01 | NA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tauro, R.; Velázquez-Martí, B.; Manrique, S.; Ricker, M.; Martínez-Bravo, R.; Ruiz-García, V.M.; Ramos-Vargas, S.; Masera, O.; Soria-González, J.A.; Armendáriz-Arnez, C. Potential Use of Pruning Residues from Avocado Trees as Energy Input in Rural Communities. Energies 2022, 15, 1715. https://doi.org/10.3390/en15051715
Tauro R, Velázquez-Martí B, Manrique S, Ricker M, Martínez-Bravo R, Ruiz-García VM, Ramos-Vargas S, Masera O, Soria-González JA, Armendáriz-Arnez C. Potential Use of Pruning Residues from Avocado Trees as Energy Input in Rural Communities. Energies. 2022; 15(5):1715. https://doi.org/10.3390/en15051715
Chicago/Turabian StyleTauro, Raúl, Borja Velázquez-Martí, Silvina Manrique, Martin Ricker, René Martínez-Bravo, Víctor M. Ruiz-García, Saraí Ramos-Vargas, Omar Masera, José A. Soria-González, and Cynthia Armendáriz-Arnez. 2022. "Potential Use of Pruning Residues from Avocado Trees as Energy Input in Rural Communities" Energies 15, no. 5: 1715. https://doi.org/10.3390/en15051715
APA StyleTauro, R., Velázquez-Martí, B., Manrique, S., Ricker, M., Martínez-Bravo, R., Ruiz-García, V. M., Ramos-Vargas, S., Masera, O., Soria-González, J. A., & Armendáriz-Arnez, C. (2022). Potential Use of Pruning Residues from Avocado Trees as Energy Input in Rural Communities. Energies, 15(5), 1715. https://doi.org/10.3390/en15051715