Design and Analysis of a High Torque Density Hybrid Permanent Magnet Excited Vernier Machine
Abstract
:1. Introduction
2. Topology and Operation Principle
2.1. Topology
2.2. Operation Principle
3. Machine Design
4. Performance Evaluation
4.1. Open-Circuit Field Distributions
4.2. Flux Linkage, Back-EMF and Inductance
4.3. Cogging Torque and Electromagnetic Torque
5. Experimental Verification
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, X.; Xue, Z.; Yan, X.; Zhang, L.; Ma, W.; Hua, W. Low-complexity multivector-based model predictive torque control for PMSM with voltage preselection. IEEE Trans. Power Electron. 2021, 36, 11726–11738. [Google Scholar] [CrossRef]
- Jiang, T.; Zhao, W.; Xu, L.; Ji, J. A novel parallel hybrid excitation field modulated machine with efficient utilization of multiworking harmonics. IEEE Trans. Ind. Electron. 2022, 69, 1177–1188. [Google Scholar] [CrossRef]
- Mao, Y.; Niu, S.; Wang, Q. Design and optimization of a slot-PM-assisted doubly-salient machine based on saturation assuaging. Chin. J. Electr. Eng. 2021, 7, 65–72. [Google Scholar] [CrossRef]
- Wang, B.; Wang, J.; Griffo, A.; Sen, B. A general modeling technique for a triple redundant 3×3-phase PMA SynRM. IEEE Trans. Ind. Electron. 2018, 65, 9068–9078. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Ching, T.W. Power factor analysis of dual-stator permanent magnet vernier motor with consideration on turn-number assignment of inner and outer stator windings. IEEE Trans. Magn. 2021, 57, 8200405. [Google Scholar] [CrossRef]
- Zhu, X.; Ji, J.; Xu, L.; Kang, M. Design and analysis of dual-stator PM vernier linear machine with PMs surface-mounted on the mover. IEEE Trans. Appl. Supercond. 2018, 28, 5201605. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, X.; Zhao, X.; Niu, S.; Fu, W. A Novel slot-pm assisted complementary-rotor doubly-salient machine with enhanced torque performance. IEEE Trans. Ind. Electron. 2021. [Google Scholar] [CrossRef]
- Zhao, X.; Niu, S.; Fu, W. Design of a novel parallel-hybrid-excited dual-PM machine based on armature harmonics diversity for electric vehicle propulsion. IEEE Trans. Ind. Electron 2019, 66, 4209–4219. [Google Scholar] [CrossRef]
- Xu, L.; Liu, G.H.; Zhao, W.X.; Ji, J.H.; Zhou, H.W.; Zhao, W.X.; Jiang, T.T. Quantitative comparison of integral and fractional slot permanent magnet vernier motors. IEEE Trans. Energy Convers. 2015, 30, 1483–1495. [Google Scholar] [CrossRef]
- Sheng, T.T.; Niu, S.X. Design of doubly complementary stator-PM machine with high magnet utilization factor for low cost applications. IEEE Trans. Energy Convers. 2018, 33, 567–575. [Google Scholar] [CrossRef]
- Zhao, X.; Niu, S. A new slot-PM vernier reluctance machine with enhanced zero-sequence current excitation for electric vehicle propulsion. IEEE Trans. Ind. Electron. 2020, 67, 3528–3539. [Google Scholar] [CrossRef]
- Xu, L.; Zhao, W.; Li, R.; Niu, S. Analysis of rotor losses in permanent magnet vernier machines. IEEE Trans. Ind. Electron. 2022, 69, 1224–1234. [Google Scholar] [CrossRef]
- Du, K.; Xu, L.; Zhao, W.; Liu, G. Analysis and design of a fault-tolerant permanent magnet vernier machine with improved power factor. IEEE Trans. Ind. Electron. 2022, 69, 4353–4363. [Google Scholar] [CrossRef]
- Xu, L.; Wu, W.; Zhao, W. Airgap magnetic field harmonic synergetic optimization approach for power factor improvement of PM vernier machines. IEEE Trans. Ind. Electron. 2021. [Google Scholar] [CrossRef]
- Xu, L.; Liu, G.H.; Zhao, W.X.; Ji, J.H.; Fan, X. High-Performance fault tolerant halbach permanent magnet vernier machines for safety-critical applications. IEEE Trans. Magn. 2016, 52, 8104704. [Google Scholar] [CrossRef]
- Jiang, S.; Liu, G.; Zhao, W.; Xu, L.; Chen, Q. Modeling and analysis of spoke-type permanent magnet vernier machine based on equivalent magnetic network method. Chin. J. Electr. Eng. 2018, 4, 96–103. [Google Scholar]
- Gao, Y.; Qu, R.; Li, D.; Chen, F. Force ripple minimization of a linear vernier permanent magnet machine for direct-drive servo applications. IEEE Trans. Magn. 2017, 53, 7001905. [Google Scholar] [CrossRef]
- Xu, L.; Liu, G.; Zhao, W.; Yang, X.; Cheng, R. Hybrid stator design of fault-tolerant permanent-magnet vernier machines for direct-drive applications. IEEE Trans. Ind. Electron. 2017, 64, 179–190. [Google Scholar] [CrossRef]
- Li, J.G.; Chau, K.T.; Jiang, J.Z.; Liu, C.H.; Li, W.L. A new permanent-magnet vernier machine for wind power generation. IEEE Trans. Magn. 2010, 46, 1475–1478. [Google Scholar] [CrossRef]
- Ishizaki, A.; Tanaka, T.; Takasaki, K.; Nishikata, S. Theory and optimum design of PM vernier machine. In Proceedings of the 1995 Seventh International Conference on Electrical Machines and Drives, Durham, UK, 11–13 September 1995; pp. 208–212. [Google Scholar]
- Park, J.-H.; Lukman, G.F.; Kang, D.-H.; Ahn, J.-W. Performance characteristics of a dual-stator, spoke-type permanent magnet vernier machine with support bar. Energies 2021, 14, 1068. [Google Scholar] [CrossRef]
- Jia, C.; Xu, L.; Ji, J.; Zhao, W. Comparative study of partitioned stator flux-modulation motors with different permanent magnet arrays. Int. J. Appl. Electromagn. Mech. 2021, 11, 387–405. [Google Scholar] [CrossRef]
- Li, D.W.; Qu, R.H.; Lipo, T.A. High power factor vernier permanent magnet machines. IEEE Trans. Ind. Appl. 2014, 50, 3664–3674. [Google Scholar] [CrossRef]
- Xu, L.; Zhao, W.; Liu, G.; Song, C. Design optimization of a spoke-type permanent-magnet vernier machine for torque density and power factor improvement. IEEE Trans. Veh. Technol. 2019, 68, 3446–3456. [Google Scholar] [CrossRef]
- Wang, B.; Hu, J.; Hua, W.; Wang, Z. Fault operation analysis of a triple-redundant three-phase PMA-SynRM for EV application. IEEE Trans. Transp. Electrif. 2021, 7, 183–192. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Yu, S. Design and analysis of a novel transverse-flux tubular linear switched reluctance machine for minimizing force ripple. IEEE Trans. Transp. Electrif. 2021, 7, 741–753. [Google Scholar] [CrossRef]
- Xu, L.; Liu, G.; Zhao, W.; Ji, J.; Zhou, H.; Jiang, T. Design and analysis of a new linear wound-field flux reversal machine based on magnetic gear effect. IEEE Trans. Magn. 2015, 51, 8205004. [Google Scholar] [CrossRef]
- Jiang, T.; Zhao, W.; Xu, L.; Wang, H. Investigation into multitoothed distribution design for magnetless doubly salient machine. IEEE Trans. Transp. Electrif. 2021, 7, 2787–2797. [Google Scholar] [CrossRef]
- Chung, S.; Kim, J.; Chun, Y.; Woo, B.; Hong, D. Fractional slot concentrated winding PMSM with consequent magnet. IEEE Trans. Energy Convers. 2015, 3, 103–109. [Google Scholar] [CrossRef]
- Dorrell, D.G.; Knight, A.M.; Evans, L.; Popescu, M. Analysis and design techniques applied to hybrid vehicle drives machines—assessment of alternative IPM and induction motor topologies. IEEE Trans. Ind. Electron. 2012, 59, 3690–3699. [Google Scholar] [CrossRef]
- Boldea, I.; Tutelea, L.N.; Parsa, L.; Dorrel, D.G. Automotive electric propulsion systems with reduced or no permanent magnets: An overview. IEEE Trans. Ind. Electron. 2014, 61, 5696–5711. [Google Scholar] [CrossRef]
- Chiba, A.; Kiyota, K.; Hoshi, N.; Takemoto, M.; Ogasawara, S. Development of a rare-earth-free SR motor with high torque density for hybrid vehicles. IEEE Trans. Energy Convers. 2015, 30, 175–182. [Google Scholar] [CrossRef]
- Chen, Q.; Liu, G.H.; Zhao, W.X.; Shao, M.M.; Liu, Z.M. Design and analysis of the new high reliability motors with hybrid permanent magnet materials. IEEE Trans. Magn. 2015, 50, 8207010. [Google Scholar] [CrossRef]
- Rehman, A.; Kim, B. Characteristics analysis of consequent pole ferrite magnet vernier machine using novel equivalent magnetic circuit. IEEE J. Emerg. Sel. Top. Power Electron. 2021. [Google Scholar] [CrossRef]
- Xu, L.; Zhao, W.; Liu, G.; Ji, J.; Niu, S. A novel dual-permanent-magnet-excited machine with non-uniformly distributed permanent-magnets and flux modulation poles on the stator. IEEE Trans. Veh. Technol. 2020, 69, 7104–7115. [Google Scholar] [CrossRef]
- Gao, Y.; Doppelbauer, M.; Qu, R.; Li, D.; Ding, H. Synthesis of a flux modulation machine with permanent magnets on both stator and rotor. IEEE Trans. Ind. Appl. 2021, 57, 294–305. [Google Scholar] [CrossRef]
- Gao, Y.; Doppelbauer, M.; Ou, J.; Qu, R. Design of a Double-Side Flux Modulation Permanent Magnet Machine for Servo Application. IEEE J. Emerg. Sel. Top. Power Electron. 2021. [Google Scholar] [CrossRef]
- Shi, Y.; Jian, L.; Ching, T.W. Quantitative identification of airgap flux density harmonics contributing to back-emf in dual-permanent-magnet-excited machine. IEEE Trans. Magn. 2021. [Google Scholar] [CrossRef]
- Li, Y.; Yang, H.; Lin, H.; Liu, W.; Zhao, X. Torque generation mechanism and performance evaluation of a dual-sided pm machine with stator U-shaped magnets. IEEE Trans. Ind. Appl. 2021, 58, 250–260. [Google Scholar] [CrossRef]
- Lin, Q.; Niu, S.; Cai, F.; Fu, W.; Shang, L. Design and optimization of a novel dual-PM machine for electric vehicle applications. IEEE Trans. Veh. Technol. 2020, 69, 14391–14400. [Google Scholar] [CrossRef]
- Shi, Y.; Jian, L. A novel dual-permanent-magnet-excited machine with flux strengthening effect for low-speed large-torque applications. Energies 2018, 11, 153. [Google Scholar] [CrossRef] [Green Version]
- Hendershot, J.R., Jr.; Miller, T.J.E. Design of Brushless Permanent Magnet Motors, 1st ed.; Oxford University Press: New York, NY, USA, 1995. [Google Scholar]
Item | Parameter |
---|---|
Phase, Nph | 3 |
Number of slots, S | 12 |
Number of rotor pole pairs, Z | 28 |
Number of armature winding pole pairs, p | 8 |
Outside stator diameter, Dso (mm) | 145 |
Outside rotor diameter, Dro (mm) | 88 |
Air-gap length, δ (mm) | 0.5 |
Effective axial length, lstk (mm) | 60 |
Item | Proposed | SPM |
---|---|---|
Outer diameter (mm) | 145 | |
Stack length (mm) | 60 | |
Electric load (A/cm) | 171.8 | |
Torque density (kNm/m3) | 15.7 | 12.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, M.; Xu, L.; Ji, J.; Zhu, X. Design and Analysis of a High Torque Density Hybrid Permanent Magnet Excited Vernier Machine. Energies 2022, 15, 1723. https://doi.org/10.3390/en15051723
Kang M, Xu L, Ji J, Zhu X. Design and Analysis of a High Torque Density Hybrid Permanent Magnet Excited Vernier Machine. Energies. 2022; 15(5):1723. https://doi.org/10.3390/en15051723
Chicago/Turabian StyleKang, Mei, Liang Xu, Jinghua Ji, and Xuhui Zhu. 2022. "Design and Analysis of a High Torque Density Hybrid Permanent Magnet Excited Vernier Machine" Energies 15, no. 5: 1723. https://doi.org/10.3390/en15051723
APA StyleKang, M., Xu, L., Ji, J., & Zhu, X. (2022). Design and Analysis of a High Torque Density Hybrid Permanent Magnet Excited Vernier Machine. Energies, 15(5), 1723. https://doi.org/10.3390/en15051723