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Abstract: This paper presents a sliding mode fuzzy control approach for industrial robots at their
static and near static speed (linear velocities less than 5 cm/s). The extended Kalman filter with
its covariance resetting is used to translate the coordinates from Cartesian to joint angle space.
The translated joint angles are then used as a reference signal to control the industrial robot dynamics
using a sliding mode fuzzy controller. The stability and robustness of the proposed controller
is proven using an appropriate Lyapunov function in the presence of parameter uncertainty and
unknown dynamic friction. The proposed controller is simulated on a 6-DOF industrial robot, namely
the Universal Robot-UR5, considering the maximum allowable joint torques. It is observed that
the proposed controller can successfully control UR5 under uncertainties in terms of unknown
dynamic friction and parameter uncertainties. The tracking performance of the proposed controller
is compared with that of the sliding mode control approach. The simulation results demonstrate
superior performance of the proposed approach over the sliding mode control method in the presence
of uncertainties.

Keywords: industrial robot control; sliding mode fuzzy control; inverse kinematic; extended Kalman filter

1. Introduction

Industry 4.0 is the fourth generation of industry. It has accommodated advanced
machine learning approaches as well as artificial intelligence into the core of manufacturing
to improve production [1,2]. This has resulted in more intelligent factory floors that can
respond to customer needs through increasingly customizable products [3,4]. Robots
serve as an indispensable part of industrial environments, increasing productivity and
reducing design-to-market time through their ability to efficiently improve production
in highly repetitive tasks [5]. Precision of the factory elements is a primary issue that must
be improved to increase manufacturing performance [6,7]. Industrial tasks on a factory
floor, such as object handling [8] and manipulation [9], require ahigh level of precision
while maintaining safe operation. Industrial robots are serial architectures, with several
joints making up their construction. Their architecture results in high coupling between
different link dynamics. Modelling uncertainties include simplifications, dead zones,
backlashes [5], and variable load for industrial robots. In particular, operating at or near
static conditions can cause dynamic control problems due to changes in motion state.
We believe that a sliding mode control approach is a robust control method that can be
used to guarantee the tracking behavior of industrial robots in finite time in the presence of
matched uncertainties [10].

The sliding mode control approach is a nonlinear and robust control approach. In this
controller, the desired behavior of the robot is defined in terms of a sliding surface [11,12].
The Lyapunov stability theorem is used to design the control signal to guarantee reaching
the sliding surface [13–16]. When the states of the robot reach the sliding surface, the high
frequency switching law maintains sliding mode for a stable reference signal [13,14].
The most prominent features of sliding mode control for industrial robots are robustness to
unmodelled dynamic and unknown variable loads [17].
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To track a desired Cartesian space coordinate, an inverse kinematic solver is required
to translate industrial robot motion in a Cartesian space to its desired joint space motion.
There exist different approaches to solve the inverse kinematic of industrial robots. Geo-
metric approaches are used to find the inverse kinematic of the robot in a closed form [18].
Geometrical approaches to solve inverse kinematic have already been used for planar
hyper-redundant manipulators [18,19], the 7R 6-DOF Robot-Manipulator [20], and hy-
brid parallel-serial five-axis machine tools [21]. Neural networks [22–24], neuro-fuzzy
approaches [25], and deep neural networks [26,27] can be put in the second category of
inverse kinematic solvers. The third category is the one that uses estimation algorithms to
solve the inverse kinematic. Although the kinematic model of industrial robots is highly
nonlinear, it can be linearized using Taylor expansions. Estimation algorithms such as
Levenberg–Marquardt [28], least squares [29,30], recursive least square, and extended
Kalman filter [30,31] may also be utilized to find the corresponding joint angles of robots.
The second and third categories of inverse kinematic solvers can be identified as machine
learning approaches. Among the listed estimation algorithms, the extended Kalman filter
is used in [32,33] for the accurate inverse kinematic and calibration of industrial robots.
This method has previously outperformed least squares for solving the inverse kinematic
problem of the Kawasaki RS10N industrial robot and a 4-DOF laboratory setup in terms of
accuracy as well as number of iterations [32,33].

Fuzzy systems are effective approaches to deal with uncertainty in control systems.
They can effectively approximate any smooth nonlinear function, provided enough rules
are used in their structure. Fuzzy systems have been used to enhance the performance of
classical control approaches such as the model reference control method and sliding mode
controllers [34]. The combination of fuzzy systems and sliding mode approaches results
in a robust adaptive control approach, which benefits from the rigorous mathematical
backbone of sliding mode control theory and the adaptation capabilities of fuzzy systems.
Such approaches have been used to control induction servomotors, anti-lock braking
systems [35,36], and active suspension systems for vehicles [37,38].

In this paper, a sliding mode fuzzy control (SMFC) approach is used to control an in-
dustrial robot in its low-speed motion (linear velocity less than 5 cm/s). The reference
signal is given in terms of Cartesian position and orientation, which is then translated to
the joint space using the inverse kinematic approach. The inverse kinematic approach
used in this paper uses an extended Kalman filter for joint angle estimation. This approach
has been shown to find the desired robot joint angles in a smaller number of iterations
compared to the least square method [32]. In this paper, the sample time considered
for the inverse kinematic solver and the controller are both equal to 1 msec. Different
from the sliding mode controller, which was designed for UR5 in [39], the control signal
designed in this paper does not include angular acceleration, which makes it easier to
implement. The desired behavior of the industrial robot is defined in terms of a sliding
mode, and the parameter update rules for the fuzzy system in the SMFC are derived from
Lyapunov stability theorem. The robustness of the controller in the presence of unknown
friction torques and parameter uncertainty is analyzed using the Lyapunov function. Simu-
lations are performed under MATLAB/Simulink® software. The Cartesian space reference
signal is given with slow changes to ensure results are tracked at near static speeds (up to 5
cm/s). The results demonstrate the implementability, showing the satisfactory performance
of the overall controller in the presence of unknown friction and parameter uncertainties
in the robot dynamics. Comparison is made to a previous sliding mode control approach,
used to control UR5 [39]. The comparison results show a smaller tracking error value as
compared to the sliding mode control approach used in [39] to control UR5. In summary,
the contributions of the proposed approach over approaches in the literature are

• Use of an extended Kalman filter as an inverse kinematic solver along with SMFC to
control industrial robots;

• Elimination of the necessity to include a second order time derivative of joint angles
in the control law;
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• Superior performance over the sliding mode controller for UR5 as presented in [39].

This rest of this paper is organized as follows. The dynamic model of the industrial
robot and its kinematics are given in Section 2. The overall control architecture is proposed
in Section 3, where the overall control architecture, adaptation laws, and the stability analy-
sis of the system are discussed. The simulation results are given in Section 4, and concluding
remarks are presented in Section 5.

2. Industrial Robot Dynamic and Kinematics
2.1. Industrial Robot Dyanmics

The general dynamic of a rigid link 6-DOF industrial robot can be formulated in terms of
ordinary differential equations composed of interacting forces on the robot, as follows [40,41]:

M(q)
..
q + C

(
q,

.
q
) .
q + G(q) + F

( .
q
)
= τ, (1)

where q ∈ R6×1 is the robot joint angle vector, M(q) ∈ R6×6 represents the inertial forces
in the industrial robot, C

(
q,

.
q
)
∈ R6×6 represents the Coriolis and centrifugal forces,

G(q) ∈ R6×1 presents the robot gravitational force terms, F
( .
q
)
∈ R6×1 represents the dy-

namic friction terms of the robot, and τ ∈ R6×1 presents the input torque vector to control
the robot. The matrix M(q) satisfies the following equation for the kinetic energy of
the robot.

K =
1
2

.
qT M(q)

.
q (2)

The elements of the vector G(q), the gravitational forces of the robot, are partial
derivatives of potential energy with respect to the corresponding robot joint angles.

gk =
∂P
∂qk

, k = 1, . . . , 6 (3)

where P is the potential energy of the robot and gk represents the elements of the G(q)
vector such that G(q) =

[
g1 . . . g6

]T . Furthermore, the elements of the matrix C
(
q,

.
q
)
,

the Coriolis and centrifugal force matrix, satisfy the following equation:

ckj =
n

∑
i=1

cijk(q)
.
qi (4)

where cijk(q) represents the Christoffel symbols [41]:

cijk(q) =
1
2

{
∂dkj

∂qi
+

∂dki
∂qj
−

∂dij

∂qk

}
(5)

Finally, F
( .
q
)

represents the dynamic friction terms of the robot [42].

2.2. Inverse Kinematic Calculation for Industrial Robots

The forward kinematic is a function that finds the Cartesian coordinates of robot within
3D space as a function of its joint angles. The inverse kinematic is the reverse procedure to
assign appropriate joint angles to industrial robots to maintain the desired position and
orientation. There exist different solutions for the inverse kinematic for industrial robots
at a given pose/alignment of the end-effector and many solutions to determine optimal
results. Among them, an algorithm was recently investigated in [32] that uses an extended
Kalman filter approach to estimate the joint angles of industrial robot. This approach
contributes to a higher degree of precision as compared to least squares approaches to
estimate the joint angles of industrial robots. Because of the high precision of this algorithm,
we selected it for use in this paper. The link transformation matrix from the link i−1 to
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the link i using the Denavit–Hartenberg (D–H) parameters of the robot depends on joint
angles, as follows [43]:

0
1T =


cosθ1 0 sinθ1 0
sinθ1 0 −cosθ1 0

0 0 0 0.08916
0 0 0 1

, 1
2T =


cosθ2 −sinθ2 0 −0.425cosθ2
sinθ2 cosθ2 0 −0.425sinθ2

0 0 0 0
0 0 0 1


2
3T =


cosθ3 −sinθ3 0 −0.392cosθ3
sinθ3 cosθ3 0 −0.392sinθ3

0 0 0 0
0 0 0 1

, 3
4T =


cosθ4 0 sinθ4 0
sinθ4 0 −cosθ4 0

0 1 0 0.1092
0 0 0 1


4
5T =


cosθ5 0 −sinθ5 0
sinθ5 0 cosθ5 0

0 −1 0 0.0947
0 0 0 1

, 5
6T =


cosθ6 −sinθ6 0 0
sinθ6 cosθ6 0 0

0 0 1 0.0823
0 0 0 1



(6)

The industrial robot end effector position and orientation in the fixed world coordinate
attached to the base of the industrial robot is calculated as the multiplication of all link
transformation matrices.

Te =
0
6T = 0

1T1
2T2

3T3
4T4

5T5
6T (7)

The overall end-effector position and orientation error can be approximated by linear
superpositions of the joint angle deviations weighted by their sensitivity function.

∆Te =
∂Te

∂θ1
∆θ1 + . . . +

∂Te

∂θ6
∆θ6 + H.O.T. (8)

The parameter ∂Te
∂θi

is the sensitivity function of the end-effector transformation matrix
with respect to i-th joint angle of the robot and can be calculated analytically.

Remark 1. It is noted that in the industrial robot investigated in this paper, the only changeable
D–H parameter is the joint angles of the robot θi’s. However, in a more general case where other D–H
parameters of the robot are changeable, the matrix ∆Te is approximated as a linear superposition of
all deviations in all D–H parameters, weighted by their corresponding sensitivity matrix.

According to [32], the extended Kalman filter estimation method results in a more pre-
cise positioning of the robot than the least squares solution. The EKF estimation iteratively
estimates the joint angles of the robot as follows [36]:

θk+1 = θk + Kk
[

Td − hk
(

θk
)]

Pk = Pk Hk
(

R + HkT Pk Hk
)−1

Pk+1 = Pk − Pk HkT Pk + Qk (9)

where θk =
[

θk
1 . . . θk

6
]T is the vector of the unknown joint angles of the robot at the k-

th iteration, Pk ∈ R6×6 is the parameter covariance matrix at the k-th iteration, R ∈ R12 is
the measurement noise covariance matrix, and Qk ∈ R6×6 is the process noise covariance
matrix. Hk is defined as follows:

Hk =
[

∂h
∂θk

1
. . . ∂h

∂θk
6

]T
(10)

and the function h is a vector function of θk, defined as follows:

hk =
[

Tk
e11 . . . Tk

e14 . . . Tk
e31 . . . Tk

e34
]T (11)
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where Te is obtained from Equation (7). The function Td is the desired position and
orientation of the robot in a vector form, as follows:

Td =
[

Tde11 . . . Tde14 . . . Tde31 . . . Tde34
]T (12)

where Tde includes the desired position and orientation of the robot.

3. Control Architecture
3.1. Overall Control Structure

The overall control structure is denoted in Figure 1. The desired position of the robot
end effector is denoted by

[
xd yd zd

]T , and its desired orientation is represented by[
αd βd γd

]T . Using the inverse kinematic of the robot as explained in Section 2.2,

it is possible to find the desired joint angles of the robot
[

q1d . . . q6d
]T . In the next

stage, the sliding mode fuzzy controller is responsible for controlling the robot and pushing
the joint angles of the robot towards their desired value. Joint angles of the robot are
measured using the joint encoders on the shafts of the robot. The SMFC approach and its
stability analysis are explained in the next subsection. The proposed SMFC is responsible
uses measured joint angles and their desired values to generate the torque values to control
UR5. The Cartesian space coordinate of the robot is calculated using its forward kinematic
in Equation (6). The position and orientation error of the robot is calculated as the difference
between the desired coordinate of the robot and its real coordinate, as the output of its
forward kinematics.
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3.2. Sliding Mode Fuzzy Controller
3.2.1. Fuzzy System Structure

Two fuzzy systems are considered in the control structure of each joint. The j-th fuzzy
IF-THEN rule of the first controller to control the i-th joint is in the following form:

j− th rule: IF ei is A1ij and
.
ei is B1ij Then τf1ij is ψijsgn(si) (13)

where τf1i is an additive part of the control signal for the i-th joint. The mathematical
formulation of this fuzzy system output is as follows:

τf1ij =
M

∑
j=1

hijψijsgn(si) (14)

where ψij represents the consequent part parameters of the fuzzy system, and hij represents
the weights associated with the j-th fuzzy rule, which can be calculated as follows:

hij =
µij(e)µij

( .
e
)

∑M
j=1 µij(e)µij

( .
e
) , j = 1, . . . , M (15)

and µij(.) represents the membership functions considered for the inputs of the fuzzy system e
and

.
e. The fuzzy IF-THEN rules of the second fuzzy system are in the following form:

j− th rule: IF ei is A2ij and
.
ei is B2ij Then τf2ij is βijsi (16)

The mathematical formulation of the fuzzy system is as follows:

τf2i =
M

∑
j=1

wijβijsi (17)

where βij represents the consequent part parameters of the fuzzy system, and wij represents
the weights associated with the jth fuzzy rule, which can be calculated as follows:

wij =
πij(e)πij

( .
e
)

∑M
j=1 πij(e)πij

( .
e
) , j = 1, . . . , M (18)

and πij(.) represents the membership functions considered for the inputs of the fuzzy system.

3.2.2. Sliding Mode Fuzzy Controller

The joint space controller of the robot is a robust sliding mode fuzzy controller. The gen-
eral dynamic model of industrial robots is as in (1) [44,45]. SMFC is a robust control ap-
proach that can control a wide range of robots in the presence of unmodelled dynamic
and variable loads for the robot [46]. The tracking error for the industrial robot is defined
as follows:

e = qd − q (19)

where qd ∈ R6 is the desired joint angles of the robot and e ∈ R6 is the tracking error for
the industrial robot. The sliding surface defines the desired trajectory of the robot and
needs to be stable. In the case of the 6-DOF industrial robot, it is defined in a vector form.

s =
.
e + λe, λ ≥ 0 (20)

where s ∈ R6 and λ define the decay ratio for the tracking error in the sliding mode.
The time derivative of the sliding surface is obtained as follows:

.
s =

..
e + λ

.
e =

..
qd −

..
q + λ

( .
qd −

.
q
)

(21)
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Applying the robot dynamic Equation (1) to (21), the following equation is obtained.

.
s =

..
qd + M−1(C(q,

.
q
) .
q + G(q) + F

( .
q
)
− τ

)
+ λ

( .
qd −

.
q
)

(22)

To analyze the stability of the overall control system, the following Lyapunov function
is considered.

V =
1
2

sT Ms + ∑
i

1
2γi

θ̃T
i θ̃i + ∑

i

1
2ρi

ψ̃T
i ψ̃i (23)

where the parameters θ̃i and ψ̃i are defined as follows:

θ̃i = θi − θ∗i

ψ̃i = ψi − ψ∗i (24)

and the parameters γi and ρi are positive parameters.

.
V =

1
2

sT
.

M(q)s + sT M(q)
.
s + ∑

i

1
2γi

θ̃T
i

.
θi + ∑

i

1
2ρi

ψ̃T
i

.
ψi (25)

The input control torque is defined as follows:

τ = Mn(q)
..
qd + Cn

(
q,

.
q
) .
q + Gn(q) +

[
τf11 . . . τf16

]T
+
[

τf21 . . . τf26
]T (26)

where Mn(q), Cn
(
q,

.
q
)
, and Gn(q) are the nominal and known parts of M(q), C

(
q,

.
q
)
,

and G(q), which satisfy
∆M(q) = M(q)−Mn(q),

∆C
(
q,

.
q
)
= C

(
q,

.
q
)
− Cn

(
q,

.
q
)
,

∆G(q) = G(q)− Gn(q),

(27)

and ∆M(q), ∆C
(
q,

.
q
)
, and ∆G(q) are the unknown uncertainties in the dynamic model of

the industrial robot. Considering the control signals as in Equations (26), (14), and (17),
we have the following equation for industrial robot control signal.

τ = Mn
..
qd + Cn

(
q,

.
q
) .
q + Gn(q)

+
[

hT
1 ψ1sgn(s1) . . . hT

6 ψ6sgn(s6)
]T

+
[

wT
1 θ1s1 . . . wT

6 θ6s6
]T (28)

Remark 2. To implement the control signal in Equation (28), the desired joint angles of the system
qd need to be a sufficiently smooth function of time so that

..
qd exists.

Considering the dynamic equation of industrial robot in Equation (1), the time deriva-
tive of the Lyapunov function can be rewritten as follows:

.
V =

1
2

sT
.

M(q)s + sT M(q)
( ..

qd + M−1(q)
(
C
(
q,

.
q
) .
q + G(q)− τ

)
+ λ

( .
qd −

.
q
))

+ ∑
i

1
2γi

θ̃T
i

.
θi + ∑

i

1
2ρi

ψ̃T
i

.
ψi (29)

By inserting the torque control signal of Equation (28) to the time derivative equation
of the Lyapunov function in Equation (29), the following equation is obtained.

.
V =

1
2

sT
.

M(q)s + sT(∆M
..
qd + ∆C

(
q,

.
q
)
+ ∆G(q) + F

( .
q
))
− sTτr−
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sT[ hT
1 ψ1sgn(s1) . . . hT

6 ψ6sgn(s6)
]T−

sT[ wT
1 θ1s1 . . . wT

6 θ6s6
]T

+ ∑
i

1
2γi

θ̃T
i

.
θi + ∑

i

1
2ρi

ψ̃T
i

.
ψi (30)

By adding and subtracting the term ∑i hT
i θ∗i s2

i + ∑i hT
i ψ∗i |si| to the time derivative of

the Lyapunov function in Equation (30), the following equation is obtained.

.
V =

1
2

sT
.

M(q)s + sT(∆M
..
qd + ∆C

(
q,

.
q
)
+ ∆G(q) + F

( .
q
))

−sTτr − sT[ hT
1 ψ̃1sgn(s1) . . . hT

6 ψ̃6sgn(s6)
]T

− sT
[

wT
1 θ̃1s1 . . . wT

6 θ6s6

]T
+ ∑

i

1
γi

θ̃T
i

.
θi

+ ∑
i

1
ρi

ψ̃T
i

.
ψi −∑

i
hT

i θ∗i s2
i −∑

i
hT

i ψ∗i |si| (31)

The adaptation laws for the parameters ψi and θi are taken as follows:

.
ψi = ρihi|si|, i = 1, . . . , 6 (32)

.
θi = γiwis2

i , i = 1, . . . , 6 (33)

This results in the following equation for the time derivative of the Lyapunov function V.

.
V = 1

2 sT
.

M(q)s +sT(∆M
..
qd + ∆C

(
q,

.
q
)
+ ∆G(q) + F

( .
q
))
−∑

i
hT

i ψ∗i s2
i

−∑
i

hT
i θ∗i |si|

(34)

Using the upper bound for uncertainty as
∣∣∣∣∆M

..
qd + ∆C

(
q,

.
q
) .
q + ∆G(q) + F

( .
q
)∣∣∣∣≤ N ,

and considering the fact that ||s||≤ ∑i|si| , the time derivative of the Lyapunov function
in Equation (34) can be further manipulated as

.
V ≤ 1

2
sT

.
M(q)s + N∑

i
|si| −∑

i
hT

i ψ∗i s2
i −∑

i
hT

i θ∗i |si| (35)

Considering the following nonequality for the norm of time derivative of M(q):∣∣∣∣∣∣ .
M(q)

∣∣∣∣∣∣≤ λmax

( .
M(q)

)
(36)

the time derivative of the Lyapunov function is obtained as follows:

.
V =

1
2

λmax

( .
M(q)

)
||s||2 + N∑

i
|si| −∑

i
hT

i ψ∗i s2
i −∑

i
hT

i θ∗i |si| (37)

Let min
(
ψ∗i
)

and min(hi) be the minimum values of the elements of vectors ψ∗i and hi,
respectively. Provided that

λmax

( .
M(q)

)
2min(hi)

≤ min(ψ∗i ) (38)

we have the following equation for
.

V:

.
V ≤ N∑

i
|si| −∑

i
hT

i ψ∗i |si| (39)
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It is further possible to consider the minimum element value of ψ∗i such that

η1

min(hi)
≤ min(ψ∗i ) (40)

This results in the following inequality for the time derivative of the error.

.
V ≤ N ∑

i
|si| −∑

i
η1|si| (41)

which further guarantees the finite time convergence of the sliding surfaces to zero if it is
further modified as .

V ≤ −∑
i

η|si| (42)

where the parameter η is chosen as η = η1−N. This finite time can be calculated as follows:

tmax ≤
1
η ∑

i
|si(0)| (43)

Remark 3. To avoid the drift in the parameters of the fuzzy system, it is necessary to use the δ-
modification rule for the adaptation laws for the parameters of the fuzzy system [47,48].

.
ψi = ρihi|si| − ρiδψi, i = 1, . . . , 6

.
θi = γiwis2

i − γiδθi, i = 1, . . . , 6 (44)

The δ-modification avoids too-high parameter values for the adaptable parameters of
ψi and θi by pushing these parameters towards zero. However, it is necessary to choose
a small value for δ to avoid disturbing the adaptation law.

4. Simulation Results

The proposed controller as demonstrated in Figure 1 is simulated on a UR5 robot
model. The model of UR5 and its parameter values are given in https://github.com/
kkufieta/force_estimate_ur5/ (accessed on 14 January 2022). The URLs of the file associated
with M(q), C

(
q,

.
q
) .
q, G(q), and T(q) under this repository are presented in Table 1.

Table 1. URLs of the github repository files containing M(q), C
(
q,

.
q
) .
q, G(q), and T(q) under https:

//github.com/kkufieta/force_estimate_ur5/ (accessed on 14 January 2022).

Parameter Value

M(q) JointSpaceControl_Model_C_ForceEstim/D_Matrix.m
C
(
q,

.
q
) .
q JointSpaceControl_Model_C_ForceEstim/C_Matrix.m

G(q) JointSpaceControl_Model_C_ForceEstim/G_Vector.m

T(q)
ur5_modeling_force_estimate/Derive_Dyn_Equations_

Model_C/get_rotation_matrices.m

The parameters of dynamic friction in this robot are obtained from [42]. The sliding
surface dynamics taken for the sliding mode controller are as follows:

s =
.
e + 50e (45)

As soon as the states of the robot converge to this sliding surface, the sliding mode
controller guarantees the exponential convergence of the error to zero. The sample time
considered for the sliding mode fuzzy controller is 1 msec, and the same sample time is
taken for the inverse kinematic solver of the robot. However, 200 epochs are required at

https://github.com/kkufieta/force_estimate_ur5/
https://github.com/kkufieta/force_estimate_ur5/
https://github.com/kkufieta/force_estimate_ur5/
https://github.com/kkufieta/force_estimate_ur5/
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each step for the inverse kinematic solver to find the desired joint angles. Simulations
are performed in the MATLAB/Simulink® environment. Other parameters taken for
the adaptation laws and the covariance matrix are listed in Table 2. These parameters are
the design parameters that were selected after trial and error.

Table 2. Values of adaptation parameters.

Parameter Value

ρ1, ρ2, ρ3, ρ4, ρ5, ρ6 0.1
γ1, γ2, γ3, γ4, γ5, γ6 0.1

δ 0.01
λ 50
P0 I6

The simulations are performed in the presence of unknown dynamic friction for
the robot. The reference signal is a ramp signal for the position in x and y dimensions and
zero for the z dimension and robot orientations.

Desired trajectory #1 =



xd = 0.37 + 0.05t
yd = 0.37− 0.05t
zd = 0
αd = 0
βd = 0
γd = 0

(46)

The SMFC is responsible for controlling the robot using the reference joint angles of
the robot (see Figure 1). While the maximum applicable torque for the first three joints of
UR5 is equal to 150 N.m., it is equal to 28 N.m. for the next three joints. These limitations
are due to the motors used to control UR5 by the manufacturer. A maximum of 10%
uncertainty is added to each element of M(q), C

(
q,

.
q
) .
q, and G(q) used in the controller

structure to test its robustness. The time response of the industrial robot in terms of real
joint angles versus time is presented in Figure 2. The parameters q1, . . . , q6 refer to the joint
angles #1–#6 of UR5. As can be seen from the figure, the controller is performing well,
and joint angle position errors are very small. The 3D orientation tracking of the UR5
end-effector is illustrated in Figure 3. As can be seen from the figure, the steady-state errors
of the industrial robot for α, β, and γ coordinates are small.

The position tracking of the UR5 is illustrated in Figure 4, which demonstrates a very
small tracking error in the UR5 end-effector position.
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To have a comparison with a state-of-the-art control algorithm for UR5, the proposed
approach is compared with sliding mode control approach, which was previously applied
to a UR5 in [39]. The trajectory given for the robot is the same as the one given in [39],
as follows:

Desired trajectory #2 =



xd = 0.37 + cos(1.26t)
yd = 0.37 + sin(1.26t)
zd = 0.05t
αd = 0.01
βd = −1
γd = −0.01

(47)

The same controller parameters as in Table 1 are used to track this trajectory. The same
maximum 10% uncertainty is added to the elements of M(q), C

(
q,

.
q
) .
q, and G(q) used

in the controller structure to test its robustness. To find the position error, the overall
position error is calculated as the average value of the normed error at each individual
sample, using the following equation.

||Ep|| =
1
N

N

∑
i=1
||ei

p||, (48)

where ei
p is the individual sample error for position, and N is the total number of the sam-

ples. The orientation error is calculated as follows.

||Eo|| =
1
N

N

∑
i=1
||ei

o − 〈1, 0〉|| (49)

where ei
o, the error for each individual sample, is calculated as ei

o = xi
do⊗ (xi

ro)
−1, and⊗ and

(.)−1 represent the quaternion product and quaternion conjugate, respectively. Moreover,
xi

do and xi
ro represent the desired quaternion and real quaternion orientation of the object.

Using the indexes as introduced in Equations (48) and (49), a comparison can be made be-
tween the proposed approach and the approach previously introduced in [39]. As presented
in Table 2, while ||Ep|| is equal to 8.255 × 10−5 m in the case of the proposed approach
in this paper, it is equal to 0.0068 m in the sliding mode control approach presented in [39].
This means that the proposed controller in this paper is capable of controlling the UR5 with
a considerably lower error value. Moreover, while ||Eo|| is equal to 2.086 × 10−4 rad in this
paper, it is equal to 0.0035 rad in the sliding mode control approach investigated in [39].
Hence orientational error is considerably lower for the proposed approach.

The trajectory tracking of the proposed controller in terms of joint angles is presented
in Figures 5 and 6. As can be seen from the figures, the initial conditions of UR5 selected
based on the desired trajectory and applying the control law of Equation (28) resulted
in the real trajectory for robot joint angles qs to be very close to the desired robot joint
angles qds. Moreover, the trajectory tracking performance of the proposed approach
in terms of position and orientation is presented in Figures 7 and 8, respectively. The result
shows that the desired joint angles are followed with high performance.
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Figure 9 demonstrates the trajectory tracking behavior of UR5 in the xy-plane. For a
better comparison between the real trajectory of the robot and its desired values, a zoomed-
in version of the graph is presented. This figure shows that the proposed controller is
capable of tracking the trajectory defined in Equation (47) with high performance in the pres-
ence of dynamic friction and parameter uncertainty. The numerical comparison between
the desired Cartesian coordinate and real coordinate of the robot is given in Table 3.
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Table 3. Tacking position and orientation errors in the case of the second trajectory.

Method ||Ep|| (m) ||Eo|| (rad)

PD controller [39] 0.0104 m 0.0049

SMC method [39] 0.0068 m 0.0035

The proposed
Approach 8.255 × 10−5 m 2.086 × 10−4

5. Conclusions

The prominent requirements of an advanced manufacturing environment for precision
control of industrial robots motivates the usage of advanced control techniques. Sliding
mode controllers have been proven, in particular, to be an ideal control approach to deal
with modeling uncertainties. To control an industrial robot in a Cartesian space, it is
necessary to translate 3D Cartesian coordinates to desired joint angles values. The EKF
inverse kinematic solver is a successful algorithm to deal with the inverse kinematic
problems employed in this paper. This inverse kinematic solver has been previously
compared, in [29], with the recursive least square method and demonstrated its superior



Energies 2022, 15, 1876 15 of 17

performance. Covariance resetting as a robust modification to the original version of EKF is
employed to avoid covariance bursting in its structure. The SMFC approach is responsible
for dynamic stabilization and tracking control of the industrial robot. The Lyapunov
stability theory is used to analyze the stability of the proposed control structure as well
as the adaptation laws for the fuzzy system parameters. Robustness of the controller
in the presence of dynamic friction, which inherently exists in the UR5 at low speeds, is
analyzed using the same Lyapunov function. The proposed controller is compared with
a previous controller investigated in [39] on a UR5 model. It is shown that the proposed
controller in this paper outperforms the controller designed in [39] in terms of positional and
orientation accuracies. During these simulations, the robustness of the proposed controller
against uncertainty in terms of dynamic friction and parameter uncertainties in the UR5
structure is observed. It is shown that the proposed controller is capable of controlling
the system with high performance in the presence of uncertainties in a robot model.

6. Future Works

In future, the proposed controller will be implemented on a real robot with an ad-
vanced metrology system (WFSI, photogrammetry, IMU, and position-fused sensor system)
to measure and control the real-time position of the robot. Comparison of performance to
further improved controllers, including ones that use non-quadratic Lyapunov functions,
will be considered.
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