Influence of Parking Sheds on Energy Efficiency of Road Refrigerated Transport
Abstract
:1. Introduction
- Is it possible to reduce energy consumption by parking a refrigerated vehicle under a shed (e.g., canopy, carport) within parking places in RSAs? What is the scale of savings that can be achieved by applying this solution?
- Where should the sheds be located along the national road network in Poland?
2. Literature Review
- regular checks on the insulation of refrigerated transport means in order to eliminate deteriorated units;
- temperature profile analysis in the refrigeration chamber;
- optimal location of loads inside the chamber, considering the width of gaps between pallets;
- external humidification of the vehicle, in order to reduce its thermal load, etc.
3. Materials and Methods
3.1. Research Methodology and Basic Assumptions
- dimensions and load capacity of refrigerated semi-trailer;
- selected technical parameters of semi-trailer’s refrigeration unit, especially the mode of its operation, the number of internal fans and evaporator heaters, their nominal power, the type of evaporator defrost system, etc.;
- operating conditions of refrigerated semi-trailer, including evaporator daily defrost time;
- the type of transported goods, their thermophysical features, and transport conditions, including temperature and humidity;
- external weather conditions (temperature and relative air humidity, wind speed and direction), the dynamics of these conditions, etc.
- only the set dimensions of refrigerated semi-trailers are considered;
- the semi-trailers are used to transport frozen goods, and the ambient temperature is above freezing point;
- goods are loaded to the semi-trailer in the frozen state and there is no need to chill them;
- the ambient temperature around the semi-trailer is constant and evenly spread across all walls, except walls exposed to insolation;
- the temperature inside the semi-trailer is constant over transport time and is evenly distributed inside the semi-trailer’s body;
- for the purpose of calculation, the insulation properties of the semi-trailer are the same across all walls; hence, a constant value of the global heat transfer coefficient of the semi-trailer = 0.4 W/m2∙K is assumed;
- disturbances of the linear temperature distribution in the insulation layer in the corners of the refrigerated semi-trailer are taken into account by referencing the process of heat exchange to the geometric mean of the surface F;
- the temperature of the four walls of the semi-trailer is assumed to be equal to the ambient temperature;
- the intensity of solar radiation impacting the vehicle is not considered;
- the calculations are carried out for the average daily operational conditions of the semi-trailer.
3.2. Mathematical Model
- for a vertical sunlit surface,
- for a horizontal sunlit surface,
- there is no need to defrost the evaporator, the fans in the chamber work 24 h a day:
- there is a need to defrost the evaporator, where, during the defrosting process, the fans are turned off:
4. Results
4.1. Calculation Results
- (a)
- without roofing;
- (b)
- under a shed, when the sun reaches one side wall of the semi-trailer;
- (c)
- under a shed, eliminating the influence of insolation.
4.2. Simulation of Parking Sheds Locations—Case Study of Poland
- the refrigeration unit of the vehicle consumes on average 1.5–3 L of fuel per hour (depending on refrigerated vehicle’s state and ambient conditions);
- one liter of fuel costs 1.3 EUR;
- frozen cargo is transported in the refrigerated vehicle;
- refrigerated vehicles are parked under sheds during the summer period (e.g., June–August);
- it is possible to achieve an 8% reduction in power consumed during sunlit hours (average value);
- insolation influences the refrigerated vehicle at parking places for 6 h per day (worst scenario compared to the analysis in Section 4.1).
- a total number of 1060 parking spaces are available for trucks at selected class III RSAs;
- the number of lots with sheds in particular RSAs constitute 10% of the parking spaces for trucks (i.e., a total number of 106 parking spaces with sheds);
- 50% of these lots are used daily for 6 h (53 parking lots).
5. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Road Freight Transport by Type of Goods. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Road_freight_transport_by_type_of_goods&oldid=549207#Road_freight_transport_by_type_of_goods_.28NST_classifications.29 (accessed on 26 December 2021).
- Artuso, P.; Rossetti, A.; Minetto, S.; Marinetti, S.; Moro, L.; Col, D.D. Dynamic modeling and thermal performance analysis of a refrigerated truck body during operation. Int. J. Refrig. 2019, 99, 288–299. [Google Scholar] [CrossRef]
- Marx, N.; Hissel, D.; Harel, F.; Pahon, E.; Courteille, B.; Chaillou, F. On the design of a hybrid fuel cell—Battery genset for a refrigerated semi-trailer truck. In Proceedings of the 2018 IEEE Vehicle Power and Propulsion Conference, Chicago, IL, USA, 27–30 August 2018. [Google Scholar]
- Artuso, P.; Rossetti, A.; Minetto, S.; Marinetti, S.; Del Col, D. Numerical investigation on the thermal performance of a new cooling unit for refrigerated transport using CO2 as the working fluid. In Proceedings of the 8th Conference on Ammonia and CO2 Refrigeration Technology, Ohrid, North Macedonia, 11–13 April 2019. [Google Scholar] [CrossRef]
- Motor Transport Institute. Available online: http://www.its.waw.pl (accessed on 4 April 2014).
- Directive 2002/15/EC of the European Parliament and of the Council of 11 March 2002 on the Organisation of the Working Time of Persons Performing Mobile Road Transport Activities. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32002L0015 (accessed on 20 February 2022).
- Emission Factors for Transporting Food Worldwide as of 2018, by Selected Modes of Transport. Available online: https://www.statista.com/statistics/1253773/food-freight-transport-emission-factors-by-mode (accessed on 26 December 2021).
- Accorsi, R.; Gallo, A.; Manzini, R.A. Climate driven decision-support model for the distribution of perishable products. J. Clean. Prod. 2017, 165, 917–929. [Google Scholar] [CrossRef]
- Fitzgerald, W.B.; Howitt, O.J.; Smith, I.J.; Hume, A. Energy use of integral refrigerated containers in maritime transportation. Energy Policy 2011, 39, 1885–1896. [Google Scholar] [CrossRef]
- Spengler, T.; Wilmsmeier, G. Energy consumption and energy efficiency indicators in container terminals—A national inventory. In Proceedings of the IAME 2016 Conference, Hamburg, Germany, 23–26 August 2016. [Google Scholar]
- Wilmsmeier, G.; Froese, J.; Zotz, A.K.; Meyer, A. Energy consumption and efficiency: Emerging challenges from reefer trade in South American container terminals. FAL Bull. 2014, 329, 1–17. [Google Scholar]
- Jacyna, M.; Wasiak, M.; Lewczuk, K.; Chamier-Gliszczyński, N.; Dąbrowski, T. Decision problems in developing proecological transport system. Rocz. Ochr. Srodowiska 2018, 20, 1007–1025. [Google Scholar]
- Kostrzewski, M.; Varjan, P. The issue of parking areas conditions in surrounding of logistics and production facilities in Slovakia and Poland. In Proceedings of the International Conference Transport Means 2018, Trakai, Litwa, 3–5 October 2018; pp. 791–796. [Google Scholar]
- Jacyna, M.; Semenov, I.N.; Trojanowski, P. The research directions of increase effectiveness of the functioning of the RSA with regard to specialized transport. Arch. Transp. 2015, 35, 27–39. [Google Scholar] [CrossRef]
- Semenov, I.; Filin, S.; Trojanowski, P.; Jacyna, M. Modernizacja MOP w zakresie przystosowania do obsługi samochodów-chłodni (eng. A comprehensive modernization of Parking Lots focused to a refrigerated—Trucks services). Logistyka 2015, 4, 907–914. (In Polish) [Google Scholar]
- Filina-Dawidowicz, L.; Heinrich, P.; Filin, S. Koncepcja sieci miejsc specjalistycznej obsługi samochodów-chłodni na terenie Polski (eng. Concept of a network of places for specialized service of refrigerated vehicles in Poland. Case study). Stud. Przypadku. Autobusy Tech. Eksploat. Syst. Transp. 2017, 1–2, 59–65. (In Polish) [Google Scholar]
- Obwieszczenie Ministra Infrastruktury I Budownictwa z dnia 23 Grudnia 2015 r. w Sprawie Ogłoszenia Jednolitego Tekstu Rozporządzenia Ministra Transportu i Gospodarki Morskiej w Sprawie Warunków Technicznych, Jakim Powinny Odpowiadać Drogi Publiczne i ich Usytuowanie. WARSZAWA, dnia 29 Stycznia 2016 r. Poz. 124. Available online: http://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20160000124/O/D20160124.pdf (accessed on 25 December 2021).
- Gkatzoflias, D.; Drossinos, Y.; Zubaryeva, A.; Zambelli, P.; Dilara, P.; Thiel, C.H. Optimal Allocation of Electric Vehicle Charging Infrastructure in Cities and Regions. Available online: https://publications.jrc.ec.europa.eu/repository/bitstream/JRC101040/allocatechargingpoints_sciencepolreport_eurreport_online.pdf (accessed on 26 December 2021).
- Karolemeas, C.; Tsigdinos, S.; Tzouras, P.G.; Nikitas, A.; Bakogiannis, E. Determining Electric Vehicle Charging Station Location Suitability: A Qualitative Study of Greek Stakeholders Employing Thematic Analysis and Analytical Hierarchy Process. Sustainability 2021, 13, 2298. [Google Scholar] [CrossRef]
- Csonka, B.; Csiszár, C. Integrated information service for plug-in electric vehicle users including smart grid functions. Transport 2019, 34, 135–145. [Google Scholar] [CrossRef] [Green Version]
- Csonka, B. Optimization of Static and Dynamic Charging Infrastructure for Electric Buses. Energies 2021, 14, 3516. [Google Scholar] [CrossRef]
- Iliopoulou, C.; Kepaptsoglou, K. Integrated transit route network design and infrastructure planning for on-line electric vehicles. Transp. Res. Part D Transp. Environ. 2019, 77, 178–197. [Google Scholar] [CrossRef]
- He, Y.; Csiszár, C. Model for Crowdsourced Parcel Delivery Embedded into Mobility as a Service Based on Autonomous Electric Vehicles. Energies 2021, 14, 3042. [Google Scholar] [CrossRef]
- Torok, A.; Derenda, T.; Zanne, M.; Zoldy, M. Automatization in road transport: A review. Prod. Eng. Arch. 2018, 20, 3–7. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Sheppard, C.J.R.; Lipman, T.E.; Zeng, T.; Moura, S.J. Charging infrastructure demands of shared-use autonomous electric vehicles in urban areas. Transp. Res. Part D Transp. Environ. 2020, 78, 102210. [Google Scholar] [CrossRef]
- Perera, P.; Hewage, K.; Sadiq, R. Electric vehicle recharging infrastructure planning and management in urban communities. J. Clean. Prod. 2020, 250, 119559. [Google Scholar] [CrossRef]
- European Agreement Concerning the Work of Crews of Vehicles Engaged in International Road Transport (AETR), Done at Geneva on 1 July 1970 (Consolidated Text, Version 2006, Document ECE/TRANS/SC.1/2006/2). Available online: http://www.unece.org/trans/main/sc1/sc1aetr.html (accessed on 26 December 2021).
- Filina-Dawidowicz, L. Wspomaganie Podejmowania Decyzji w Zakresie Kompleksowej Obsługi Kontenerów Chłodniczych w Zintegrowanych Łańcuchach Transportowych; Oficyna Wydawnicza Politechniki Warszawskiej: Warszawa, Poland, 2018. (In Polish) [Google Scholar]
- Postan, M.; Filina-Dawidowicz, L. Dynamic Optimization Model for Planning of Supply, Production, and Transportation of Perishable Product. In Sustainable Transport Development, Innovation and Technology. TranSopot 2016. Springer Proceedings in Business and Economics; Suchanek, M., Ed.; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Shinoda, T.; Budiyanto, M.A. Energy Saving Effect of Roof Shade for Reefer Container in Marine Container Terminal. J. Jpn. Inst. Navig. 2016, 134, 103–113. [Google Scholar] [CrossRef] [Green Version]
- Omara, A.A.M.; Mohammedali, A.A.M. Thermal management and performance enhancement of domestic refrigerators and freezers via phase change materials: A review. Innov. Food Sci. Emerg. Technol. 2020, 66, 102522. [Google Scholar] [CrossRef]
- Budiyanto, M.A.; Shinoda, T. Stack Effect on Power Consumption of Refrigerated Containers in Storage Yards. Int. J. Technol. 2017, 8, 1182–1190. [Google Scholar] [CrossRef] [Green Version]
- Tassou, S.A.; De-Lille, G.; Ge, Y.T. Food transport refrigeration—Approaches to reduce energy consumption and environmental impacts of road transport. Appl. Therm. Eng. 2009, 29, 1467–1477. [Google Scholar] [CrossRef] [Green Version]
- Zakrzewski, B.; Filin, S.; Konieczny, P. An analysis of energy consumption in refrigerated cargo sea transport. Pol. Marit. Res. 2000, 4, 25–32. [Google Scholar]
- Evans, J.A.; Foster, A.; Huet, J.M.; Reinholdt, L.; Fikiin, K.; Zilio, C.; Houska, M.; Landfeld, A.; Bond, C.; Scheurs, M.; et al. Specific energy consumption values for various refrigerated food cold stores. Energy Build. 2013, 74, 141–151. [Google Scholar] [CrossRef]
- Filin, S.; Filina-Dawidowicz, L.; Procak, M. Energooszczędność a redukcja kosztów samochodowego transportu chłodniczego (eng. Energy efficiency and cost reduction of refrigerated truck transport). Chłodnictwo 2016, 1–2, 44–52. (In Polish) [Google Scholar]
- Filina-Dawidowicz, L.; Filin, S. Innovative energy-saving technology in refrigerated containers transportation. Energy Effic. 2019, 12, 1151–1165. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Xie, R. Influence factors of air-temperature increasing within refrigerated trucks during door-opening state. Nongye Jixie Xuebao/Trans. Chin. Soc. Agric. Mach. 2014, 45, 254–259. [Google Scholar] [CrossRef]
- Moureh, J.; Flick, D. Airflow pattern and temperature distribution in a typical refrigerated truck configuration loaded with pallets. Int. J. Refrig. 2004, 27, 464–474. [Google Scholar] [CrossRef]
- Gajewska, T.; Lorenc, A. The impact of trailer conditions on the quality of refrigerated food transport services—A case study. Transp. Probl. 2019, 14, 97–107. [Google Scholar] [CrossRef] [Green Version]
- Gaedtke, M.; Wachter, S.; Kunkel, S.; Sonnick, S.; Rädle, M.; Nirschl, H.; Krause, M.J. Numerical study on the application of vacuum insulation panels and a latent heat storage for refrigerated vehicles with a large Eddy lattice Boltzmann method. Heat Mass Transf./Waerme Stoffuebertragung 2020, 56, 1189–1201. [Google Scholar] [CrossRef]
- Alamoush, A.S.; Ballini, F.; Olcer, A.I. Ports’ technical and operational measures to reduce greenhouse gas emission and improve energy efficiency: A review. Mar. Pollut. Bull. 2020, 160, 111508. [Google Scholar] [CrossRef]
- Yang, Z.; Tate, J.E.; Morganti, E.; Shepherd, S.P. Real-world CO2 and NOX emissions from refrigerated vans. Sci. Total Environ. 2021, 763, 142974. [Google Scholar] [CrossRef]
- Adamski, B. Pobór Energii Elektrycznej Przez Agregaty Chłodnicze (eng. Electricity Consumption by Refrigeration Units). Rynek Instal. 2008, 9, 1–13. Available online: http://www.rynekinstalacyjny.pl/artykul/id3249,pobor-energii-elektrycznej-przez-agregaty-chlodnicze?print=1 (accessed on 25 September 2021).
- Adekomaya, O.; Jamiru, T.; Sadiku, R.; Huan, Z. Minimizing energy consumption in refrigerated vehicles through alternative external wall. Renew. Sustain. Energy Rev. 2017, 67, 89–93. [Google Scholar] [CrossRef]
- Qu, R.-G.; Liu, G.-H.; Xie, R.-H.; You, L. Establishment and Application of Comprehensive Energy-Consumption Evaluation System for Food Refrigeration Transportation. In New Energy and Sustainable Development, Proceedings of the 2016 International Conference on New Energy and Sustainable Development (NESD 2016), Changsha, China, 19–20 March 2016; Yuan, Y.-P., Ed.; World Scientific Publishing Company: Singapore, 2017; pp. 172–178. [Google Scholar] [CrossRef]
- Christodoulou, F.; Sechenyh, V.; Zhao, H.; Garner, C.P.; Clarke, H. Performance of a novel liquid nitrogen power system. Appl. Therm. Eng. 2021, 191, 116896. [Google Scholar] [CrossRef]
- Romijn, T.C.J.; Donkers, M.C.F.; Kessels, J.T.B.A.; Weiland, S. A Distributed Optimization Approach for Complete Vehicle Energy Management. IEEE Trans. Control. Syst. Technol. 2019, 27, 964–980. [Google Scholar] [CrossRef] [Green Version]
- Romijn, C.; Donkers, T.; Kessels, J.; Weiland, S. Real-time distributed economic model predictive control for complete vehicle energy management. Energies 2017, 10, 1096. [Google Scholar] [CrossRef] [Green Version]
- Jedermann, R.; Geyer, M.; Praeger, U.; Lang, W. Sea transport of bananas in containers—Parameter identification for a temperature model. J. Food Eng. 2013, 115, 330–338. [Google Scholar] [CrossRef]
- Reducing Heat Absorption of Reefer Containers, Lowering Energy Consumption since 2014. Available online: http://www.braintrustbase.com/sites/default/files/upload-grafik/uploads/merged_document_7.pdf (accessed on 20 April 2017).
- Sørensen, K.K.; Skovrup, M.J.; Jessen, L.M.; Stoustrup, J. Modular modeling of a refrigeration container. Int. J. Refrig. 2015, 55, 17–29. [Google Scholar] [CrossRef]
- Filina-Dawidowicz, L.; Gajewska, T. Examination of importance and range of comprehensive service for refrigerated containers in seaports. Int. J. Appl. Manag. Sci. 2018, 10, 26–43. [Google Scholar] [CrossRef]
- Castelein, B.; Geerlings, H.; Van Duin, R. The reefer container market and academic research: A review study. J. Clean. Prod. 2020, 256, 120654. [Google Scholar] [CrossRef]
- Reefer Container Power Consumption. Available online: http://www.ship.ru/konteyners/40_cube.php (accessed on 6 April 2017).
- Budiyanto, M.A.; Shinoda, T. Thermal simulation of the effect of solar radiation on the temperature increases on the refrigerated container walls. Int. J. Sustain. Eng. 2021, 14, 1229–1238. [Google Scholar] [CrossRef]
- van Duin, J.H.R.; Geerlings, H.; Tavasszy, L.A.; Bank, D.L. Factors causing peak energy consumption of reefers at container terminals. J. Shipp. Trade 2019, 4, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Standards PN-91/W-75051; Klimatyzacja i wentylacja pomieszczeń mieszkalnych na statkach. Założenia projektowe i metody obliczeń (eng. Air Conditioning and Ventilation of Living Quarters on Ships. Design Assumptions and Calculation Methods). Polski Komitet Normalizacyjny: Warsaw, Poland, 1991. (In Polish)
- Standards PN-EN ISO 7547:2006; Statki i technika morska. Klimatyzacja i wentylacja pomieszczeń mieszkalnych. Założenia projektowe i podstawy obliczeń (eng. Ships and Marine Technology. Air Conditioning and Ventilation of Living Quarters. Design Assumptions and Basis of Calculations). Polski Komitet Normalizacyjny: Warsaw, Poland, 2006. (In Polish)
- Mихеев, M.A.; Mихеева, И.M. Oснoвы теплoпередачи; Энергия: Мoсква, Russia, 1973. (In Russian) [Google Scholar]
- Zakrzewski, B.; Haberek, J. Badanie termiczne kontenerów chłodzonych 1C (eng. Thermal test of refrigerated containers 1C). Chłodnictwo 1994, 3, 23–27. (In Polish) [Google Scholar]
- Available online: https://pogoda.wp.pl/pogoda-dlugoterminowa/szczecin/3083829 (accessed on 18 February 2022).
- Available online: https://weather.com/pl-PL/pogoda/miesieczne/l/dc3eb4353758a8ea3370b0a2c623a946ec456749aa0436eb46ced75b3164c0a0 (accessed on 18 February 2022).
- Road Infrastructure Map. Available online: https://www.nik.gov.pl/plik/id,17590.pdf (accessed on 24 December 2021).
- General Directorate for National Roads and Motorways. List of Parking Lots and RSA. Available online: https://www.gov.pl/web/gddkia/wykaz-parkingow-i-mop (accessed on 29 December 2021).
Walls of Refrigerated Semi-Trailer | External Surface, (m2) | Internal Surface, (m2) | Calculated (Geometric Mean), |
---|---|---|---|
Side walls | 38.22 × 2 | 34.62 × 2 | 72.75 |
Floor, roof | 35.36 × 2 | 32.76 × 2 | 68.07 |
Door, rear | 7.31 × 2 | 6.40 × 2 | 13.68 |
Total | 161.78 | 147.56 | 154.50 |
Parameter | Value |
---|---|
Cargo | Frozen meat |
Mass, (tons) | 20 |
Cargo transportation temperature, (°C) | −18 |
Ambient temperature, (°C) | 16 |
Semi-trailer’s heat transfer coefficient, (W/m2∙K) | 0.4 |
Semi-trailer’s volume, (m3) | 85.16 |
Density of the ambient air, (kg/m3), | 1.22 |
Enthalpy of ambient air, (kJ/kg) | 24.6 |
Air density inside the semi-trailer, (kg/m3) | 1.38 |
Enthalpy of the air inside the semi-trailer, (kJ/kg) | −16.80 |
Number of air changes inside the semi-trailer, (1/day) | 2 |
Number of fans in the semi-trailer, (pcs) | 3 |
Nominal power consumed by one fan, (W) | 250 |
Number of heaters in semi-trailer, (pcs) | 2 |
Power consumed by one heater, (W) | 2000 |
Total evaporator defrosting time during the day, (h) | 1 |
Aggregate energy efficiency index, | 1.5 |
Location of the Refrigerated Semi-Trailer | Heat Gain Through Insulation, (W) | Total Heat Gains, | Average Daily Power Consumed, (W) | Relative Change in (%) |
---|---|---|---|---|
Without roofing, influenced by insolation (Figure 4a) | 2554.1 | 3534 | 2356 | - |
Under a shed, with the sunlight on one side wall of the semi-trailer (Figure 4b) | 2303.5 | 3283.3 | 2188.9 | −7.09 |
Under a shed that eliminates the influence of insolation (Figure 4c) | 2128.8 | 3108.7 | 2072.5 | −12.03 |
RSA Class | Function | Equipment | Number of RSAs along Road Network |
---|---|---|---|
I | Recreation | Equipped with parking spaces (parking), maneuvering lanes, rest and sanitary facilities, and lighting; RSA can be equipped with catering facilities | 154 |
II | Leisure and services | Equipped with the facilities available at RSA I, in addition to petrol stations, vehicle service stations, catering and commercial facilities, and tourist information facilities | 100 |
III | Recreational function and service | Equipped with the facilities available at RSA II, in addition to accommodation facilities, as well as post offices, banks, tourist offices, and insurance offices, depending on the need. | 25 |
No. | Identification of RSA | Road Number | Parking for Passenger Cars | Parking for Trucks | Parking for Buses | Toilets | Petrol Station | Restaurant/Bistro | Accommodation | Electric Vehicles Charging | Security | Fencing | Monitoring | Lighting | Places for Vehicles with Dangerous Goods | Car Wash | Car Repair Shop | Liquid Waste Discharge Locations |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | MOP III Wieszowa Północ | A1c | 169 | 81 | 2 | + * | + | + | + | − | − | + | + | + | + | − | + | + |
2 | MOP III Mszana Północ | A1a | 161 | 21 | 6 | + | + | + | + | − | − | + | + | + | + | − | + | + |
3 | MOP III Wirek | A4 | 99 | 48 | 0 | + | + | + | + | − | − | + | + | + | + | − | − | + |
4 | MOP III Kępnica | A4 | 50 | 50 | 0 | + | + | + | + | + | − | + | + | + | + | + | − | + |
5 | MOP III Zastawie | A4 | 50 | 30 | 0 | + | + | + | + | + | − | + | + | + | + | + | − | + |
6 | MOP III Morawica | A4 | 50 | 24 | 0 | + | + | + | + | + | − | + | + | + | + | + | − | + |
7 | MOP Janów Lubelski Wschód | S19 | 154 | 35 | 8 | + | − | − | − | − | − | + | + | + | + | − | − | + |
8 | MOP III Krzyżanów Wschód | A1 | 80 | 31 | 10 | + | + | + | − | + | − | + | + | + | + | − | + | + |
9 | MOP III Wiśniowa Góra Zachód | A1 | 116 | 20 | 4 | + | + | + | − | − | − | + | + | + | + | − | − | + |
10 | MOP III Chrząstów | A2 | 158 | 55 | 0 | + | + | + | + | − | − | + | + | + | + | − | + | + |
11 | MOP III Nowostawy | A2 | 226 | 60 | 25 | + | + | + | + | − | − | + | + | + | + | − | + | + |
12 | MOP III Młyński Staw | A4 | 190 | 62 | 5 | + | + | + | + | − | + | + | + | + | + | − | + | + |
13 | MOP III Wysoka | A4 | 158 | 33 | 0 | + | + | + | + | + | + | + | + | + | + | − | + | + |
14 | MOP III Police | A2 | 33 | 37 | 4 | + | + | + | + | − | − | + | + | + | + | − | + | + |
15 | MOP III Wilkowice | S5f | 39 | 28 | 4 | + | + | + | + | − | + | + | − | + | + | + | + | + |
16 | MOP III Palikówka | A4 | 57 | 31 | 0 | + | + | + | + | − | − | + | + | + | + | − | − | + |
17 | MOP III Wysoka Wschód | S3 | 87 | 25 | 3 | + | + | + | + | − | + | + | + | + | + | − | − | + |
18 | MOP III Żabia Wola | S8 | 90 | 54 | 5 | + | + | + | + | − | − | + | − | + | + | − | − | + |
19 | MOP III Żarska Wieś Północ | A4 | 80 | 58 | 3 | + | + | + | + | − | − | + | + | + | + | + | + | + |
20 | MOP III Żarska Wieś Połud. | A4 | 80 | 73 | 5 | + | + | + | + | − | − | + | + | + | + | − | + | + |
21 | MOP III Kraśnik Dolny | A4 | 55 | 52 | 3 | + | + | + | + | − | − | + | + | + | + | − | + | + |
22 | MOP III Oleśnica Mała | A4 | 82 | 47 | 3 | + | + | + | + | − | + | + | + | + | + | − | + | + |
23 | MOP III Morzęcino Wschód | S5 | 159 | 51 | 8 | + | + | + | − | − | + | + | + | + | + | − | − | + |
24 | MOP III Wisznia Mała Zachód | S5 | 95 | 44 | 7 | + | − | + | − | − | + | + | + | + | + | − | − | + |
25 | MOP III Trzebiel | DK18 | 40 | 10 | 0 | + | + | + | + | − | + | + | − | + | − | − | − | − |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filina-Dawidowicz, L.; Csiszár, C. Influence of Parking Sheds on Energy Efficiency of Road Refrigerated Transport. Energies 2022, 15, 1883. https://doi.org/10.3390/en15051883
Filina-Dawidowicz L, Csiszár C. Influence of Parking Sheds on Energy Efficiency of Road Refrigerated Transport. Energies. 2022; 15(5):1883. https://doi.org/10.3390/en15051883
Chicago/Turabian StyleFilina-Dawidowicz, Ludmiła, and Csaba Csiszár. 2022. "Influence of Parking Sheds on Energy Efficiency of Road Refrigerated Transport" Energies 15, no. 5: 1883. https://doi.org/10.3390/en15051883
APA StyleFilina-Dawidowicz, L., & Csiszár, C. (2022). Influence of Parking Sheds on Energy Efficiency of Road Refrigerated Transport. Energies, 15(5), 1883. https://doi.org/10.3390/en15051883