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Abstract: Modelling of thermal energy storage (TES) systems is a complex process that requires
the development of sophisticated computational tools for numerical simulation and optimization.
Until recently, most modelling approaches relied on analytical methods based on equations of the
physical processes that govern TES systems’ operations, producing high-accuracy and interpretable
results. The present study tackles the problem of modelling the temperature dynamics of a TES
plant by exploring the advantages and limitations of an alternative data-driven approach. A hybrid
bimodal LSTM (H2M-LSTM) architecture is proposed to model the temperature dynamics of different
TES components, by utilizing multiple temperature readings in both forward and bidirectional
fashion for fine-tuning the predictions. Initially, a selection of methods was employed to model the
temperature dynamics of individual components of the TES system. Subsequently, a novel cascading
modelling framework was realised to provide an integrated holistic modelling solution that takes into
account the results of the individual modelling components. The cascading framework was built in a
hierarchical structure that considers the interrelationships between the integrated energy components
leading to seamless modelling of whole operation as a single system. The performance of the
proposed H2M-LSTM was compared against a variety of well-known machine learning algorithms
through an extensive experimental analysis. The efficacy of the proposed energy framework was
demonstrated in comparison to the modelling performance of the individual components, by utilizing
three prediction performance indicators. The findings of the present study offer: (i) insights on
the low-error performance of tailor-made LSTM architectures fitting the TES modelling problem,
(ii) deeper knowledge of the behaviour of integral energy frameworks operating in fine timescales
and (iii) an alternative approach that enables the real-time or semi-real time deployment of TES
modelling tools facilitating their use in real-world settings.

Keywords: bi-modal LSTM; cascading energy framework; district heating; thermal energy storage

1. Introduction

District heating and cooling (DHC) networks are highly complex systems consisting
of a large number of distributed entities. Modelling and optimization play a crucial
role towards the effective management of such multi-vector energy systems. Several
attempts have been reported in the recent literature using physics-based approaches for
the modelling of individual DHC components [1]. Most of these studies decompose
complex energy systems into a series of simpler input-output energy hubs [2]. Design
stage assumptions are often adopted for modelling the thermal behavior of buildings,
whereas mathematical functions are used to calculate the performance of energy conversion
units assuming constant thermal and electrical efficiencies. Pivotal to the optimization

Energies 2022, 15, 1959. https:/ /doi.org/10.3390/en15061959

https:/ /www.mdpi.com/journal/energies


https://doi.org/10.3390/en15061959
https://doi.org/10.3390/en15061959
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0003-2277-5846
https://orcid.org/0000-0002-1090-2177
https://orcid.org/0000-0003-2498-9661
https://orcid.org/0000-0002-7058-5986
https://doi.org/10.3390/en15061959
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15061959?type=check_update&version=1

Energies 2022, 15, 1959

2 of 24

of a decentralized DHC network is the adoption of holistic management methodologies
that take into account all aspects of the system. To optimize today’s multi-vector energy
systems, accurate internal models of all the primary and secondary energy sources need to
be produced.

Advanced data-driven techniques and machine learning (ML) present a promising
alternative solution that could enhance or even replace the simplified and static modeling
approaches with more detailed and at the same time more effective models. ML is a subfield
of data science in which algorithms and data-driven models capture and predict complex
non-linear relationships that exist in data [3]. The algorithms for ML have been around
since the middle of the previous century, based on statistical theories that go back to the
18th century (such as Bayes’ theorem [4]). However, modern computers have reached such
a performance level that made ML easy to implement and fast to train, thus rebooting the
interest in this area. In recent years, ML has seen exceptional growth, and new areas have
sprung from it including energy management and optimization. Deep Learning [5] is a
relatively new sector that utilizes Artificial Neural Networks (ANNSs) that are built with
a large number of layers (deep network) outperforming the conventional algorithms in
heavy tasks with the use of big data.

Several ML algorithms have been investigated and deployed for modelling, load
forecasting and optimization of processes in DHC systems [6]. Among the different ML
algorithms, ANNSs have found the largest applicability as an alternative to the numerical
models for multiple applications [7]. Some examples include model-based predictive
control (MPC) for heating, ventilation, and air conditioning (HVAC) systems [8], as well as
for thermal analysis of heat exchangers [9]. Focusing on the application of ML in energy load
prediction, there are many research studies demonstrating high performance and providing
insights and information that improve the efficiency and productivity of energy-related
tasks [10,11]. Specifically, ANNs have been used to predict energy consumption in bioclimatic
buildings [12], to provide reliable control mechanisms for TES systems [13], as well as for
cooling demand prediction in commercial buildings [14-16]. They have been also applied for
performance prediction of a solar thermal energy system used in a domestic hot water and
space heating application [17], for modelling heating and cooling loads of DHC systems [18],
and for process optimization by predicting energy-efficient building designs [19]. ANNs
combined with genetic algorithms were applied for process optimization of a solar-energy
system with the ultimate object of maximizing energy efficiency and the associated economic
benefits [20]. Finally, an ANN-based-framework for the optimal integration of solar-assisted
district heating in different urban sized communities has been proposed in [21].

Aside from ANNS, other various ML models were applied for the prediction of energy
demand [22]; Bayesian nets and reinforcement methods were used for heat load prediction
in district heating systems [23,24], fuzzy networks were implemented for the prediction
of energy demand concerning renewable energy systems [25], SVMs were employed for
predictive energy management between solar energy source and an energy storage [26]
and ensembles of online ML algorithms were used for operational demand forecasting
in DH systems [18,27] as representative examples. The need of incorporating ML-based
forecasting algorithms within advanced control strategies has been highlighted in [28,29]
for the transformation of the current district heating and cooling systems to more efficient
automated systems.

The popularity of deep learning has been considerably increased over recent years
leading many studies to focus on finding solutions for energy-based problems with the
use of deep architectures of common ML methods [30]. Specifically, deep reinforcement
learning has been employed for simulating energy savings and demand response in build-
ings [31], as well as in the optimization of the energy demand and supply of smart grids [32].
Deep artificial neural networks have been employed on load prediction of a district cooling
system combined with physics-based TES modelling [33], whereas in [34] deep recurrent
neural networks, that offer great performance in time-dependent problems, were used
for the prediction of the heating demand in commercial buildings. Deep reinforcement
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learning has been adopted in [35] as a temperature control strategy in a Chinese district
heating use case. Long Short-Term Memory (LSTM) and deep neural networks have been
proposed for district heating load prediction in [36,37], respectively. Deep learning and
specifically auto-encoders have also been developed for assisted energy consumption
profiling in buildings using smart meter data in [38].

In the context of the aforementioned increased adoption of ML in various DHC
domains, TES modeling has attracted some interest from the scientific community, however
the modelling task has been mainly treated with analytical mathematical tools. Thermal
energy storage is a key technology in DHC networks that brings a number of benefits
such as full recovery of the heat produced, maximization of the system’s efficiency and
reliability as well as low operating and maintenance costs. To the best of the authors’
knowledge, the efforts made so far on the modelling of DHC thermal energy storage
are limited to analytical mathematical models or conventional ML techniques. A quasi-
steady state mathematical model was employed in [39] to model the performance of a
storage tank which was part of a DHC system of an institutional building located in a
Mediterranean climate. Petrocelli and Lezzi investigated the effect of storage tank size on
a wood pellet boiler in the control strategy [40]. Fluid dynamics, both three-dimensional
numerical and computational, have been also utilised to simulate the performance and
dynamics of various storage tank configurations [41,42]. Thermofluidynamic models have
also been investigated for carrying out systematic calculations on different design options
for parabolic trough collectors [43]. Particularly in applications where solar collectors are
part of the system, analytical approaches that rely on thermodynamic principles are rather
complicated [44], computationally expensive and cannot be used in real-time application.
A finite difference model with an electrical analogy was investigated in [45] for calculating
the outlet temperature in a novel concept of solar collectors. Thermodynamic parameters
and weather conditions were, respectively, used in [46] to calculate outlet temperatures
and the efficiency of solar collectors that had their glass surface replaced with aerogel-filled
polycarbonate panels. Similar thermodynamic parameters and weather conditions were
used in [47] to predict air temperatures with efficiency that reached relative error of 7%.
Even though these analytical models offer high accuracy, they are computationally intensive,
therefore online control is not feasible, due to difficulties in exhaustively exploring the
parametric space within specific time intervals.

A few studies have been reported in the recent literature where ML have been applied
for TES modelling. Géczy-Vig et al. [48] used ANNS to calculate outlet temperatures in
various layers of thermal storage tanks, Caner et al. [49] and Sozen et al. [50] calculated the
efficiency of solar collectors, whereas in [51] both outlet temperatures and efficiency of a
solar air heater system were estimated though the use of ML. Variations of ANNs along with
SVMs were used by Liu et al. [52] in order to calculate the heat collection rate and heat loss
coefficient of water-in-glass evacuated tube solar water heaters, whereas in Garcia et al. [53]
ANNSs were employed for predictive modelling in biomass torrefaction within an energy
treatment process. ANNs were implemented by Kalogirou et al. [54] in solar water heater
systems to calculate both the inlet/outlet temperatures of components and establish a fault
detection mechanism by comparing actual and predicted outlet temperatures of the TES
system. Data-driven models have been commonly used as fault detection systems as well
as for the online control of systems in [55]. Kalogirou et al. [56] used ANNs to predict
both the energy output of a large-scale solar thermal system and the output temperature
of a storage tank. However, despite the fact that operational optimization requires fine
timescales, this study was limited to total daily energy outputs. One of the challenges that
the aforementioned ANN-based approaches face is that they are not designed to capture
sequential information in the input data. Moreover, most of the reported studies focus on
modelling specific components of the integrated system and they typically lack a holistic
solution that could include and correlate data coming from different components.

As an alternative to the above limitations, this paper proposes a novel data-driven
DL-based cascading methodology of thermal energy storage modelling in DHC. A custom
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architecture of a hybrid bi-modal LSTM neural network is being proposed for tackling
a number of technical challenges that have been commonly encountered in the specific
modelling paradigm: (i) Compared to the existing analytical solutions, the proposed
modelling methodology does not require any prerequisites or domain knowledge with
respect to the operation of the different components; (ii) It is suitable for modelling time
series since it possess an internal state or short-term memory that captures the sequential
information present in the input data i.e., dependency between successive time steps while
making predictions; (iii) It has been designed to provide a holistic solution in which data
from different energy components are combined in order to produce the final outputs; (iv) It
enables the real-time or semi-real time deployment of the modeling tools facilitating its use
in real-world settings. A variety of ML models, covering most of the algorithmic families,
is used as benchmark in order to evaluate and compare the efficiency of the proposed
methodology. All models were trained on data collected from sensors over a long time
period to model the operation of a heat storage tank facility. The modelling approach
was conducted under two approaches: (i) the storage tank was modelled as a separate
unit, (ii) the energy storage model was integrated in a cascading architecture that also
involves units that model the operation of the connected sub-systems (solar panels and heat
exchanger). The performance of all ML approaches for the TES modeling is demonstrated
by requiring only the availability of historical datasets of inlet-outlet temperatures of
components. The proposed modelling of thermal energy storage can provide operational
insights on the storage capacity of the system, thus providing exploitable information to
network operators.

The rest of the paper is structured as follows. Section 2 gives a short description of the
problem along with information about the acquired data. The proposed DL methodology
is presented in Section 3, whereas Section 4 presents the modelling results along with
discussions. Conclusions and future directions are provided in Section 5.

2. Materials and Methods
2.1. Problem Description

In most district heating systems, energy storage is a tank that contains water, which
acts as an energy buffer for the distribution of hot water in the network. A real DHS located
in Vransko (Slovenia) was considered in our analysis [57]. Vransko’s TES consists of a
100 m3 stratified water tank that contains water, has three different inputs/outputs (on
three levels, bottom, middle and top), and receives its energy from two sources. The first
source is an array of solar panels (840 m? of solar collectors, 370 kW) that provides energy
in the form of hot water to the system. The second source is a cluster of biomass boilers
(with a total heating power capacity of 4.8 MW) that operate on wood chips and oil, as well
as a combined heat and power (CHP) plant that operates on wood chips. These separate
boilers are considered as a unified, single source in our analysis.

The storage tank in Vransko has a semi-automatic operation selected based on the
system operators” experience. The function ensures that the valves will automatically
change the direction of the biomass feed directly into the network in the need of increased
consumption demands within a small timeframe (sudden demand). In principle, when the
water temperature in the solar collectors is high, the system prioritizes the operation of the
solar panels starting the pumps and turning the valves to the direction so that they feed
in the storage tank. On the other hand, if there is insufficient solar power (cloudy days)
the CHP plant takes over providing enough energy to the tank. Additionally, when the
tank is at full capacity (has reached 90 °C) at the top section, the valve at the bottom of
the tank automatically opens so the solar collectors and/or the CHP and/or the biomass
boiler feed the tank from the bottom. A graphical representation of the components of the
energy storage facility is shown in Figure 1. Where the basic components, that need to
be modelled, are presented as functions in boxes, and the inputs are presented in three
different categories, normal, return and universal.
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Figure 1. Detailed representation of the interconnection of the different components of the system,
along with the respective inputs and outputs.

The physical interconnection of the different components of the TES system under
investigation along with respective input-output information are depicted in detail in

Figure 2.

SP
Input

SP
Return

input

BB
Output

\Heat storage tank\
DHC
output DHC

BB
Input

Biomass Boiler

BB
Output

HS

Figure 2. Schematic of the physical connection between the solar panels (SP), heat exchanger (HE),

biomass boiler (BB) and the heat storage tank (HS).

The tank itself is equipped with an immersed heat exchanger (IHX) coil that contains
a coolant, deionized (DI) water. The water within the coil absorbs heat from the different
heating sources and rejects the heat to the storage tank water. To avoid contamination,
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the DI water remains decoupled from the thermal storage medium. Specifically, there are
three points of input for the hot water in the storage tank. Two of them come from the
heat exchanger, which is connected with the solar panels, and one comes from the biomass
heater. The inputs that originate from the heat exchanger/solar panels system enter the
tank from the middle (point A) and the top (point B) of the tank. The input that originates
from the biomass boiler enters only in the top of the tank (point C). Alternatively, the
biomass boiler can supply heat directly to the network in case this is necessary. Hot water
enters, and the heat diffuses in the tank via conduction. The water from the top section of
the tank, which is the hottest, is fed and circulated into the network, and the water that
returns from the network, goes directly to the bottom of the tank, serving as an extra input
(point D). An in-depth schematic of the cylindrical thermal energy storage tank and the
connected pipes is shown in Figure 3.

DHC network output
| DHC network input

|

<+—— Biomass boilers input

Heat exchanger input = ==

A

Heat exchanger input —— ———» Biomass boilers output

Heat exchanger output s
— Biomass boilers output

Figure 3. Schematic of the colloidal pipes and the basic structure of the heat storage tank.

The increased complexity in the structure of the storage tank poses significant chal-
lenges that deteriorate the accurate modelling of the temperature dynamics of the TES.
A data-driven modelling approach is proposed in this paper to (i) tackle the aforemen-
tioned barriers avoiding all the unnecessary simplifications that are typically employed and
(ii) enable semi-real time modelling of the induced complexity without affecting the predic-
tive ability of the model.

2.2. Data Acquisition and Characteristics

A database that contained 351.148 inputs from temperature sensors starting from
5 May 2014 08:45, until 10 October 2017 02:50, collecting data every 5 min was acquired and
used in the present study. Each data entry consists of 21 features that contain temperature
information from various locations on the energy storage facility, both internal (from the pip-
ing system), as well as external (e.g., the outside temperature). The total of 7,374,108 entries
is considered as a satisfactory amount of data for evaluating the performance of data-driven
models.

In order to model each component properly, we used three different configurations
of the dataset based on the inputs that are required by each component, and the output it
produces. The group of solar panels constitutes the first component (A) that receives 8 input
temperatures and produces one output. The heat exchanger is the second component (B)
with 3 temperatures as inputs and one output. Finally, the heat storage tank (component C)
receives 9 input temperatures and produces the final output temperature of the water
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feeding the DH network. The external temperature serves as a universal input for all the
components. Table 1 cites all the features and their role in each component as well as the
number of training samples multiplied by the features for each component.

Table 1. The features of the dataset and how they are used within each component.

Feature Name Solar Panels Heat Exchanger Heat Storage
Tank
T1 Solar collector field 1 (°C) Input - -
T2 Solar collector field 2 (°C) Input - -
T3 Solar collector field 3 (°C) Input - -
T4 Solar collector field 4 (°C) Input - -
T5 Solar collector field 5 (°C) Input - -
T6 Solar collector field 6 (°C) Input - -
T7 Solar collector field 7 (°C) Input - -
T8 feed-in Solar prim. (°C) Output Input -
T9 return Solar prim. (°C) Return Input Input -
T10 feed-in Solar sec. (°C) - Output Input
T11 return Solar sec. (°C) - Return Input -
T12 Temp. 1 heat storage (up) (°C) - - Input
T13 Temp. 2 heat storage (°C) - - Input
T14 Temp. 3 heat storage (°C) - - Input
T15 Temp. 4 heat storage (°C) - - Input
T16 Temp. 5 heat storage (°C) - - Input
T17 feed-in biomass boiler (°C) - - Input
T18 return biomass boiler (°C) - - Input
T19 feed-in before mixing valve (°C) - - Output
T20 return before mixing valve (°C) - - Return Input
T21 outside temp. (°C) Universal Input
Total number of training samples
multiplied by the features of each 3,511,480 1,755,740 3,862,628
component

The output temperatures of each component within a duration of two days, specifically
starting from 5 May 2014 08:45 until 7 May 2014 08:25, are shown in Figure 4. The output
temperatures of each module fluctuate during the day and are affected by seasonal external
conditions such as temperature and cloud coverage, as expected. Since the heat exchanger is
connected only with the solar panels, their daily output fluctuation looks similar, however
a comparison of the two shows a difference in temperature that is explained by the heat
loss from the piping system. It is also observed that the storage tank’s output fluctuation
differs from the others due to the fact that the heat storage tank’s energy level and water
temperature is heavily dependent on the operation of the biomass boilers and the input
they provide.

2.3. Preprocessing Phase

Data collection and organization: Data were collected from 21 temperature sensors,
located on various locations all over the heat storage tank facility. Data entries were
collected in 5-min intervals, over a period of 3.5 years, leading to the generation of the
dataset. The dataset was segmented into 3 feature subgroups (D, Dg, and D¢) each one
containing only the relevant features that serve as inputs/output for each component (as
shown in Table 1). This way, each model was built by the right features that have actual
importance and physical meaning for each particular model.
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To model the temperature dynamics of the TES system, a standardized procedure was
followed. The proposed data-driven TES modelling methodology includes the following
processing steps:

Handling of missing values: Real life datasets are susceptible to hardware mal-
functions, software errors, or various random events that lead to errors, and/or cor-
rupted/missing values. The first step is to clear any abnormalities that appear as NaN (Not
a Number) values in the dataset. In general, the missing values could either to be replaced
with a regression-based prediction median of the values, or the whole measurement could
be removed from the dataset. In our case, since the dataset was rather complete and only
a few lines of data contained NalN values, it was decided that these entries should be
removed completely.

Data split: To validate the performance of the proposed ML models, the generated
dataset was randomly split into three subgroups: the training dataset in which the models
were trained and fit, the validation dataset which was used to properly train the models and
avoid overfitting, and the testing dataset in which all models were tested and evaluated. An
80%—-10%-10% split was selected for the training, validation and testing sets, respectively.

Data normalization: Feature scaling standardizes the range of all the independent
variables/features of the dataset. This method is a common requirement for most ML
models that typically ensures a smoother implementation of the ML algorithms and in some
cases leads to improved performance. Feature normalization was applied to the training
and the testing datasets so that they are centered around 0 with a standard deviation of 1.
This is called standard scaling and the mathematical equation that describes it is as follows:

. Xij W

Yij = = @
where x; ; and ¥; ; denote the value of feature j for the initial and normalized data entry i,
respectively, with the mean value of feature j calculated by:

1
B = 5 L (%), @

and standard deviation of feature j as:

1
0j = \/ ~ L (i = )’ ©)

2.4. Proposed LSTM Architecture

Recurrent Neural Networks (RNN) is a special category of ANN, which are built in a
recurrent fashion, aiming at tackling problems with sequential features, such as timeseries




Energies 2022, 15, 1959

9 of 24

forecasting [58,59]. Simple RNNs offer improvements on specific applications, however,
they face the problem of vanishing gradients [60]. This problem was solved by Long Short-
Term Memory (LSTM) networks with the introduction of memory gates within a recurrent
architecture [61]. In the present study, a hybrid bimodal architecture of LSTM neural
networks is proposed (H2M-LSTM) in order to fit the specific challenges that arise from
the problem of modelling heat storage tanks. The novelty of the proposed architecture lies
in a bimodal structure where one component of the network takes multivariate, multistep
input and feeds it to a regular forward-direction LSTM, and the other mode focuses on
fine-tuning the predictions by learning the trends of the desired feature by feeding the
univariate input on a bidirectional LSTM. The multivariate component focuses on learning
the dependencies and relationships of the output variable with the rest of the features,
and the univariate component fine-tunes the output by learning the trends that govern
the storage tank’s behaviour. The final target variable of the H2M-LSTM is the weighted
average of each mode’s predictions. For the present study, the multivariate component was
built with 2 layers and 50 memory cells each, whereas the univariate component was built
with 1 layer and 50 memory cells for the forward- and backward-layer. The architecture of
the proposed network is shown in Figure 5.
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Figure 5. Architecture of the proposed LSTM network.

2.5. Benchmarking Machine Learning Algorithms

For benchmarking purposes, an extensive set of algorithms has been selected based
on their performance, and their applicability on the TES modelling problem of the present
study. The applied methodologies cover most of the main algorithmic families that are
currently used in machine learning.

Several algorithms were used from the family of linear regression (such as Ordinary
Least Squares (OLS) [62] and Least Absolute Shrinkage and Selection Operator Lasso
(LASSO) [63,64]) that is one of the most fundamental methods used in machine learning.
LASSO conducts variable selection alongside with L1 regularization for the enhancement
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of the prediction accuracy. Additionally, another two algorithms were employed from the
same category: (i) Bayesian Ridge (BR) [65] which is a linear regression approach where
Bayesian inference takes the place of statistical analysis and (ii) Elastic Net (EN) [66] that
linearly combines the regularization penalties of both the LASSO and the Bayesian Ridge
methods. Least-Angle Regression (LARS) [67], which is strongly preferred when the data
for the regression problem are high-dimensional, was also explored along with Stochastic
Gradient Descent (SGD) [68] which is best known for the optimization of differentiable
objective functions in an iterative way. Both LARS and SGD are strong representative
algorithms related to linear regression.

A different approach is followed in Decision trees (DT) [69,70] where there is gradual
split and organization of a dataset in reduced homogeneous datasets, following a top down
structure of a tree with the root being at the top, whereas branches and leaf nodes are
progressively generated towards the bottom. DT offer the explanation, however, that they
are prone to overfitting, something that can be dealt with the application of ensemble
methods. Random Forest (RF) [71] is the most famous algorithm of the ensemble methods
family where, in principal, the algorithms construct a linear combination of base learners, in
this case DT, for improving their predictive ability. Gradient Boosting (GB) [72] produces a
prediction model as an ensemble of several weak prediction models in a stage-wise fashion.
AdaBoost [73] is an estimator that fits a weak regressor, then fits more duplicates of the
same regressor upon the original dataset and finally a boosted model derives from the
weighted sum of these weak learners, constantly adjusted based on the error of a prediction.
Last algorithm of the ensemble methods, Bootstrap Aggregating, or Bagging [74], builds
black-box estimators that train on multiple random subsets of the initial dataset, and then
produces a final prediction based on the combination of their individual predictions.

One of the most important categories of ML algorithms is Support Vector Machines
(SVM). They were initially developed based on the statistical learning theory [75] to classify
data instances with the construction of a linear separating hyperplane. One of their greatest
attributes is that they can utilize a selection of various kernels in order to transform an initial
feature space into a higher dimensional space, consequently improving their performance in
particular tasks. SVM perform consistently in different tanks, due to the fact that they can
resolve the overfitting issue in high dimensional spaces with global optimization [76,77]. In the
present study, three kernels were used as different approaches for our support vector regression
(SVR) implementation, namely a linear, a polynomial and radial basis function kernel.

Artificial Neural Networks (ANN) [78] is the most popular family of ML algorithms
due to its consistently high performance in a variety of regression and classification tasks in
the recent years. Some of the most famous learning algorithms include the perceptron [79],
multilayer perceptron [80], back-propagation [81], resilient backpropagation [82], radial ba-
sis function networks [83], autoencoders [84], adaptive-neuro fuzzy inference systems [85]
and much more. New types of neural networks have emerged such as recurrent neural
networks [86] and convolutional neural networks [87], as part of the larger deep learning
group [88]. For this study, a Multi-Layer Perceptron (MLP) was used with an architecture
of 4 hidden layers with a “384, 384, 256, 192” node configuration, Rectified Linear Unit
(ReLU) [89] as our activation function for the hidden layers, Adam optimization [90] and
early stopping with a 10 epoch patience to avoid overfitting. The hyperparameters used
in each approach were carefully selected with a grid search method, with which various
parameters are selected, and a range of values is tested.

2.6. Modelling Approaches: Component-Specific and Cascading

Energy component-specific modelling: Each component of the heat storage system was
modelled using all the aforementioned machine learning algorithms. The goal of this step is
to benchmark the algorithms which were presented in Section 3.3 and then compare them
with the proposed hybrid bimodal LSTM that was developed for the particular application
and presented in Section 3.2. For the individual components” modelling, the solar panels, heat
exchanger and storage tank have all been modelled using the same hyperparameter values
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for all individual models. In this validation setup, input-output data collected from sensors
installed directly on the energy components were used for the training of the ML algorithms.

Cascading TES modelling: Additionally to proposing a tailor-made learning architec-
ture that fits the addressed problem and its challenges, this study also proposes a holistic
modelling methodology that incorporates all the TES components and their processes
within the heat storage tank facility. In order to accomplish that, a new modelling method-
ology is proposed to address the need for a realistic representation of the components
considering the dependencies between their inputs and outputs and the hierarchical order
in which they are connected. Therefore, a cascading architecture was set up where each
model provides its output values to be used as inputs by the adjacent one, until the final
output of the storage tank is generated. Specifically, the solar panel’s output is used as
input for the exchanger, where its output, along with the output of the boilers, are used as
inputs for the heat storage tank. At the same time, the return from the network is also used
as input for the heat storage tank, whose return is used as input for the exchanger, whose
return is used as input for the solar panels.

The cascading architecture’s components are trained consequentially, starting from
the solar panel’s model, followed by the exchanger, and finally having the heat storage
tank to generate the values of the temperature of the water that feeds the network. The
models are arbitrarily presented in Figure 1 by y = f(x) boxes. All the ML algorithms are
compared based on their suitability in being the core model of the cascading architecture.
The performance of the cascading architecture in comparison to the individual components’
modelling will offer a deeper insight into whether a unified approach to a multi-component
system is applicable in real life. The results of the cascading modelling approach are
presented in Section 3.2.

A simplified flowchart that summarizes and visually presents the process that has
been followed in our study is shown in Figure 6.

The dataset was segmented into 3 feature subgroups (D4, Dg, and D¢) each one
containing only the relevant features that serve as inputs/output for each component (as
shown in Table 1). This way, each model was built by the right features that have actual
importance and physical meaning for each component. For the validation and evaluation
of the models, each subgroup was split into two portions. The training portion, denoted
as tr, which is a random 80% of the initial subgroup, is the amount of data upon which
the algorithms are fitted, and the models are built. The testing portion, denoted as te,
which is the remaining random 20%, is the amount of data that is kept hidden during the
training process and is used for the validation of the models” performance. The following
six datasets were generated as the output of this step: Da ¢, DA _te, DB tr, DB _te, Dc_t and
Dc te- The evaluation of each model’s performance for the present study was based on
three common performance metrics, the mean absolute error (MAE), mean squared error
(MSE) and root mean squared error (RMSE), that are explained below.

MAE is the average of the absolute errors of the estimated and the real values. In
this average, the individual differences are all equally weighted. Mathematically it is
represented by the following equation:

1
MAE = — ) 0 [vi — xi (4)

MSE measures the average squared difference between the estimated values and the
real values and it is always non-negative. MSE’s usefulness lies in the fact that large errors
have bigger consequences than equivalent small ones when penalized. The mathematical
equation is the following:

1
MSE = — Yo i — %), )
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RMSE is the squared root of the average of squared errors. The reason that RMSE was
used alongside MSE was because it is particularly sensitive to outliers since large errors
have a disproportionately large effect. The mathematical equation is similar to the MSE:

RMSE = \/ % Yo (i —x;)? (6)

Data acquisition
Remove NaN/outliers

Split dataset

Data Preprocessing

Normalize values
Fit Solar Panels model
Validate model
Fit Exchanger model
Validate model

Fit Heat Storage Tank model

Algorithm implementation

Validate model

Output value for the Network
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I
e
I
I
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e

Results

Validate results with MSE

Figure 6. Flowchart of the methodology followed in this study.

3. Results
3.1. Experimental Design

The performance of the proposed architecture and the competing methodologies is
thoroughly presented in this chapter. TES modelling of individual components was initially
performed to evaluate the predictive capacity of the proposed LSTM method compared to
benchmarks. At a second phase, the cascading modelling architecture was implemented
in which the outputs of a component were given as inputs to the subsequent system
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component. The latter modelling approach takes into account the intercorrelation of the
different energy components providing a holistic solution to TES modeling.

Modelling of individual components: For each one of the three components A, B and
C, the proposed LSTM approach and a variety of competing ML models (as presented in
Sections 3.2 and 3.3) were trained on D; , i = A, B, C. The resulted trained ML models were
tested on the subsets D; to, 7 = A, B, C. The validation of each ML model was conducted with
the application of three performance metrics, MSE, MAE and RMSE and a comparative
analysis was performed.

TES modelling using the proposed cascading architecture: A cascading architecture
was set up in such a way that the predicted outcomes of component A were used as input
for component B, and subsequently the predicted outcomes of component B were used
as input for component C. The previous step was repeated using the proposed LSTM
approach and the competing ML models (as presented in Sections 3.2 and 3.3). At each
iteration, each one of the ML models was applied in all three components. The validation of
each ML model used within the cascading architecture was conducted with the application
of the same three performance metrics, MSE, MAE and RMSE. A comparative analysis was
performed, and the best method was chosen by taking into consideration the accuracy of
each method.

3.2. Performance of The Individual Modelling Approaches for Each Component

The results (performance metrics) for all the ML algorithms are presented in the
following tables, each one for the particular component that it was used for. Table 2,
Figures 7 and 8 show the achieved metric values of the ML models on the thermal modeling
of component A (solar panels), Table 3, Figures 9 and 10 for component B (heat exchanger)
and Table 4, Figures 11 and 12 for component C (heat storage tank). All programming
was done in Python 3.4, mostly based on libraries such as NumPy [91] for mathematical
operations, Pandas [92] for data structures handling and Matplotlib [93] for visualizations.
All models were trained either with Scikit-Learn [94] on an i7-6950X CPU or with Keras [95]
and Tensorflow [96] on a local computer equipped with a Titan 1080Ti GPU, depending on
the potential parallelization of operations.

Table 2. Performance metrics for the solar panels.

Method MAE MSE RMSE
Decision Tree 0.073 0.029 0.172
Random Forest 0.067 0.015 0.124
AdaBoost 0.353 0.195 0.441
Bagged Trees 0.067 0.015 0.124
Boosted Trees 0.168 0.063 0.252
Linear Regression 0.259 0.125 0.354
Bayesian Ridge 0.259 0.125 0.354
Stochastic Gradient 0.259 0.125 0.354
Lasso Regression 0.820 0.997 0.999
Elastic Net 0.623 0.558 0.747
Least Angle 0.259 0.125 0.354
SVR linear 0.257 0.128 0.358
SVR poly 0.419 0.305 0.552
SVR rbf 0.154 0.058 0.242
ANN MLP 0.096 0.024 0.154
H2M-LSTM 0.059 0.012 0.110

A small value for the MSE points out that the model successfully describes the real-life
temperature dynamics of the storage tank components.
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Figure 7. Barplot comparison of the performance metrics for the solar panels.
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Figure 8. Barplot comparison of the best performance metrics for the solar panels.

Table 3. Performance metrics for the heat exchanger.

Method MAE MSE RMSE
Decision Tree 0.026 0.005 0.069
Random Forest 0.023 0.003 0.055
AdaBoost 0.172 0.048 0.219
Bagged Trees 0.023 0.003 0.055
Boosted Trees 0.057 0.010 0.099
Linear Regression 0.081 0.019 0.136
Bayesian Ridge 0.081 0.019 0.136
Stochastic Gradient 0.081 0.019 0.136
Lasso Regression 0.830 0.998 0.999
Elastic Net 0.525 0.396 0.629
Least Angle 0.081 0.019 0.136
SVR linear 0.082 0.019 0.139
SVR poly 0.361 0.718 0.847
SVR rbf 0.059 0.008 0.091
ANN MLP 0.033 0.004 0.060
H2M-LSTM 0.020 0.002 0.045
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Figure 10. Barplot comparison of the best performance metrics for the heat exchanger.

Table 4. Performance metrics for the heat storage tank.

Method MAE MSE RMSE
Decision Tree 0.042 0.009 0.094
Random Forest 0.033 0.005 0.071
AdaBoost 0.192 0.060 0.244
Bagged Trees 0.033 0.005 0.072
Boosted Trees 0.074 0.014 0.120
Linear Regression 0.145 0.052 0.229
Bayesian Ridge 0.145 0.052 0.229
Stochastic Gradient 0.144 0.052 0.229
Lasso Regression 0.818 1.001 1.000
Elastic Net 0.584 0.513 0.716
Least Angle 0.145 0.052 0.229
SVR linear 0.129 0.057 0.238
SVR poly 0.252 0.154 0.392
SVR rbf 0.055 0.008 0.089
ANN MLP 0.039 0.005 0.071
H2M-LSTM 0.028 0.003 0.055
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Figure 11. Barplot comparison of the performance metrics for the heat storage tank.
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Figure 12. Barplot comparison of the best performance metrics for the heat storage tank.

Linear regression and its variants, along with SVR with linear kernel and the boosting
methods, achieved similarly poor and inconsistent performances in the range of 0.015-0.124
for MSE, due to their linear nature. Elastic-net and SVR with polynomial kernel scored
MSE higher than 0.154, whereas lasso regression systematically produced the worst MSE
of approximately 1 for all components. On the other hand, REF, BT and ANN produced
accurate predictions, specifically RF achieved 0.015 MSE for the solar panel, RF and BT both
scored 0.003 on the heat exchanger, and ANN together with RF both achieved 0.005 MSE
on the heat storage tank. While each of the ML algorithms used in the study offer discrete
benefits, none was able to surpass H2M-LSTM which was built specifically for the particular
application. H2M-LSTM managed to outperform all other algorithms across all models and
on all performance metrics by scoring 0.012 MSE for the solar panels, 0.002 for the exchanger
and 0.003 for the heat storage tank. This consistency in performance demonstrates the
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effectiveness of a tailor-designed architecture for a specific problem, as well as validates
the much-desired robustness any method requires, especially when applied in different
components of a system.

A visual representation of the heat tank’s performance for the H2M-LSTM implemen-
tation is shown in Figure 13. The modeling performance is demonstrated on Figure 6, for a
randomly selected day, namely the 6th of January 2015, by plotting the real values (a), the
predicted ones (b), along with their absolute difference (AD) (c). A limit of 5 °C is set in
order to visualize the magnitude of error. AD values below 5 °C are visualized in orange,
whereas red represents AD values that exceed the limit. It is apparent that, especially
during times of low fluctuations of temperature, the predicted values are very close to the

real ones.
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Figure 13. Real (a) vs. predicted (b) output of the individual heat storage model for the 6 January 2015,
along with their absolute difference (c) (AD).

3.3. Performance of the Cascading Architecture

All algorithmic methods were also applied to the cascading model with the aim to
model the whole system as a unified system. Each method was implemented and evaluated
again in order to determine whether the cascading model maintains the performance of
the individual models. A detailed table with the results of all the metrics (MSE, MAE and
RMSE) for all the tested ML algorithms is presented below. The results are gathered and
presented in Table 5, Figures 14 and 15:

Table 5. Performance metrics for the machine learning algorithms used within the cascading architecture.

Method MAE MSE RMSE
Decision Tree 0.044 0.010 0.099
Random Forest 0.034 0.005 0.073
AdaBoost 0.180 0.053 0.231
Bagged Trees 0.034 0.006 0.074
Boosted Trees 0.075 0.015 0.121

Linear Regression 0.145 0.052 0.229
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Table 5. Cont.

Method MAE MSE RMSE
Bayesian Ridge 0.145 0.052 0.229
Stochastic Gradient 0.145 0.053 0.229
Lasso Regression 0.818 1.001 1.000
Elastic Net 0.584 0.513 0.716
Least Angle 0.145 0.052 0.229
SVR linear 0.129 0.057 0.239
SVR poly 0.269 0.209 0.457
SVR rbf 0.055 0.008 0.089
ANN MLP 0.037 0.005 0.073
H2M-LSTM 0.029 0.003 0.055
1 M MAE
W MSE
B RMSE
08
v 06
=
-
04
02 I
ol 1 I JLg
(( Yy \«
3 L3 '(».OQV 17/67 Y
Sy
Method
Figure 14. Barplot comparison of the performance metrics for the cascading architecture.
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Figure 15. Barplot comparison of the best performance metrics for the cascading architecture.

The proposed hybrid bimodal LSTM architecture (H2M-LSTM) exhibits robust perfor-
mance and consistent behaviour in the cascading modelling approach as well, achieving the
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100

lowest values in all performance metrics. It is noteworthy to mention that its performance is
almost identical to the performance of the individual modelling of the heat storage tank. In
detail, H2M-LSTM achieved 0.029 MAE, 0.003 MSE and 0.055 RMSE, surpassing the RF in
MAE by 0.005 and the RF and the ANN in MSE and RMSE by 0.002 and 0.018, respectively.
As it is observed from, DT, BT, and SVR(rbf) achieved moderate performances which are
within the same order of magnitude of the RF and ANN, but still less accurate than the
H2M-LSTM. The comparative analysis between the individual component modelling of
the heat tank and the cascading model resulted in differences less than 10~ for the MSE
and MAE that were therefore considered as insignificant. This small observed deviation
demonstrates that the proposed cascading model works with almost the same accuracy as
with the model that was individually trained with the real input-output tank data.

The visual representation of the heat storage tank model’s output values, under the
cascading implementation with the hybrid bimodal LSTM model is presented in Figure 16,
for the 6 January 2015. The real temperature output is shown in green (a), the predicted
in blue (b) and the absolute difference (AD) in orange, unless it surpasses the 5 °C limit
where it turns red (c).
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Figure 16. Real (a) vs. predicted (b) output of the heat storage model within the cascading architecture
for the 6 January 2015, along with their absolute difference (c) (AD).

4. Discussion

Heat storage tanks, which have gradually become key components of today’s DH
systems, are extremely complex systems. The accurate modelling of a heat storage tank’s
operation can be used as a tool that will assist an operator to evaluate different scenarios
of sudden changes in energy demand from the network. The present study tackled the
problem of thermal energy storage modelling with a data-driven approach and a cascading
methodology for hierarchical modelling. A proposed hybrid bimodal LSTM architecture
(H2M-LSTM) was built for the particular problem for the sole purpose of utilizing both the
plethora of sensors in the system, as well as the time-dependent trend that is apparent on
the output temperature of the tank. Thus, a multi-head approach was designed where one
component of the architecture is a multivariate forward-directional LSTM, and the other
component is a univariate bidirectional LSTM, where the outcomes of both components are
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merged into a weighted average. Various well-proven ML techniques, tested and evaluated
for the modelling of the temperature dynamics of the tank, were also used for benchmarking
and comparison purposes. A complete energy storage framework, where each component
of a facility is modelled based on its operation and its connection to the other components,
was also proposed as an alternative methodology to individual component modelling and
tested in this study. This proposed framework has a cascading architecture and feeds the
modelling data in a hierarchical manner, leading to a seamless modelling of the whole
operation as a single system. The implementation of the cascading methodology yielded
satisfactory accuracy, and therefore was proved a good fit for real-life application, since it
can simplify the modelling of a multi-component system in a hierarchical manner, without
any compromise in the performance.

The proposed hybrid bimodal LSTM architecture manages to achieve high perfor-
mance regarding solely the temperature dynamics of the TES, without taking into consider-
ation any other variable such as heat power, heat flows, and mass flows. The performance
metrics indicate that H2M-LSTM achieved consistent, high performance for all components
and subsequently the cascading framework as a whole. This consistency in performance
denotes a robustness of the proposed algorithm, which is much desired in real-life appli-
cations, since it signifies steady performance. An expected shortcoming of the proposed
method is that it cannot explain the causes of the temperature evolution and it only models
the temporal evolution of thermal dynamics. Although this approach cannot offer the
insight or the accuracy of a fine-tuned analytical model, it can potentially present some ad-
vantages, namely: (i) semi-real time execution in deployment phase enabling its integration
in online control systems, (ii) scalability (as it can be adapted to different systems without
any significant change on the methodology and without any knowledge of the systems’
characteristics), (iii) easiness to be implemented by the operators without deep knowledge
of the system characteristics. Analytical models are able to reach higher confidence inter-
vals, with limited computational time, for temperature calculation of simple components
such as solar panels, heat exchangers and heat storage tanks. Even more, these physical
models can explain the causes behind their results, which is a crucial advantage against
data-driven methods. Approaches such as the one presented in the present study provide
various new findings and deeper knowledge on the data-driven models” behavior. The
data-driven model could also be integrated within a system’s optimization mechanism [28]
as a means to capture the current or even predicted storage capacity of the DHC network.
Target for this modelling approach is to provide a fast-and-dirty implementation to any
thermal system, where there is a limited amount of information regarding the details of the
TES plant’s operation, other than temperature measurements, by trying to achieve the best
possible accuracy for a data-driven model.

5. Conclusions

Analytical models have already proven their performance in modelling TES plants.
However, since ML approaches are being applied in more and more applications through-
out the energy domain, detailed investigation on their capabilities is required to be able
to identify their advantages as well as their limitations. Further examination of the ML
algorithms in energy-related applications is crucial for the advancement of the domain,
providing an alternative solution to the existing analytical models, that can tackle specific
problems based only on data, and can be used either as standalone, or alongside analytical
simulations.

Future plans include the further development of the proposed LSTM-based modelling
approaches working on some of its deficiencies. Given that there is no activation function
that performs well in all data problems, an extensive exploration on the suitability of
various transfer functions (such as the one proposed in [97]) would be beneficial to avoid
possible gradient instability issues. Training the proposed LSTM-based model for short-
term and long-term predictions could be also considered as an interesting topic. The
ultimate goal is the integration of data-driven TES modeling mechanisms into intelligent
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control strategies that would guarantee efficient energy management and reduction in
energy costs. Reliable TES modelling could facilitate the smoother transformation of
current DHC networks into smarter ones that would be robust to stochastic uncertainties
and adaptable to changes in the network status. Interdisciplinarity and combination of
various technological advancements such as control, energy forecasting and modelling are
crucial towards the development of a complete solution that could fully achieve all the
challenges of the DHC sector.
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