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Abstract: In the current paper, a novel technique is represented to control the liquid petrochemical
and petroleum products passing through a transmitting pipe. A simulation setup, including an X-ray
tube, a detector, and a pipe, was conducted by Monte Carlo N Particle-X version (MCNPX) code
to examine a two-by-two mixture of four diverse petroleum products (ethylene glycol, crude oil,
gasoline, and gasoil) in various volumetric ratios. As the feature extraction system, twelve time
characteristics were extracted from the received signal, and the most effective ones were selected
using correlation analysis to present reasonable inputs for neural network training. Three Multilayers
perceptron (MLP) neural networks were applied to indicate the volume ratio of three kinds of
petroleum products, and the volume ratio of the fourth product can be feasibly achieved through
the results of the three aforementioned networks. In this study, increasing accuracy was placed on
the agenda, and an RMSE < 1.21 indicates this high accuracy. Increasing the accuracy of predicting
volume ratio, which is due to the use of appropriate characteristics as the neural network input, is
the most important innovation in this study, which is why the proposed system can be used as an
efficient method in the oil industry.

Keywords: computational intelligence; monitoring characteristics; oil and petrochemical fluids;
feature extraction; radiation

1. Introduction

Poly-pipelines are mostly applied in the petrochemical industry for oil transmission
or its derivatives to distribution centers. Using a pipeline to transport diverse petroleum
fluids is highly economic; however, some problems such as mixing various petroleum
fluids indicate the significance of extending a sustainable, non-invasive technique to control
and detect the interference region. Due to the mentioned issue, a number of verifications
have been conducted, which are concisely demonstrated. Salgado et al. established a
petrochemical product density detection system, including a CS-137 source and a NaI
detector [1]. The MCNPX code was utilized in such an examination. Via an artificial neural
network, the scholars could predict the density of petroleum products with high accuracy
independent of fluid admixture. Likewise, for Monte Carlo code validation, they staged
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a laboratory structure using a cesium source, a glass pipe, and a sodium iodide detector.
Various volume percentages were simulated for both oil and water fluids. They could
determine the volume percentages with 99% accuracy [2]. In other analyses, the authors
simulated two-phase [3–5] and three-phase [6–8] at diverse volumetric percentages and
flow regimes. It is worth noting that with different neural networks, such as MLP [9,10],
RBF [11,12], an adaptive neuro-fuzzy inference system [13], the Jaya algorithm [14], and the
GMDH neural network [15], the mentioned parameters were determined. Although the
mentioned studies were able to obtain the volume percentages and types of flow regimes,
not using the feature extraction techniques from the received signals reduced the accuracy
and increased the computational cost in the presented systems. Nowadays, the application
of characteristic derivation methods such as time-domain [16,17], frequency domain [18],
and time-frequency domain [19] is of high significance for the authors. In all concerned
investigations, the authors have provided various characteristics to distinguish the kind
of flow regimes and detect the volume percentages. Sattari et al. applied a GMDH neural
network to detect the kind of flow regimes and volume percentages [20]. By MCNPX
code, these researchers simulated a frame including a CS-137 source, a Pyrex pipe, and a
NaI detector. They derived the time domain features of the detected signal and regarded
them as neural network inputs. They could classify all flow regimes and predict volume
percentages with an RMSE < 1.1.

Currently, due to numerous advantages, using X-ray tubes is of high prominence for
authors. The utilization of X-ray tubes as a source has the following benefits rather than
the other sources such as radioisotopes. The X-ray tube can adjust the distributed photon
energy, while the photon emission energy is stable in radioisotopes. It is highly noted that
the radioisotope functions decline over time; however, the X-ray tube does not work this
way. The X-ray tube can be turned on and off, which is highly prominent for individual
health when dealing with these instruments. They are also more feasible to transport
than radioisotopes. In previous research, Roshani et al. presented a fluid controlling
system passing over transfer tubes [21]. Although they forecasted the volumetric ratio of
petroleum products with significant precision, seemingly one of the issues in this study
is the lack of using characteristic derivation methods. More studies have been performed
for detecting the volume percentages of two-phase [22,23] and three-phase [24,25] flows
by X-ray tubes. As the scholars believe, the characteristic extraction methods enhance the
precision of detecting the sort of flow regimes and volume percentages. The simulated
structure in this study becomes validated with numerous experiments in our preceding
work [11]. The experiments and, therefore, the simulations have been carried out inside the
static situation. The actual running situation is dynamic; however, the reference points for
schooling the detection device are fixed, and it is able to be taken into consideration as a
static situation. These constant points have been used for schooling the detection device so
that you can decide the volume ratio in the detection device in an actual situation. In [26],
prompt gamma-ray neutron activation evaluation for the quantitative evaluation was
taken into consideration for rapid, non-intrusive and online measurements of multiphase
oil/gas/seawater flow. In this study, all the simulations have been taken into consideration
in a static situation before being utilized in an actual situation. In [27], the feasibility of
the usage of detection of transmitted and scattered gamma radiation for characterization
of produced water from offshore oil wells has been demonstrated. By the approach of
transmitted and scattered gamma rays and calibration measurements, the salinity and sort
of salt within the produced water have been determined. All of the simulations have been
in a. static situation; however, they were eventually utilized in an actual situation.

Increasing the accuracy of diagnostic systems is one of the most important challenges
for researchers in this field. Inspired by former research, in this study, it is attempted to
provide a high-accuracy controlling system that recognizes the volume ratio of diverse oil
products. This increase in accuracy has been achieved by extracting time characteristics and
finding the most appropriate ones using correlation analysis as well as designing a suitable
neural network. The recent paper will be proposed as follows. First, the structure of the
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simulation will be illustrated in detail. The second section represents the feature extraction
technique to derive the received signal features. In the next part, the MLP neural network
will be mentioned, and the results, as well as the precision of the designed networks, will
be indicated. Finally, the conclusion is proposed in the last section.

2. Simulation System

The simulation setup includes an X-ray tube, a pipe, and a NaI detector (Figure 1) and
was conducted through MCNPX code [28]. A normal industrial X-ray tube was applied
in this study. The electron source and a tungsten/rubidium target are embedded in X-ray
tubes as the cathode and anode, respectively. Likewise, the shields with an output window,
as well as a filter against the output window, are utilized. A perfect X-ray tube simulation by
MCNPX code is time-demanding, in which an emitted electron from the cathode responds
to the anode and generates an X-ray emission. Since the calculation of photons passing
MCNPX code is lower than the electron, in this study, a source of photons mounted in
an X-ray tube’s shield was considered for a cathode–anode collection. TASMIC, a free
package proposed by Hernandez et al. [29], was utilized. It is worth noting that numerous
investigations have been performed on X-ray spectra generation by both theoretical and
MCNP techniques [30,31]. Figure 2 indicates the normalized conducted X-ray spectrum,
as well as the characteristics of X-ray peaks in relevance to the tungsten target (Kα1, Kα2,
Kβ1, and Kβ2). The previously mentioned photon source was embedded in a cylinder
serving as an X-ray tube layer. The circular profile on the X-ray tube acting as the output
window is 5 cm. It is highly important to mention that the cylindrical shape commonly
constitutes the X-ray tube shields made up of lead or steel to prevent the converse radiation
diffusions generated by X-ray. On the shield surface, a section is left open, as the output
window, in order to release the congenial generated X-ray photons. To filter low-energy
photons in this research, an aluminum filter having a thickness of 2.5 mm was mounted
against the output window.
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Figure 1. The simulation setup. Figure 1. The simulation setup.

Transmitting pipes are applied to transmit different petroleum products, in some
sections of which are followed by each other and are combined together. This zone is known
as the interface region. In this study, four kinds of petroleum products—ethylene glycol,
crude oil, gasoil, and gasoline—with densities of 1.114, 0.975, 0.826, and 0.721 g·cm−1,
respectively, are considered as crossing fluids through the pipe. By combining two-by-two
of the total of the mentioned products, six admixtures will be achieved. Different volume
ratios from 0% to 100% with 5% steps were simulated for six various whole states (in the
current study, 118 simulations have been conducted). Data from all the simulations were
gathered by an NaI detector using a pulse height tally (tally type F8) in Monte Carlo code
and applied for future processing. Pseudo-random number generators (PRNG), which are
intensively used in many stochastic algorithms in particle simulations and artificial neural
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networks, were used in MCNP code. Furthermore, the “STOP” card was used for obtaining
the desired error in simulations.
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3. Feature Extraction

There are various methods for extracting the characteristics of a signal, including the
extraction of characteristics in the time domain, in the frequency domain, and combined
methods in the time-frequency domain, as well as innovative methods. The purpose of
feature extraction is to reduce the size of the signals while preserving the signal properties
as well as better interpreting the signals. In this research, the feature extraction technique
in the time domain was used. For this purpose, twelve features were extracted from the
received signal as follows:

• Average value:

m =
1
N ∑N

n=1 x(n) (1)

• Standard deviation:

STD =

√
1

N − 1 ∑N
n=1|xn −m|2 (2)

• Fourth-order moment:

m4 =
1
N ∑N

n=1[x(n)−m]4 (3)

• Root mean square:

RMS =
√

m2 + σ2 (4)

• Skewness:

g1 =
m3

σ3 , m3 =
1
N ∑N

n=1[xn −m]3 (5)

• Kurtosis:

g2 =
m4

σ4 (6)

• Median: {
odd median = xk k = n+1

2
even median = 1

2 (xk + xk+1) k = n
2

(7)

• Waveform length (WL):

WL = ∑N−1
n=0 |xn+1 − xn| (8)
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• Absolute value of the summation of square root (ASS):

ASS =
∣∣∣∑N

n=1(xn)
0.5
∣∣∣ (9)

• Mean value of the square root (MSR):

MSR =
1
N ∑N

n=1(xn)
0.5 (10)

• Absolute value of the summation of the exp th root (ASM):

ASM = |∑
N
n=1(xn)

exp

N
|, exp =

{
0.05 i f (n > 0.25·N and n < 0.75·N)

0.75 otherwise
(11)

• Maximum value:
Max = MAX (xn) (12)

One of the most important challenges of this research is to determine the most effective
characteristic for determining the volume ratio of each oil product. Correlation analysis
was used for this purpose. The result of the correlation analysis between the extracted
characteristics is shown in Figure 3. As shown in this figure, many features are very
similar to each other, and their selection as the network input is ineffective. However, the
characteristics of the fourth-order moment, skewness, and kurtosis are the least similar to
each other, so these characteristics have been selected as the input of the neural network.
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4. Artificial Neural Network

In the past few decades, various advanced computational methods have been applied
in various fields of study such as chemical engineering [32–37], electrical and computer
engineering [38–41], civil engineering [42–44], mechanical engineering [45–51], petroleum
engineering [52–63], and environmental engineering [64,65], etc. The ANN has been
demonstrated to be the most potent technique for classification and prediction among
the aforementioned computational methods. A type of neural network is based on a
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computational unit called a perceptron. A perceptron takes vectors of inputs with real
values and calculates a linear combination of these inputs. If the result is more than
a threshold value, the perceptron output will be equal to 1 and otherwise equal to −1.
Perceptron output is determined by the following equation [66,67]:

y = f (∑u
i=1 wixi + wi) (13)

In case the perceptron has two inputs x1 and x2, it divides the page into two parts, and
the equation of the dividing line is determined as follows:

w1x1 + w2x2 + w0 = 0 (14)

Therefore, the perceptron can be considered as a hyperplane in the n-dimensional space
of the samples. Perceptron sets a value of 1 for samples on one side of the page and −1 for
values on the other side of the screen and can only learn examples that are linearly separable.
Such examples are cases that can be completely separated by a hyperplane. The purpose of
training a perceptron is to find the values of its weights, so that the perceptron generates the
correct values for the training examples. Different kinds of numerical calculations [68–78]
and soft computing [79–86] have been used in various fields such as electrical engineering
problems [87–102], computer sciences problems [103,104], and basic sciences [105–109], etc.
In this paper, the perceptron learning algorithm is as follows—this algorithm is shown in
Figure 4 as a flowchart:

1. Random values are attributed to weights.
2. Perceptron is applied to each training sample. If the samples are evaluated incorrectly,

the values of perceptron weights are corrected.
3. Is all the training properly evaluated?
4. Yes, the end of the algorithm.
5. No, back to step 2.

Networks made of one neuron have limitations. These networks do not have the
ability to implement nonlinear functions. Other networks have been suggested to solve
this problem. Multilayer perceptron (MLP) networks are among the most useful neural
networks. This network is able to perform a nonlinear mapping with high accuracy, and this
is what is proposed in engineering problems as the main solution. This network represents
feed forward networks, and the output is calculated directly from the input without any
feedback. The neuron model in the MLP network includes a nonlinear activation function.
The important point to emphasize here is that the activation function must be continuous
and derivable at all points. The nonlinearity of the activation function is very important
because, otherwise, the network performance will be reduced to the level of the single-layer
perceptron.

The obtained data are divided into three categories: training, validation and testing data.
Training dataset: The data that the network sees and learns with. The model fits with

these data.
Validation dataset: The dataset that is used as input for the network validating during

training to evaluate the training process. The neural network sees these dates but is not
trained with them.

Testing dataset: The dataset is injected into the neural network at the end of the
training process to test the final performance of the designed network.

The use of the validation test data in the network training process will give us the
reassurance to avoid under-fitting and over-fitting problems.

The used validation methods and training processes in this paper are well-known
methods in most modeling and optimization problems, which have been used in many
studies [110–115]. In several studies [116–125], different mathematical methods such as
feature extraction, feature reduction, feature selection, correlation analysis, and numerical
calculation, etc., have been used. In this study, feature extraction in the time domain and
correlation analysis were used in order to present a novel metering system.
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5. Results Verification

In this study, the characteristics selected using correlation analysis were used as neural
network inputs to determine the volume ratio. Three artificial neural networks were
established to predict the volume ratios of ethylene glycol, crude oil, and gasoil. The
structure of these networks is shown in Figure 5. By recognizing the volume ratio of the
three given products, the ratio of the fourth product, i.e., gasoline, can be feasibly estimated.
The features of the designed networks are visible in Table 1.
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Table 1. The characteristics of designed networks.

ANN Kind
MLP

Ethylene Glycol Gasoil Crude Oil

No. of neurons in input layer 3 3 3

No. of neurons in the 1st hidden layer 24 20 15

No. of neurons in the 2nd hidden layer 11 12 5

No. of neurons in the output layer 1 1 1

No. of epoch 500 480 640

Activation function used for each hidden neuron Tansig Tansig Tansig

Regression and error histogram diagrams in relevance to training, validation, and
test data are obvious in Figures 6–8 to display the precision of the designated networks.
Regarding these three figures, in the regression diagram, the closer the red circles (repre-
senting the network output) to the black line (representing the target output), the higher
the accuracy of the designed network. The error histogram plot also clearly shows the
scatter of error between the desired output and the network output. The most prominent
scale for assessing the operation of artificial neural networks is prediction precision. Some
of the most significant prediction precision criteria calculated in this study are:

Root Mean Square Error (RMSE) =
∑N

j=1
(
ej
)2

N
(15)

Mean Absolut Error (MAE) =
1
N ∑N

j=1|e| (16)

where e is the error, and N presents the data number.
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The amount of these calculated errors for all three implemented networks and for
training, validation and test data is shown in Table 2. The volume ratio of three products,
namely ethylene glycol, crude oil, and gasoil, were obtained using an artificial neural
network. The volume percentage of the fourth product (gasoline) can be easily calculated
by subtracting the volume percentage of the three products from 100% of the pipe volume,
which is shown graphically in Figure 9. The general process of the article to determine
the percentage of volume ratios can be seen in Figure 10. The steps of determining the
volume ratio include data acquisition, extracting time-domain features, introducing the
most appropriate characteristics using correlation analysis, using selected features as neural
network input for training, and finally, volume ratio prediction.

Table 2. The estimated error for established networks.

Train Data Validation Data Test Data

RMSE MAE RMSE MAE RMSE MAE

Ethylene glycol 0.91 0.68 1.16 1.03 1.13 0.99

Crude oil 0.27 0.14 0.94 0.76 1.07 0.86

Gasoil 0.21 0.15 1.21 1.06 1.03 0.89
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6. Discussion

In this study, for designing neural networks with high accuracy, networks with a
different number of layers, from one layer to four layers, and with a different number of
neurons in each layer were designed and their accuracy was examined. The design of these
neural networks was achieved with the help of MATLAB R2018b software, and in this
software, there is a function called “newff” for designing the multilayer perceptron neural



Energies 2022, 15, 1986 14 of 19

network. No pre-designed toolboxes have been used and all the steps of training, validation,
and testing of the network have been programmed step by step. The Levenberg–Marquardt
algorithm has been used to train neural networks. This function does not provide users
with any information about parameters such as momentum and learning rate, and the
important challenge in using this function is to design a suitable structure to predict the
target output with high accuracy. The high accuracy obtained in this research is a strong
reason for the high performance of designed networks.

7. Conclusions

In the proposed article, the monitoring system consists of an X-ray tube, a NaI detector,
and a pipe that has been simulated by MCNPX code. By simulating the combination of four
petroleum products in diverse volume ratios and data collection registered by the detector,
the time domain feature extraction method was utilized to derive the data characteristics,
and a correlation analysis was applied to determine efficient ones. After that, the derived
specifications were applied for implementing three MLP neural networks to predict the
volume ratio of ethylene glycol, crude oil and gasoil. The designed networks were able to
predict the volume ratio of ethylene glycol, crude oil and gasoil with RMSE less than 1.16,
1.07, and 1.21, respectively. It is highly noted that after estimating the volume ratio of three
products, the volume ratio of the fourth product is feasibly estimated. Although the X-ray
tube and radioisotopes have been utilized in previous research, applying the time-domain
feature extraction technique and correlation analysis are the most important novelties of
the proposed investigation, in which a high precision in determining the volumetric ratio
(RMSE of less than 1.21) is the most profound result of applying this method. The use of
frequency and time-frequency characteristics, as well as the use of different neural networks
such as GMDH and RBF, can be a good clue for researchers in future research.
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