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Abstract: This paper addresses the problem of Distribution Systems Reconfiguration (DSR), which
consists of finding the state of switching devices (open or closed) in a given distribution network,
aiming to minimize active power loses. DSR is modeled as a mixed-integer non-linear optimization
problem, in which the integer variables represent the state of the switches, and the continuous
variables represent the power flowing through the branches. Given the multi-modal and non-convex
nature of the problem, an improved harmony search (IHS) algorithm is proposed to solve the DSR
problem. The main novelty of this approach is the inclusion of a Path Relinking phase which
accelerates convergence of the DSR problem. Several tests were carried out in four benchmark
distribution systems, evidencing the effectiveness and applicability of the proposed approach.

Keywords: distribution networks; metaheuristics; optimization; power losses; reconfiguration

1. Introduction

Distribution systems play a key role in the electricity supply chain. Their main
purpose consist on meeting the customer’s demand after receiving the bulk electrical
energy from a transmission or sub-transmission substation. To reduce operation costs
and facilitate the coordination of protections, distribution systems are usually built in a
mesh way, but operate radially [1,2]. Such constructive characteristic also facilitates solving
restoration and reconfiguration problems [3]. Given its importance, distribution network
operators must be attentive to new tools and procedures that allow them to improve the
quality and efficiency of supply [4]. Minimizing active power losses is one of the ways
to improve the efficiency of distribution systems. Different ways of minimizing active
power losses in distribution networks are reported in the specialized literature. These
include the repowering of conductors [5], location of new elements such as distributed
generation (DG) [6,7] and network reconfiguration [8,9]. The latter consists of opening and
closing switches, keeping the radial topology of the network with the main objectives of
loss reduction and voltage improvement.

Distribution systems reconfiguration (DSR) is a large-scale, non-convex optimization
problem whose solution is a challenging task. Several researchers have proposed different
approaches to solve the DSR problem, among which metaheuristic techniques stand up.
In [10], the DSR is formulated as a mixed integer programming problem for loss minimiza-
tion and solved through a genetic algorithm (GA). The authors also included a penalty for
voltage drop violations. In [11,12], the DSR problem is solved by means of a simulated
annealing (SA) technique. Although this algorithm is efficient, its implementation is limited
to small-scale test systems.
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In [13], a binary integer programming method of feeder reconfiguration is presented
for loss minimization in distribution systems. Within this methodology, it is taken into
account the fact that the composition of loads in every feeder may be different, and their
loading patterns may also vary with time; nonetheless, presenting power losses in this way
is complicated for medium and large-sized distribution systems. To overcome this issue,
the authors in [14] proposed a network partitioning theory able to achieve online distribu-
tion system reconfiguration for loss reduction. In this case, the distribution network is split
into several groups of buses and the power losses between these groups are minimized.

In [15], the authors propose a non-linear heuristic constructive method for distribution
system reconfiguration. In this case, the configuration with the smallest discrete increase
in active power losses is selected by picking up and adding loads as incremental steps.
The authors of [16] introduced a new approach to solve the DSR problem. In this case,
the standard Newton method with second derivatives was used to compute branch cur-
rents; in addition, the increase in power losses of each branch was estimated through
quadratic terms of the branch current. This approach turned out to be effective for real-size
distribution systems. In order to reduce the computing time and number of power flows
evaluated, the authors in [17] modeled the DSR as an optimal power flow problem through
sensitivity analysis.

Radiality constraints have always posed a major challenge when modeling distribu-
tion system optimization problems. In [18], the authors proposed a new way to include
radiality constraints in the DSR problem. Such constraints are considered in a simple and
efficient way through a proper handling of transfer nodes (nodes without load). Nonethe-
less, this strategy increases computation time. In [19], distribution systems are modeled
as planar graphs and their radiality constraints are considered as a spanning tree opti-
mization problem using graph theory. This formulation allows for the reduction of the
reconfiguration time of planar networks; nonetheless, it cannot be applied to non-planar
distribution systems.

Taylor and Hover [20] proposed second-order cone programming models for distri-
bution system reconfiguration and present quadratically constrained and second-order
cone approximations to power flow in radial networks. These type of models guarantee
convexity but require high computational resources; therefore, they are limited to small
and medium-size distribution systems. To overcome this issue, the authors in [21] pro-
posed a mixed-integer linear programming model for finding the tree of minimum active
power losses. Nonetheless, this methodology depends on a set of parameters that must
be tuned for each specific system. In addition, according to [8], the approximations im-
plemented may degrade the performance of the model when solving highly non-linear
combinatory problems.

In [22], a mixed integer linear programming (MILP) model is proposed to solve the
DSR problem considering load variations and uncertainty; nonetheless, the piecewise
linear approximations implemented in the model reduce the accuracy of solution and limit
the application to small-scale distribution systems. In [23], the authors include demand
response (DR) in the reconfiguration problem not only to reduce power losses but also to
increase network reliability. Following a similar approach, the authors in [24] propose a
dynamic DSR approach also considering battery energy storage systems and renewable
resources; nonetheless, the application is carried out from the standpoint of the distribution
system operator and is also limited to small and medium-size distribution systems. In [25],
an Improved Harmony Search (IHS) algorithm is developed to solve the DSR problem.
The authors also present an effective system impedance matrix based process to detect
isolated nodes as a strategy to meet the radiality constraint.

There are several limitations related to all metaheuristic techniques: (i) global optimal
solutions are not guaranteed, (ii) several parameters must be fine-tuned for the proper
performance of the metaheuristic and (iii) they usually imply high computational cost.
In this paper, we deal with this last issue. This paper presents an efficient way of solving
the DSR problem by means of an IHS algorithm. The main contribution of this paper is



Energies 2022, 15, 2083 3 of 15

the improvement of the algorithm presented in [25]. In the proposed approach, a Path
Relinking phase is added which accelerates the convergence of the algorithm. The tests
carried out in several benchmark distribution systems allow for the conclusion that the
proposed methodology is an effective way of approaching the DSR problem in medium-
sized and large distribution systems. Finally, it is worth mentioning that the performance
improvement of the HS algorithm implemented in this paper can be extrapolated to other
applications different from the DSR problem.

2. Reconfiguration in Distribution Systems

The DSR problem presents high mathematical complexity. This is due to the fact that
it involves binary and continuous decision variables along with non-linear constraints and
objective function. Furthermore, a normal operative condition must be guaranteed when
solving the DSR problem, which is verified by solving the system power flow.

Basically, the traditional DSR study seeks to find an optimal topology that generates
the lowest possible losses in the system under study. The system topologies are generated
by opening/closing the disconnecting switches present in the system branches. The DSR
problem does not involve the installation of new equipment or new power generation.
The only costs of the DNR are the ones associated with opening or closing switches, which
are negligible. Within the mathematical optimization models reported in the technical
literature to solve the DSR problem, the model proposed in [18] stands out. The proposed
mathematical formulation is given by Equations (1)–(7).

min Ptotal
loss = ∑

(i,j)∈Ωl

[
αijgij(V2

i + V2
j − 2ViVjcosθij)

]
(1)

subject to:

PSi − PDi − ∑
i∈Ωb

αijPij = 0; ∀i ∈ Ωb (2)

QSi −QDi − ∑
i∈Ωb

αijQij = 0; ∀i ∈ Ωb (3)

Vmin ≤ Vi ≤ Vmax; ∀i ∈ Ωb (4)

xij

(
I2
Reij

+ I2
Imij

)
≤ I2

maxij
; ∀(ij) ∈ Ωl (5)

∑
(ij)∈Ωl

αij = (nb − 1) (6)

αij ∈ [0, 1]; ∀(ij) ∈ Ωl (7)

Equation (1) represents the objective function, which is the minimization of the total
active power losses of the distribution system. In this case, Ωl is the set of system branches,
αij is a binary variable that indicates if the switch of the corresponding branch ij is open
(zero) or closed (one), gij is the line conductance and Vi and Vj are the voltage magnitudes
at nodes i and j, respectively. Finally, θij is the difference of the voltage angles between
nodes i and j.

The constraint given by Equation (2) represents the active power balance in the nodes
of the distribution system. PSi and PDi represent the active power generated and demanded
at node i, respectively; while Pij is the active power flow from node i to node j. Note that the
power flow is multiplied by the binary variable that indicates whether the corresponding
switch of the branch is open or closed. Equation (3) represents the reactive power balance
which is analogous to the aforementioned constraint regarding active power. In this case,
QSi and QDi represent the reactive power generated and demanded at node i, respectively;
while Qij is the active power flow from node i to node j. Note that this variable is also
multiplied by αij to indicate whether or not there is reactive power flow in branch ij.

Equation (4) represents the limits of voltage magnitudes, where Vmin and Vmax indicate
the minimum and maximum limits of Vi, respectively. Constraint given by (5) represents
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the maximum current capacity of branch ij. In this case, xij is the reactance of branch ij, IReij
and IImij are the real and imaginary components of the current in branch ij, respectively
and Imaxij is the maximum current allowed in branch ij. Equation (6) corresponds to the
basic radiality constraint of the distribution system where nb represents the number of
nodes. Finally, (7) is the declaration of the binary variable αij associated with the state of
the switch (open/closed) in branch ij.

For the solution of the DSR problem, the constraint given by Equation (6) alone is not
enough to ensure the radiality of the network under study, in the sense that a configuration
may present islanding (nodes electrically disconnected from the rest of the network) even
when meeting condition (6). For this reason, it is necessary to complement the verification
of constraint (6) with the use of methods for detecting islanding, which are usually based
on graph theory. In this work, we used the method proposed in [25] to test the radiality
of each new configuration obtained in the process of finding the optimal solution of the
DSR problem.

3. Implemented Algorithms

Three algorithms were implemented to solve the DSR problem, namely: Harmony
Search, Improved Harmony Search and Improved Harmony Search with Path Relinking.
It is worth mentioning that all metaheuristic techniques, these included, present certain
drawbacks such as the fact of not guaranteeing global optimal solutions, the fine-tuning of
several parameters and high computational cost. The contribution of this paper is focused
on this last issue. The implemented algorithms are described below.

3.1. Harmony Search (HS)

The Harmony Search (HS) optimization method, proposed in [26], is inspired by
the improvisation and memorization process of musical groups, in which each decision
variable of the optimization problem is equivalent to a musical instrument, while the fitness
or objective function corresponds to the appreciation of the listeners. An iteration of the
solution process is analogous to the improvisation of musicians in the search for new
harmonies, and the optimal solution of the problem corresponds to the perfect harmony
achieved. HS algorithm presents five main control parameters: Harmony Memory Size
(HMS), which determines the amount of solutions stored in memory; Harmony Memory
Consideration Rate (HMCR), which defines the probability of creating a new solution
based on those stored in memory; Pitch Adjustment Rate (PAR), that acts as a perturbation
mechanism; BandWidth (BW) which determines the adjustment range of the value of each
decision variable (in the case of continuous variables); and Number of Improvisations (K),
which acts as a stopping condition for the iterative process.

Infeasible solutions obtained during the iterative process of the HS algorithm are
discarded. The set of best feasible solutions is stored in a matrix called Harmony Memory
(HM). Equation (8) exemplifies the HM matrix for an optimization problem with N decision
variables xi ∈ Xi, i = 1, . . . , N where Xi corresponds to the range of possible values for
each variable xi. In the HM matrix, each column refers to the value of the i-th decision
variable of the problem and each row corresponds to the vector of the j-th solution xj with
objective function value f (xj), j = 1, . . . , HMS.

HM =



x1
1 · · · x1

i · · · x1
N f

(
x1)

...
. . .

...
...

...
...

xj
1 · · · xj

i · · · xj
N f

(
xj)

...
...

...
. . .

...
...

xHMS
1 · · · xHMS

i · · · xHMS
N f

(
xHMS )


(8)

HS algorithm starts by initializing the general control parameters (HMS, HMCR,
PAR, BW and K) and the initial randomly generated HM matrix. At each iteration of
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the HS algorithm, a new solution vector xnew = (xnew
1 , . . . , xnew

i , . . . , xnew
N ) is obtained

based on three rules: memory consideration, pitch adjustment and random selection.
Algorithm 1 shows the search mechanism for new solutions, where rand1 and rand2 are
random numbers of uniform distribution between 0 and 1. For each new solution xnew

that meets the constraints of the problem (feasibility analysis), the value of the objective
function or fitness criterion is calculated and, if the new solution is better than the worst
fitness solution stored in the HM matrix, the new solution enters the set of solutions of
the HM matrix in place of the worst solution. The process is repeated until the adopted
number of improvisations K is reached and the solution that presents the best objective
function or fitness criterion is chosen as the optimal solution of the optimization problem.

Algorithm 1: HS search process for new solutions.

1 for i← 1 to N do
2 if (rand1 < HMCR) then (memory consideration)
3 xnew

i ← xi ∈ [x1
i ,x2

i ,. . . ,xHMS
i ]T (random selection)

4 if (rand2 < PAR) then (pitch adjustment)
5 xnew

i ← x(i+c), c ∈ [−1, 1] (discrete variable)
6 xnew

i ← xi ± bw× rand2 (continuous variable)
7 end if
8 else (no memory consideration)
9 xnew

i ← xi ∈ Xi (random selection)
10 end if
11 end for

3.2. Improved Harmony Search (IHS)

As discussed in [25], applying HS to the DSR problem may require too many iterations
when the search space is too large (typically, large networks), such that the HS algorithm
may get stuck momentarily in local minima or even fail to find the global minimum.
To overcome these difficulties, improvements in the solution finding process of the HS
algorithm were proposed in the literature. In [27], a dynamic modification of the PAR and
BW parameters in each iteration is proposed, as a way to mitigate the difficulty of the basic
version of HS in obtaining optimal solutions as a result of the parameters remaining fixed
throughout the improvisation process. In [28], a modification of the pitch tuning process is
proposed, where the value of PAR is dynamically adjusted based on a range of values and
the maximum number of improvisations.

In [29], an alternative version of HS entitled Improved Harmony Search (IHS) is pre-
sented, applied to the discrete-time chaotic system synchronization problem. The authors
propose the variation of PAR based on Equations (9) and (10) at each iteration i.

PAR(i) = PARmin + (PARmax − PARmin)× degree (9)

degree = [Fmax(i)−mean(F)]÷ [Fmax(i)− Fmin(i)] (10)

In this case, PARmin and PARmax represent the smallest and largest value assigned
to the PAR fit, respectively, Fmin(i) and Fmax(i) correspond to the smallest and largest
objective or fitness function value stored in the HM matrix, respectively, and mean(F) is
the average value of all the objective or fitness functions stored in the HM. As shown
by Equations (9) and (10), the adaptive nature of PAR is attributed to the degree variable,
which depends only on data from the HM memory matrix for its adjustment to each
improvisation/iteration of the algorithm. Algorithm 2 presents the implementation of the
IHS metaheuristic for discrete decision variables.



Energies 2022, 15, 2083 6 of 15

Algorithm 2: IHS search process for new solutions.

1 for i← 1 to K do
2 grade1 ← Calc(min( f itness(HM)), max( f itness(HM)), average( f itness(HM)))
3 PARi ← Calc(PARmin, PARmax, gradei)
4 if rand1 < HMCR then (memory consideration)
5 xnew

i ← xi ∈ [x1
i ,x2

i ,. . . ,xHMS
i ]T (random selection)

6 if rand2 < PAR then (pitch adjustment)
7 xnew

i ← x(i+c), c ∈ [−1, 1]
8 end if
9 else (no memory consideration)

10 xnew
i ← xi ∈ Xi (random selection)

11 end if
12 end for

3.3. Path Relinking

In [25], the IHS algorithm is applied to the DSR problem, where a higher convergence
speed compared to the basic HS is verified by the authors of the paper. This work aims
to propose an improvement of the IHS algorithm with the introduction of the search
mechanism known as Path Relinking.

Path Relinking is a generalization of the application of Scatter Search. This search
method has two principles: (1) the capture of information contained separately in original
vectors and (2) the heuristic selection of elements that need to be recombined to generate
new vectors of individuals. According to [30], Path Relinking is an evolutionary method
that operates with a population of solutions rather than a single solution, which allows the
combination of pre-existing solutions, generating new solutions by exploring paths that
can connect to high-quality solutions. The sweeping flow method under study is as follows:
it starts by choosing an initial solution, calculating the symmetric difference between the
two solutions. By definition, the symmetric difference is the cardinality of the set of moves
required to go from the initial solution to the target solution. The closure of the process
occurs when the symmetric difference between the target solution and the final solution is
less than or equal to zero.

Figure 1 illustrates the basic steps performed by Path Relinking for the network
reconfiguration problem. The algorithm starts by randomly selecting a predefined number
of solutions stored in the HM, then the necessary moves are calculated to reach the target
solution from these initial solutions, which corresponds to the best solution obtained so
far by the algorithm. Then, the algorithm selects the movement that provides the best
objective function (highlighted line), and from there the procedure is repeated until the
initial solution is equal to or better than the target solution.

Figure 1. Example of Path Relinking applied to the DSR problem.
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As presented in [31], several alternatives can be considered and combined in Path
Relinking implementations:

• Periodical relinking: the mechanism is not applied continuously but periodically
(i.e., every predefined number of iterations of the main algorithm).

• Forward relinking: the mechanism is applied using the worst one between xs and xt
as the initial solution and the other one as the target solution.

• Backward relinking: the mechanism is applied using the best one between xs and xt
as the initial solution and the other one as the target solution.

• Back and forward relinking: two different trajectories are explored, the first one using
xs as the initial solution and the second one using xt for this condition.

• Mixed relinking: two paths are explored concurrently, the first one starting from xs
and the second from xt, until they meet at an intermediate solution equidistant from
xs and xt.

• Randomized relinking: instead of selecting the best movement, one is randomly
selected from a list of candidates with the most favorable movements on the path
being investigated.

• Truncated relinking: the total trajectory between xs and xt is not explored but only
part of it.

In this work, the alternatives Backward relinking, Periodical relinking, Randomized
relinking and Truncated relinking are implemented simultaneously. Path Relinking is
carried out within the IHS algorithm with the intention of performing a perturbation in
the HM matrix and thus accelerating the process of finding better solutions. For each test
system, a different frequency (called PR rate) is defined for the execution of Path Relinking,
corresponding to a fixed number of iterations of the IHS algorithm that are executed before
applying the Path Relinking process. For the initial solutions, 25% of the best solutions
are stored in the current HM matrix and the current best solution is selected as the target
solution. If the solution found in the local search has a better objective function than the
worst solution stored in the HM, it will replace that solution in the HM. The search process
continues until a new solution better than the target solution is found. If it is not found,
the process is terminated after performing a predefined number of iterations (in this work,
it is set at 5% of the maximum number of iterations of the IHS algorithm). Algorithm 3
describes the implemented Path Relinking mechanism.

Algorithm 3: Path Relinking search process for new solutions.

1 Input: starting solution xs and target solution xt
2 Output: best solution xb in path from xs to xt
3 while ∆(xi, xt) > 0 : difference between xi and xt
4 xi ← rand(xs)
5 if ∆(xi, xt) < 0 : difference between xi and xt

6 xHMS ← xi (xHMS worst solution)
7 break
8 else if ∆(xi, xs) < 0 : difference between xi and xs

9 xHMS ← xi (xHMS worst solution)
10 end if
11 if 5% · K = true
12 break
13 end if
14 end while

In order to illustrate the improvements made to the IHS algorithm, Figure 2 presents
the flowchart of the proposed methodology for solving the DSR problem.
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Figure 2. Implementation of the IHS and Path Relinking algorithm to the DSR problem.

4. Tests and Results

In order to demonstrate the applicability and effectiveness of the IHS algorithm with
the addition of Path Relinking proposed in this paper, several tests were carried out in four
benchmark distribution systems: 14-bus test system [32], 33-bus test system [33], 84-bus
test system [34] and 119-bus test system [35].

Table 1 summarizes the results obtained with the aforementioned test systems. The sim-
ulations were implemented in MATLAB software with a base power of 100 MVA for all
systems. A solution to the reconfiguration problem is found for each test system using the
IHS algorithm presented in Section 3. This validation aims to compare the results with
those reported in the technical literature and ensure that the proposed approach is effective
and reliable. For the benchmark distribution systems, it was found that all tests carried out
with the proposed IHS algorithm were able to accurately obtain the optimal configuration
of each test system as reported in [25,36–38].

Table 1 details, for the base case and optimized configuration, the open switches
and total active power losses. Furthermore, the parameters of the IHS algorithm are also
presented. It should be noted that in all cases, an important reduction of active power losses
is obtained after reconfiguration. In this case, a variable PAR adjustment was used, ranging
between 0.28 and 0.33. The additional parameters implemented and the comparative results
of HS, IHS and IHS+Path algorithms, for each test system under study, are detailed as
follows. In this case, 200 simulations were carried out for each algorithm and distribution
test system.
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Table 1. Results obtained for different test systems.

Test System
Base Configuration Proposed IHS Solution

Loss Reduction (%)
Open Switches Losses (kW) IHS Parameters Best Configuration Losses (kW)

14-Bus
s11; s13;
s16 511.43

N = 3
HMS = 5
HMCR = 0.85
K = 130

s7; s12, s16 466.13 9.77

33-Bus
s33; s34;
s35; s36;
s37

202.68

N = 3
HMS = 20
HMCR = 0.85
K = 2000

s7; s9, s14;
s32; s37 139.55 31.15

84-Bus

s84; s85;
s86; s87;
s88; s89,
s90; s91;
s92; s93;
s94; s95;
s96

531.99

N = 3
HMS = 20
HMCR = 0.85
K = 5000

s7; s13; s34;
s39; s55; s62 469.87 11.68

119-Bus

s119; s120;
s121; s122;
s123; s124;
s125; s126;
s126; s127;
s128; s129;
s130; s131;
s132;
s133

1298.1

N = 3
HMS = 20
HMCR = 0.85
K = 15,000

s23; s25; s34;
s39; s42; s50;
s58; s71; s74;
s95; s97; s109,
s121; s129;
s130

854.03 34.21

The 14-bus test system was first introduced by [32]. It is composed of 16 branches
and 14 buses. The system operates at a nominal voltage of 23 kV and has a total active
load of 28.7 MW. Table 2 presents the comparative results between HS, IHS and IHS with
the addition of Path Relinking for Average, Standard Deviation and processing time. It is
worth mentioning that the IHS with Path Relinking (labeled in Table 2 as IHS+Path) showed
convergence to the optimal solution in all runs performed. For this analysis, a maximum
number of 300 iterations and a PR rate equal to 50 were used.

Table 2. Convergence analysis results for the 14-bus test system.

Algorithm Average Standard Deviation Time (s)

HS 49.5050 48.1178 5.5016
IHS 43.5250 47.0691 5.4253

IHS+Path 40.4000 41.9686 4.9657

Figure 3 presents a histogram that quantifies the frequency of convergence of the algo-
rithms for the 14-bus test system. To elaborate the histogram, 10 classes containing intervals
of 30 iterations were used. Based on the frequency distribution shown, it is observed for all
cases that the optimal solution is found in the execution of at most 30 iterations. It should
be noted that the use of IHS with the addition of Path Relinking presents better results
than HS and IHS because in 102 out of 200 runs, the algorithm is able to find the optimal
solution performing a smaller number of iterations.
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Figure 3. Convergence frequency of different algorithms for the 14-bus test system.

Figure 4 illustrates the convergence of the metaheuristics techniques implemented
for a random execution. The first harmony of the HM matrix is plotted on the graph for
each iteration, in order to find the optimal solution, and it can be seen that the IHS with
Path Relinking presents the best results and the HS presents the worst performance. These
results prove that the use of Path Relinking together with a metaheuristic such as IHS is
effective in reducing the computational effort when dealing with small systems such as the
14-bus test system.

Figure 4. Convergence of the algorithms implemented for the 14-bus test system.

The 33-bus test system has 37 branches operating at a nominal voltage of 12.66 kV and
features a total active demand of 3715 kW. The data of this system can be found in [33].
A maximum of 2000 iterations was used as stopping criterion and a PR rate equal to 50 was
adopted, obtaining the results presented in Table 3.

Table 3. Convergence analysis results for the 33-bus test system.

Algorithm Average Standard Deviation Time (s)

HS 256.9150 152.5867 90.7441
IHS 249.4050 144.6317 83.8367

IHS+Path 248.2450 155.7405 85.5317
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Figure 5 shows the histogram that quantifies the frequency of convergence of the
algorithms implemented for the 33-bus test system. This histogram presents 10 classes
containing intervals of 100 iterations. Based on the frequency distribution depicted in
Figure 5, the optimal solution is found by the algorithms after running more than 100 itera-
tions. It can be seen that in the classes where fewer iterations are performed, the IHS+path
algorithm had the highest frequency of occurrence.

Figure 5. Convergence frequency of different algorithms for the 33-bus test system.

Figure 6 shows the convergence of a random run of each of the implemented al-
gorithms. It can be observed that the three algorithms present similar convergences;
nonetheless, the IHS with Path Relinking achieves a faster convergence.

Figure 6. Convergence of the algorithms implemented for the 33-bus test system.

The 84-bus test system was presented by [34]. The base voltage adopted for this system
is 11.4 kV. This test system features 11 feeders, 96 disconnecting switches and a maximum
active power of 28.351 MW. In this case, a maximum number of 7000 iterations was used as
stopping criteria and a PR rate equal to 25, obtaining the results presented in Table 4.

Table 4. Convergence analysis results for the 84-bus test system.

Algorithm Average Standard Deviation Time (s)

HS 1411.5650 618.1724 15,701.49
IHS 1315.8550 519.0843 16,265.06

IHS+Path 1295.6300 551.3007 13,990.85
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Figure 7 presents the convergence histogram of the algorithms implemented for
the 84-bus test system, in which the frequency with which each algorithm converges
to the optimum is quantified. To obtain the histogram, 10 classes containing intervals of
450 iterations were used. Based on the frequency distribution shown in Figure 7, the optimal
solution is mostly found between 901 and 1350 iterations, with the IHS with Path Relinking
algorithm presenting the highest frequency.

Figure 7. Convergence frequency of different algorithms for the 84-bus test system.

In large systems, such as the 84-bus test system, the need for high computational per-
formance is evident by observing the time spent (See Table 4) to perform the required tests.

The 119-bus test system was presented by [35]. The base voltage adopted for this
system is 11 kV and it has 133 branches with their respective disconnecting switches.
The total installed active load is 22.71 MW. For this system, a maximum of 12,000 iterations
was used as a stopping criterion and a number of 50 iterations was adopted as the PR
execution rate, obtaining the results presented in Table 5.

Table 5. Convergence analysis results for the 119-bus test system.

Algorithm Average Standard Deviation Time (s)

HS 2366.8350 1911.1893 41,873.63
IHS 2227.0750 1851.4560 41,519.57

IHS+Path 2147.8500 1698.3796 40,645.44

Figure 8 presents the convergence histogram of the algorithms implemented. This
histogram illustrates the frequency of convergence of each algorithm for 10 classes con-
taining intervals of 800 iterations. Based on the frequency distribution shown in Figure 8,
the optimal solution is found after running more than 800 iterations. In this histogram,
the convergence of the IHS and IHS with Path Relinking algorithms is similar for that
interval with the highest frequency of occurrence.
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Figure 8. Convergence frequency of different algorithms for the 119-bus test system.

Comparison of Results

As described previously, for all the systems tested, the IHS algorithm with the addition
of Path Relinking presented better results with a decrease in the number of iterations of the
simulations. The test systems of 14, 84 and 119 buses obtained more expressive reductions
in the average number of iterations, as demonstrated in Tables 2, 3 and 5. On the other hand,
the 33-bus test system presented a small improvement in relation to HS and IHS. Table 6
presents the reduction of the average number of iterations in relation to HS according to
the results presented in Tables 2–5.

Table 6. Convergence analysis results for the 119-bus test system.

14-Bus 33-Bus 69-Bus 119-Bus

HS 12.08 % 2.92 % 6.78 % 5.90 %
IHS+Path 18.39 % 3.37 % 8.21 % 9.25 %

Based on the obtained results, it was found that all simulations performed using the
IHS algorithm with the addition of the proposed Path Relinking are able to accurately
obtain the optimal configuration of each system as reported in [25,36–38].

5. Conclusions

The use of metaheuristics to solve the distribution system reconfiguration problem is
very common among researchers in the area. Since their use demands a high computational
effort and a long period of time for data processing, this paper shows that, by implementing
Path Relinking within a metaheuristic, it is possible to reduce the time and computational
effort involved in the analysis of electric power distribution networks, which facilitates the
decision making process.

From the tests performed and the analysis of the results presented in this paper, it
can be seen that, in fact, the execution of the implemented algorithms requires a high
computational performance, where the tests demand approximately 12 h of execution to
perform the 200 simulations required.

With the implementation of the proposed heuristic, IHS with the addition of Path
Relinking, the execution time of the simulations was reduced and, consequently, the com-
putational effort required for data analysis. Thus, it can be said that the proposed approach
presents a better performance when compared to HS and IHS, sometimes more significant,
as is the case of the 14-bus system and other times less expressive, such as the 33-bus
test system. The histograms presented in the results section are distorted to the left. This
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indicates that the frequency of convergence occurs in the first classes of the implemented
heuristics. This finding highlights the optimality of the solutions, reducing the required
computational effort.

Therefore, it is concluded that the addition of Path Relinking in IHS algorithm provides
agility in obtaining results, especially for large systems, such as the 84-bus and 119-bus
presented in this paper. This makes the research more accessible to the entire academic
community, since with the reduction of computational effort the DSR problem can be
applied in larger distribution systems or in low spec computers.
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