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Abstract: Struts as an important structure in the combustion chamber of hypersonic flight vehicles
to inject fuel into main flow face a severe thermal environment. Transpiration cooling is considered
as a potential method to provide a thermal protection for struts. This paper presents a numerical
investigation on transpiration cooling for a strut based on Darcy–Forchheimer model and the local
thermal non-equilibrium model and analyzes the mechanism of transpiration cooling. A coolant
film and a velocity boundary layer are formed on the strut surface and the shock wave is pushed
away from the strut, which can effectively reduce the heat load exerted on the strut. The temperature
difference between coolant and solid matrix inside the porous strut is analyzed, a phenomenon is
found that the fluid temperature is higher than solid temperature at the leading edge inside the
porous strut. As flowing in the porous medium, the coolant absorbs heat from solid matrix, and the
fluid temperature is higher than solid temperature at the stagnation point of the strut. The influence
of coolant mass flow rate and various coolants on transpiration cooling is studied. As mass flow rate
increases, the cooling efficiency becomes higher and the temperature difference between fluid and
solid in the porous medium is smaller. The coolant with a lower density and a higher specific heat
will form a thicker film on the strut surface and absorbs more heat from solid matrix, which brings a
better cooling effect for strut.

Keywords: transpiration cooling; porous medium; strut; numerical investigation; local thermal
non-equilibrium model

1. Introduction

The scramjet engine plays an important role in the air breathing hypersonic vehicles.
However, the mean stream flows into the combustion chamber of scramjet engine with
a supersonic speed, so the fuel can only stay in the chamber for several milliseconds,
and cannot mix well with the main flow, which makes it difficult to be ignited. Strut
is a structure inside the combustion chamber of scramjet, which can inject fuel into the
high-speed main flow and make the main flow and fuel better mixed. However, a strut
faces an extremely severe thermal environment. In the combustion chamber, due to the
presence of the strut, the supersonic flow forms a shock wave, and the heat and force load
on the strut is further amplified [1–4], especially on its leading edge. For instance, the heat
flux on the leading edge of a strut is estimated to be 100 MW/m2 when a scramjet flies at a
Mach 12 [5]. In such circumstance, traditional thermal protection methods cannot provide
an ideal cooling effect, and a more effective measure needs to be taken.

Transpiration cooling is an efficient and reliable method that can be used on a strut for
thermal protection. In the process of transpiration cooling, the coolant flows through the
porous media and reduce heat by the strong convection heat transfer between the coolant
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and porous media. In addition, the coolant flows out of the porous media and forms a thin
layer on its surface, which increases the thermal resistance between the high-temperature
main flow and porous media [6,7]. Due to the high cooling efficiency and low coolant
consumption, transpiration cooling is considered to be a promising method for thermal
protection and favored in the aerospace industry [8,9].

A large number of experimental investigations on transpiration cooling has been
conducted [10,11]. Greuel et al. [12] experimentally proved that when the blowing rate
is less than 0.7%, the transpiration cooling efficiency increases linearly with the increase
of coolant. Qian [13] used solid hydrogel as coolant and Wu [14] combined sublimation
and transpiration cooling, to improve the cooling effect for porous plates. Foreest [15]
and Wang et al. [16,17] respectively observed and analyzed the ice formation on a nose
cone under supersonic condition in the process of transpiration cooling with phase change.
Jiang et al. [6,18] studied a combined cooling method for porous struts and observed the
bow shock waves in front of the struts.

Numerical studies on transpiration cooling are always in process [11,19]. Langener et al. [20]
proposed a one-dimensional heat-balance model and validated that the specific heat ca-
pacity and the mass flow rate are two main factors that influence the cooling efficiency.
Jiang et al. [21] validated that the heat transfer coefficient between coolant and solid matrix
increases with the increase of coolant flow rate. Ding [22] proposed a double layer cooling
structure which combined transpiration cooling and film cooling to improve the cooling
efficiency on the leading edge of a cone nose. Huang et al. [23,24] numerically investigated
transpiration cooling for porous struts. The results showed that the wedge angle of strut
is a factor that affects cooling effect, and the optimum wedge angle is 30◦. Xiong [25]
confirmed that the coolant injected from the leading edge of strut pushes the stagnation
point away from the surface, but additional cooling methods are needed to improve the
cooling efficiency at the leading edge.

Wang et al. [26] obtained an analytical solution for transpiration cooling in the lo-
cal thermal non-equilibrium (LTNE) model with the second and third types of thermal
boundary conditions, and gave a quantitative criterion to choose local thermal or local non-
thermal equilibrium model. Shi [27] combined two-phase mixture model and LTNE model,
and studied the factors influencing the temperature and saturation distribution within the
solid matrix of a porous plate. Xiao [7] proposed a two-step multi-region numerical scheme
for transpiration cooling using LTNE model in supersonic flow.

Thermal protection for a scramjet combustion chamber has always been an important
research topic. Strong aerodynamic heat has always been a threat to the strut and transpira-
tion cooling is an effective thermal protection required. To simplify the physical problem,
most of the investigations on the transpiration cooling for strut base on the local thermal
equilibrium (LTE) model, which assumes that fluid in the porous media has the same
temperature as the solid matrix, which deviates the real physics. In this paper, a numerical
investigation on transpiration cooling for strut is conducted based on the local thermal
non-equilibrium model. The effect of transpiration cooling on flow field in combustion
chamber and the effectiveness of transpiration cooling are discussed. The mechanism
of transpiration cooling, including the temperature difference between coolant and solid
matrix inside porous medium, is further explored by changing coolant mass flow rate and
adopting various coolants.

2. Simulation Method
2.1. Geometry Model and Boundary Conditions

A 3D model was used to investigate the transpiration cooling for strut in combustion
chamber according to the experiment conducted by Huang [23]. Figure 1 shows the
geometry model of strut and combustion chamber. The strut sintered by stainless-steel
particles with an average diameter dp = 25 µm, was 37.5 mm in length, 10 mm in width and
38.5 mm in height. A 1-mm-thick-porous rib separated the cavity into two parts, which
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were the coolant channel [23]. The coolant flowed out to the strut surface through the
porous medium, forming the transpiration cooling for the strut.
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Figure 1. Geometrical and physical model. (a) Schematic of the strut with transpiration cooling in the
combustion chamber; (b) top view of the strut.

The main flow in the combustion chamber consisted of 20% water vapor, 20.9% oxygen
and 59.1% nitrogen in mass fraction. The main flow at a Mach number of 2.5, a total pressure
of 1.46 MPa, and a total temperature of 1774 K was used to simulate the environment in the
combustion chamber. Methane was used as the coolant with a temperature of 300 K.

2.2. Governing Equations

The transpiration cooling for porous struts is a typical cross-scale flow. The main flow
is macroscopic and supersonic, the flow inside the porous medium is microscopic and
low-speed, and the flow in the coolant channel is macroscopic and low-speed. Therefore,
the computational domain is divided into three parts: free flow, porous medium, and
coolant chamber.

In the free flow and coolant chamber, the flow is turbulent and compressible, and
Shear-Stress Transport k-ω (SST k-ω) model is selected in the calculation. The continuity,
momentum and energy equations are as follows [22]:

∇ ·
(

ρ
→
V
)
= 0 (1)

∇ ·
(

ρ
→
V
→
V
)
= −∇p +∇ · =τ +

∂

∂xj

(
−ρu′iu

′
j

)
(2)

∇ ·
(→

V(ρE + p)
)
= ∇ ·

(
k f∇T +

=
τ ·
→
V
)

(3)
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where E is total energy, which can be expressed as:

E = cpT (4)

In the porous medium, the internal solid matrix increases the flow resistance, which
should be considered in the momentum equation. The Darcy–Forchheimer model takes
viscous loss and inertial loss into account [28], and is selected to describe the momentum
conservation. For the isotropic single-phase flow, the continuity equation and momentum
equation can be expressed as [7]:

∂

∂t

(
ερ f

)
+∇ ·

(
ερ f
→
V
)
= 0 (5)

∂

∂t

(
ερ f
→
V
)
+∇ ·

(
ερ f
→
V
→
V
)
= −ε∇p +∇ · (ετ)− ε2

K
µ f
→
V − ε3F√

K
ρ f

∣∣∣∣→V∣∣∣∣→V (6)

where K and F respectively represents the permeability and the inertia coefficient of porous
media and their reciprocal represents the viscous resistance and inertial resistance, respec-
tively. K and F can be calculated by the following equations [29].

K = d2
pε3/

(
150(1− ε)2

)
(7)

F = 1.75/
(√

150ε1.5
)

(8)

Inside the porous media, the coolant is driven by pressure, which will conduct forced
convection with the solid matrix. The temperature of fluid inside the porous medium
changes continuously and cannot reach the transient temperature equilibrium with the
adjacent porous solid matrix, so the temperature of the fluid and the solid are two variables.
The LTNE model, which considers the temperature difference between fluid and solid at
the same position, is adopted to better reflect the actual physical situation in the calculation.
Two equations are needed to describe the temperatures of fluid and solid respectively.
According to Xiao [7], the specific expressions are as follow:

∂

∂t

(
ερ f E f

)
+∇ ·

(
ρ f
→
VE f

)
= ∇ ·

(
εk f∇Tf

)
+ h f s A f s

(
Ts − Tf

)
(9)

∂

∂t
((1− ε)ρsEs) = ∇ · ((1− ε)ks∇Ts) + h f s A f s

(
Tf − Ts

)
(10)

The particle-to-fluid heat transfer coefficient hfs in the two energy equations is an
important parameter for heat convection. In the process of flow, the physical properties
of fluid are constantly changing, resulting in the constant changes in the heat transfer
coefficient. Nusselt number is a function of porosity, Reynolds number, and Prandtl
number. For the porous materials with extremely small pores, the molecular free path
is equivalent to the pore size, and the speed slip and temperature jump caused by the
micro-scale effect should be taken into account. Xu [30] modified the Nusselt number by
Knudsen number.

Nu f s = h f sdp/k f =
(

0.933ε2 − 0.245ε + 0.0165
)

Re0.8Pr1/3 (11)

Nu f s = h f sdp/k f =
(

0.933ε2 − 0.245ε + 0.0165
)

Re0.8Pr1/3/(1 + 24Kn) (12)

where Kn is Knudsen number, representing the ratio of the molecular free path to the
characteristic length. The heat exchange between coolant and solid matrix is realized in the
calculation through User-Defined Function (UDF) according to Equation (12).
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2.3. Numerical Mesh and Method
2.3.1. Numerical Mesh

In this study, ICEM was used for grid generation. The structured mesh is refined near
the wall of the strut to better capture the shock wave and boundary layer. The coolant flow
inside the porous medium is complicated, so mesh is refined inside the porous strut. As
shown in Figure 2, there are spatial overlaps at the junctions, where the different domains
share grid nodes, and there are two kinds of boundary conditions at one boundary. One
is the heat and mass transfer boundary between fluid and fluid, and the other is the heat
transfer boundary between fluid and solid. The splicing grid is adopted in order to realize
information transfer between the different computational domains.
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Figure 2. Interfaces in the numerical simulation.

The grid independence is studied with three mesh strategies: Mesh 1 with 0.7 million
nodes, Mesh 2 and Mesh 3 with 1.4 and 2.8 million nodes respectively. The temperatures at
the leading edge on the top of the strut for different meshes are shown in Table 1. The mesh
with 1.4 million elements is selected after balancing the accuracy and calculation time and
meshes of the calculation model are shown in Figure 3.

Table 1. Calculation results and calculation time on three meshes.

Mesh 1 2 3

Number of grids (million) 0.7 1.4 2.8
Stagnation temperature (K) 1675 1491 1502

Calculation time (h) 25 42 70
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2.3.2. Numerical Method

In the process of transpiration cooling for the strut, the coolant flows through the
porous medium to the surface of the strut and mixes with the high-speed mainstream.
The huge speed difference and the difference in the flow direction make it difficult to
converge in the calculation. In order to solve the problem of cross-scale flow and reduce the
interference of momentum source term, a two-step calculation method is adopted. Figure 4
shows the procedure of the two-step numerical method. First, the supersonic mainstream is
calculated with the Darcy–Forchheimer model closed, until the converged result is obtained.
The shock wave can be easily captured and obviously observed, and the inlet and outlet
mass flow are conserved during the calculation. Then open the porous medium model and
perform the full-field coupling iterative calculations.
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2.3.3. Numerical Validation

As mentioned in Section 2.2, accurate description of heat exchange between fluid and
solid matrix in porous media has great influence on the correctness of numerical simula-
tion results. The numerical simulations based on LTE and LTNE model were performed
respectively. As shown in Table 2, in order to verify the numerical model and calculation
strategy, the numerical results were compared with the experimental results in reference.

Table 2. Comparison of experimental and numerical results.

Relative Position
(x/L)

Experiment
Temperature (K)

Numerical Simulation

LTE LTNE

Temperature (K) Relative Error (%) Temperature (K) Relative Error (%)

0.4 437.4 382.5 12.6 461.7 5.6
0.9 306.3 367.0 19.8 348.3 13.7
1.0 349.9 365.2 4.4 347.7 0.6

The dimensionless length x/L is introduced here where x represents the position of
thermocouples in the experiment, and L represents the length of the strut. It can be seen
that a more accurate result can be obtained by the simulation based on the LTNE model,
and compared to the experiment results, the relative error is within a reasonable range.
Therefore, the calculation model and numerical method can be considered to be reliable.
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3. Results and Discussion
3.1. Mechanism of Transpiration Cooling for Strut

In order to analyze the effectiveness of transpiration cooling, numerical simulations
were carried out on the flow field of struts with and without transpiration cooling.

Figure 5 shows the temperature distribution on the cross-section at z = 25 mm for
the flow field around the struts with and without transpiration cooling. The supersonic
flow forms a bow shock wave at the leading edge of struts and the shock wave reflects
after impacting the combustion chamber wall. Due to the oblique shock wave, there is
an adverse pressure gradient in the boundary layer on the chamber wall, resulting in
boundary layer separation. The separation of boundary layer plays a compression role on
the mainstream fluid and generates a reattached shock wave. Comparing the temperature
distribution near the strut with and without transpiration cooling, it can be observed that
the temperature on the surface of the strut without transpiration cooling is much higher
than that with transpiration cooling. When there is no transpiration, the strut surface is
heated due to the existence of entropy layer, which causes the high temperature. As shown
in Figure 5b, a thin film of coolant with low temperature is formed on the strut surface,
which can provide a thermal protection.
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Figure 6 shows the comparison of velocity distribution for the flow field around the
struts with and without transpiration cooling on z = 25 mm cross-section. The velocity
distribution in the boundary layer on the surface of strut with transpiration cooling is
obviously different from that without transpiration cooling. The velocity boundary layer
on the strut without transpiration cooling is extremely thin. The main flow stagnates on
the strut surface, because the viscous force and kinetic energy is dissipated in the form
of heat, which heats the strut surface. It can be seen from Figure 7 that methane flows
slowly through the porous strut to the surface and is driven downstream by the high-speed
mainstream by viscosity effect. The coolant forms a velocity boundary layer of a certain
thickness on the strut surface. Thus, the high-temperature mainstream is isolated from the
surface of the strut.

As the highest temperature appears at the leading edge of the strut, the mechanism of
transpiration cooling is further studied by analyzing the pressure field here. As shown in
Figure 8a, the coolant flows out of the leading edge of strut and pushes the shock wave
away from the stagnation point. It can be observed in Figure 8b that the shock reflection
point on the combustion chamber surface moves forward when the strut is protected by
transpiration cooling, which is another evidence for the shock wave being pushed away
from the leading edge of strut. With the increase of the distance between shock wave and
strut surface, the strong aerodynamic heat generated after the shock wave diffuses to the
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surrounding environment, which can greatly reduce the aerodynamic heat on the strut
surface. Meanwhile, the aerodynamic force exerted at the stagnation point is reduced.
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Cooling efficiency η is introduced to judge the effectiveness of transpiration cooling,
as shown in Equation (13) [24,31].

η =
Tr − Tw

Tr − Tc
(13)

where Tc is the inlet temperature of coolant, Tw is local temperature of strut surface, and Tr
is the free stream recovery temperature, which can be expressed as:

Tr = T∞

(
1 + r

γ− 1
2

Ma2
)

(14)

where T∞ is the temperature of main flow, r is the recovery factor, and γ is the specific
heat ratio.

Figure 9 shows the temperature and cooling efficiency distribution on the surface
of strut. In the figure, X represents the position along the strut surface, X = 0 mm corre-
sponding to the stagnation point and X = 37.5 mm corresponding to the trailing edge of the
strut. At the stagnation point, the temperature is the highest and the cooling efficiency is
the lowest. As the accumulation of coolant on the strut surface along the flow direction
of mainstream, the thermal resistance of the boundary layer increases, and the cooling
efficiency becomes higher. The flow field at the inflection point and trailing edge of the
strut is disturbed by geometric factors, leading to the rise of temperature and reduction
in cooling efficiency. However, the temperature of strut surface is reduced within the
tolerable temperature range of material, meaning that transpiration cooling can provide an
effectively thermal protection for strut.
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As the numerical simulation bases on the LTNE model, the temperature of coolant
and solid matrix inside the porous medium can be obtained and analyzed. Figure 10
shows the temperature distribution of fluid and solid inside the leading edge of the strut
on different cross-sections in the direction z. In the figure, X represents the position along
the center line inside the leading edge of porous strut, whose total length is 1 mm. The
simulation results show that the temperature of solid is higher than that of the coolant
in most areas in the porous medium, and the coolant plays a role in cooling the struts.
However, the temperature of solid is lower than that of the fluid at the stagnation point
region adjacent to the high-temperature mainstream. According to the growth rate of the
temperatures, the whole flow process can be divided into four parts along the flow direction
of coolant. First, in the range of 0.93 mm < X < 1 mm, coolant flows into the porous strut
from coolant channel. The specific heat of the coolant gradually increases with temperature,
and the heat sink increases, so the temperature growth rate is slow. Second, in the range
of 0.20 mm < X < 0.93 mm, as coolant flows inside the porous medium, the convective
heat transfer occurs between coolant and solid matrix and the fluid temperature and solid
temperature increases simultaneously. Third, in the range of 0.07 mm < X < 0.20 mm, the
high-temperature main flow has a greater impact on the coolant and solid matrix, and it
can be observed that the fluid temperature rises faster and exceeds the solid temperature. It
can be explained by the difference in heat absorption capacity of fluid and solid. Inside the
porous medium with a certain volume, the total mass of fluid is far less than solid because
of its low density. Therefore, although the specific heat of fluid is larger, the temperature of
fluid rises more than that of solid, when absorbing the same quantity of heat. Finally, in the
range of 0 mm < X < 0.07 mm, affected by exit effect and cross-scale flow, the growth rate
of fluid and solid temperature is slow again near the stagnation point. Larger heat load is
exerted on strut on z = 30 mm cross-section than that on z = 10 mm cross-section, resulting
in the larger temperature difference at the stagnation point.
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3.2. Influence of Coolant Mass Flow Rate on Transpiration Cooling

The mass flow rate of coolant is an important factor that affects the effect of transpi-
ration cooling. In this section, numerical simulations are performed under the condition
of four different flow rates: 7.5 g/s, 12.5 g/s, 17.5 g/s, and 22.5 g/s. It can be seen from
Figure 11 that the increasing mass flow of coolant requires a larger pressure difference
to drive the coolant flowing through the porous strut. The mass flow rate of coolant is
approximately proportional to the inlet pressure. As shown in Figure 12, the pressure along
the center line inside the leading edge of the porous strut decreases linearly along the flow
direction of coolant. As the mass flow rate increases, the coolant needs to overcome greater
viscous resistance and inertia resistance, and pressure gradient along the path increases.
Due to the scale effect, the pressure gradient at the inlet and outlet is relatively smaller than
that in the middle of the strut, and the gradient is larger when the mass flow of the coolant
is larger.
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Figure 12. Pressure distribution at the leading edge inside strut.

Figure 13 shows the injection velocity vertical to the strut surface of coolant from
porous medium to main flow. The increase of the coolant flow rate directly increases
the flow velocity of the coolant, which makes the heat exchange enhanced in the porous
medium. Figure 14a,b respectively shows the temperature and cooling efficiency distri-
bution on the strut surface along the flow direction of mainstream under the condition of
different mass flow rates of coolant. As the mass flow rate increases, the coolant boundary
layer thickens, which brings a higher cooling efficiency on the strut surface. Due to the
huge pressure, the injection velocity of coolant at the leading edge is slow, and less coolant
flows out of the strut from its leading edge, causing the high temperature and low cooling
efficiency. Due to the special structure, the injection velocity of coolant at the inflection point
of the strut is relatively slow. Furthermore, an enhanced mixing effect of the coolant and
high-temperature mainstream at the inflection point, leading to the more heat loads here.
The two reasons together cause the fluctuation in the temperature and cooling efficiency
distribution on the surface of the strut.
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Figure 14. Temperature and cooling efficiency distribution on strut surface under different coolant
flow rates. (a) Temperature distribution; (b) cooling efficiency distribution.

Since the LTNE model is adopted in the calculation, the influence of mass flow rate on
the temperature difference between coolant and solid matrix is studied. Figure 15 shows
the temperature difference between fluid and solid inside the strut at the leading edge.
The law of temperature change is the same as mentioned above. As the coolant mass flow
rate increases, the heat exchange between coolant and solid matrix is enhanced, and fluid
temperature and solid temperature tend to be the same. The coolant flows in and out of
the strut, making the fluid and solid temperature in the middle part of the porous medium
be in a dynamic equilibrium. As the coolant mass flow rate increases, more heat can be
absorbed by coolant and the equilibrium can be reached earlier. Therefore, the position of
Ts = Tf moves forward along the flow direction of coolant with the increase of coolant mass
flow. In addition, the temperature differences near the coolant channel and main flow are
reduced with the mass flow rate increased. Figure 16 shows the relationship between solid
temperature at the leading edge of strut and coolant flow rates. According to Equation (12),
at a certain position, Knudsen number and Reynolds number are approximate to a power
function, where the temperature is related to Knudsen number, and flow rate is related to
Reynolds number. Therefore, the solid temperature and coolant flow rate conforms to the
power function, and it can be inferred that further increasing the coolant flow rate will not
bring an obvious decrease in solid temperature.
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3.3. Influence of Various Coolants on Transpiration Cooling

Air, methane and helium are used as coolant respectively in this study to further
study the effect of transpiration cooling. Figure 17 shows the temperature and cooling
efficiency on the strut surface at the mass flow rate of 17.5 g/s. When helium is used as
the coolant, the temperature at the leading edge of the strut is the lowest, and the overall
cooling efficiency is the highest, followed by methane and air. Analysis shows that there
are reasons for this result.
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On one hand, at the same mass flow rate, the density of methane, air and helium is
different, leading to the difference in injection velocity. Helium with the lowest density
has the highest injection velocity, as shown in Figure 18. Figure 19 shows the pressure
distribution in front of the strut, where X represents the position along the center line of
the combustion chamber on z = 25 mm cross-section in front of the stagnation point of the
strut, X = 0 mm corresponding to the stagnation point of the strut. The main flow is pushed
farthest away from the leading edge of strut when helium is used as coolant, which brings
the best cooling effect at the leading edge. Figure 20 shows the mass fraction distribution
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of the three coolants near the struts. When helium is used as coolant, the thickest layer of
coolant is formed. The blow effect makes the high-temperature main flow away from the
strut. Helium brings the strongest blow effect on the mainstream, followed by methane
and air.
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On the other hand, the difference in thermophysical properties, especially the specific
heat, of the three kinds of coolant bring the different cooling effect. Figure 21 shows
the specific heat of the coolant as a function of temperature. Helium as the coolant has
the largest specific heat, followed by methane and air, indicating that helium can absorb
the most heat from the solid matrix. Therefore, as shown in Figure 22, the temperature
difference between the solid matrix and coolant inside the porous strut is the smallest when
helium is used as coolant.
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4. Conclusions

A numerical investigation on transpiration cooling for strut is performed. In order
to obtain the results closer to the actual physics, Darcy–Forchheimer model and LTNE
model are adopted to describe the flow and heat transfer inside the porous medium. The
conclusions can be drawn as follows:

1. In the process of transpiration cooling, the coolant with low temperature flows through
porous medium, forming a film on the surface of strut and making the velocity
boundary layer thicker, which effectively protect the strut. The bow shock wave is
pushed away from strut, reducing the heat and force load exerted on the leading edge
of strut.
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2. The temperature difference between fluid and solid inside the porous medium is
analyzed and the phenomenon that fluid temperature is higher than solid temperature
at the leading edge inside the strut is observed and explained. Density of fluid is far
lower than that of solid, so the total mass of fluid is far less than that of solid in a
certain volume of porous medium. Though the specific heat of fluid is larger, the fluid
temperature rises higher when absorbing same quantity of heat.

3. As the mass flow rate of coolant increases, the heat transfer between fluid and solid
in the porous medium is enhanced, so that the fluid and solid temperature can early
reach the balance and the temperature difference is smaller at both the inlet and outlet
of the coolant. Besides, the solid temperature at the leading edge of porous strut
and coolant mass flow rates show a power function, and when the coolant flow rate
reaches a certain level, further increasing the flow rate will not bring an obvious
improvement on cooling effect.

4. The density and specific heat of coolant are two factors that influence the effect of
transpiration cooling. When using a low-density coolant, the injection velocity to the
main flow is larger, which brings more obvious blow effect on the mainstream and
pushes the shock wave farther away from the stagnation point, providing a better
cooling effect. The coolant with higher specific heat has a better heat absorption
capacity, resulting a stronger dynamic equilibrium between the fluid and solid inside
the porous medium.
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Nomenclature

Latin
Afs Specific surface area of porous media: [m−1]
dp Particle diameter, [µm]
E Total energy, [J/kg]
F Inertia coefficient

hfs
Heat transfer coefficient between fluid and solid in porous
media, [W/m2·K]

K Permeability of porous media, [m2]
Kn Knudsen number
L Total length of strut, [mm]
.

m Mass flow rate, [kg/s]
Ma Mach number
Nufs Nusselt number in porous media
p Pressure, [Pa]
Pr Prandtl number
Re Reynolds number
T Temperature, [K]
V Velocity, [m/s]
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Greek
ε Porosity of porous media
µ Dynamic viscosity, [Pa·s]
ρ Density, [kg/m3]
τ Shear stress tensor, [Pa]
Subscripts
coolant Coolant
f Fluid
r Recovery
s Solid
Abbreviations
LTE Local Thermal Equilibrium
LTNE Local Thermal Non-Equilibrium
UDF User-Defined Function
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