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Abstract: This manuscript optimizes the conjugate heat transfer and thermal-stress analysis for
hydromagnetic Brinkman fluid with chemical reaction in permeable media. The governing equations
of non-Newtonian Brinkman fluid have been traced out and then fractional derivative approach,
namely, Caputo–Fabrizio, is invoked, subject to the exponential boundary conditions. The Fourier
Sine and Laplace transforms are applied on governing partial differential equations for generating the
analytical results of temperature, concentration and velocity. A comparative study of velocity field is
investigated for the sake of long memory and hereditary properties. The analytical investigation of
temperature, concentration and velocity field have strong effects on chemical reaction. The graphical
depiction of vibrant characteristics of hydromagnetic Brinkman fluid with chemical reaction in
permeable media is exhibited for disclosing the sensitivities of different embedded rheological
parameters of fluid flow. The results suggested that temperature distribution for smaller and larger
Prandtl number has disclosed quick and thicker heat diffusivity.

Keywords: fractional analysis; hydro-magnetized Brinkman fluid; Fourier analysis; permeable media

1. Introduction

Thermal stability usually refers to the deformed ability of an object under the influence
of temperature with heat resistance of the material. Due to this reason, the prediction of
thermal behavior among various fluids is essential for operating precision of heat and mass
transfer. Particularly, the characteristics of fluids depend on their thermal performances
because most of the researchers have diverted their mind to consider the convection ef-
fects; such effects occur in the Brinkman fluid flow, for which one needs to control the
accuracy, stability, and efficiency of computational process for heterogeneous media [1–6].
Jiang et al. [7] investigated thermal conductivity characteristics based on carbon nanotubes
experimentally, in which the Hamilton–Crosser model, Yu–Choi model and Xue model,
so-called existent models for predicting thermal conductivity, were verified with help of
the experiment. Their main purpose was to compare the thermal conductivity generated
by nanofluids through the Yu–Choi model within different deviations. Chang et al. [8]
analyzed the thermal analysis of Walters-B liquid model in a viscoelastic fluid from a verti-
cal porous plate in which the numerical treatment was presented to the governing partial
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differential equations with temperature and concentration distributions. They concluded
that an increase in Schmidt number is observed to significantly decrease velocity profile as
well as mass concentration. The boundary-layer flow and heat transfer characteristics in
a second-grade fluid has been characterized by Rashid et al. [9] via modified differential
transform method for analytical solutions. By taking the boundary conditions at infinity,
the comparison between the solutions investigated via the differential transform method
and the differential transform method Padé were presented on the basis of shooting method.
Qasim et al. [10] investigated the thermal behavior of ferrofluid magnetohydrodynamic
stretching cylinder in which thermal analysis on the basis of temperature and velocity has
been justified by suspending the magnetic (Fe3O4) and non-magnetic (Al2O3) nanopar-
ticles in base fluid. They concluded that the heat transfer rate and surface shear stress
increase as the curvature parameter increases, which is why curvature helps to enhance
the heat transfer. Gul et al. [11] investigated heat transfer on the basis of nanoparticles of
magnetite, non-magnetic and aluminum oxide suspended in water as a base fluid. They
considered mixed convection flow of ferrofluid along a vertical channel with physical
boundary conditions. In order to achieve an appropriate thermal conductivity, they limited
their study for magnetohydrodynamic fluid motion due to buoyancy force and applied
pressure gradient. Ellahi et al. [12] modeled the nonlinear partial differential equations
analytically for natural convection boundary layer flow for the enhancement heat transfer
at a thermally moved vertical cone. Thermal conditions have been checked for the flow
behavior on physical parameters Prandtl number and nanoparticle’s volume fraction. Re-
cently Ambreen et al. [13] suggested that how heat flow changes versus temperature on the
rheology of magnetohydrodynamic fluid for the oscillations of heated plate. These authors
used the Caputo–Fabrizio fractional operator for time on fluid model for the enhancement
of thermal conductivities in which they concluded that higher Prandtl number leads to
decay thermal diffusivity, which results in the reduction in thermal field. The thermal
effects of magnetohydrodynamic micropolar fluid have been observed by Kashif et al. [14]
with the Caputo–Fabrizio fractional derivative through Fourier analysis. They showed new
results from hidden phenomenon of heat transfer for velocity field, mass concentration,
microrotation and temperature distribution at some embedded parameters. The study on
thermal analysis can be sustained, but we enlist here a few recent attempts therein [15–25]
and for thermal analysis through fractional techniques are [26–31]. Additionally, some
recent work is embedded in [32–38] based on different approaches for the enhancement
of heat transfer. Motivated by the above discussions, our aim is to explore the optimized
and conjugate heat transfer and thermal-stress analysis for hydromagnetic Brinkman fluid
with chemical reaction in permeable media. The governing equations of non-Newtonian
Brinkman fluid have been traced out and then a fractional derivative approach, namely,
Caputo–Fabrizio, has been functionalized subject to exponential boundary conditions. The
Fourier analysis and Laplace transform techniques are implemented on governing partial
differential equations for generating the analytical results of temperature, concentration,
and velocity. A comparative study based on mathematical expressions of velocity field is in-
vestigated for the description of long memory and hereditary properties from fractionalized
analytical solutions. The graphical depiction for vibrant characteristics of hydromagnetic
Brinkman fluid with chemical reaction in permeable media is exhibited for disclosing the
sensitivities of different embedded rheological parameters of fluid flow.

2. Mathematical Model for Free Convection Problem of Brinkman Fluid

Consider an electrically conducting flow of the unsteady free convectional Brinkman
fluid embedded in porous medium within an incompressibility condition. The exponen-
tially heated plate is taken in the xz-plane of a Cartesian coordinate system. Here, the x-axis
is set in vertical direction and y-axis is normal to it. Initially, the fluid and plate both are
taken stationary at t = 0. The fluid above the heated plate begins to move when t = 0+

due to the exponential shear stress. The governing boundary layer equations are taken
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into account by using the Boussinesq’s approximation along with sketched geometry in
Figure 1.

∂w(y,t)
∂t +

(
β1 +

µO
K +

B2
0 σ
ρ

)
w(y, t) = v ∂2w(y,t)

∂y2 + gβT(T(y, t)− T∞) + gβC(C(y, t)− C∞); y > 0,

∂T(y,t)
∂t = k

ρCp

∂2T(y,t)
∂y2 ; y > 0,

∂C(y,t)
∂t = D ∂2C(y,t)

∂y2 − θ(C(y, t)− C∞); y > 0.

(1)
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Equation (1) is subjected to following initial and boundary conditions as:

w(y, 0) = 0, T(y, 0) = T∞, C(y, 0) = C∞,
w(0, t) = <eat , T(0, t) = Tw, C(0, t) = C∞
w(∞, t) = 0, T(∞, t) = T∞, C(∞, t) = C∞.

(2)

Here, the fluid’s velocity, temperature and concentration are symbolized as w(y, t),
T(y, t) and C(y, t), respectively. Different rheological parameters are typically set, such as
β1 is the Brinkman type fluid, ν as the kinematic viscosity, g is the gravitational acceleration,
µ is the dynamic viscosity, βT is the coefficient of thermal expansion, βC is the coefficient of
mass expansion, ρ is the density of the fluid, Cp is the specific heat at constant pressure,
D is the mass diffusivity, θ is the chemical reaction, k is the coefficient of mass diffusion,
φ is the permeability of the porous medium, K is the porosity, B2

0 is the applied magnetic
field’s magnitude, and σ is the electrical conductivity of the fluid. In this connection,
implementing the non-integer order derivative Caputo–Fabrizio as defined in Equation (3):

∂δw(y, t)
∂tδ

=
1

1− δ

t∫
0

exp
(
−δ(z− t)

1− δ

)
w′(y, t)dt, 0 ≤ δ ≤ 1. (3)

Additionally, invoking the non-dimensional quantities as described



Energies 2022, 15, 2196 4 of 14

w∗ = wR−1, y∗ = Ryv−1, t∗ = tv−1, Φ = νµφ
(
R3

0ρk
)−1, M = vB2

0σ
(
R3

0ρ
)−1, Pr = µCpk−1,

Sc = vD−1θ = D−1kγ2, Gm = R−2gβC(Cω − C∞), Gr = R−2gβT(Tω − T∞),
T∗ = (T − T∞)(Tw − T∞)−1, C∗ = (C− C∞)(Cw − C∞)−1.

(4)

Substituting Equations (3) and (4) into Equations (1) and (2), we transferred the
governing equations for the momentum, energy and concentration as written below:

∂δw(y, t)
∂tδ

+ (M + β1 + Φ)w(y, t) = ν
∂2w(y, t)

∂y2 + Gm C(y, t) + Gr T(y, t), (5)

Pr
∂δT(y, t)

∂tδ
=

∂2T(y, t)
∂y2 , (6)

Sc
∂δC(y, t)

∂tδ
=

∂2C(y, t)
∂y2 − θC(y, t). (7)

Here, Gm is the mass Grashof number, Gr is the thermal Grashof number, Pr is the
Prandtl number, Sc is the Schmidt number and θ is the coefficient of mass diffusion. The
imposed conditions are

w(0, t) = <eat, T(0, t) = t, C(0, t) = t , t > 0,
w(y, 0) = 0, T(y, 0) = 0, C(y, 0) = 0 , y > 0,
w(y, t)→ 0, T(y, t)→ 0, C(y, t)→ 0, y→ ∞, t > 0.

(8)

Manipulation of accurate solution is necessary for physical interpretation from the
set of governing Equations (5)–(8). Initially, Equations (5)–(7) are modeled by non-integer
order derivative Caputo–Fabrizio. We can intricate coupled differential Equations (5)–(7)
by means of Fourier and Laplace transform methods.

3. Integral Transforms Approach for the Solution of Problem
3.1. Solution of Temperature

Applying the Fourier sine transform on spatial variable involved in linearized and
fractionalized differential Equations (5) and (8), we have(√

2
π

ξ

Pr

)−1(
∂δ

∂tδ
+

ξ2

Pr

)
Ts(ξ, t) = Ts(0, t), (9)

where an image of Fourier sine transform of T(y, t) is Ts(ξ, t) has to validate the imposed
conditions (8). We combine Fourier sine transform method with the Laplace transform
method for the solution of fractional derivative involved in Equation (9); we apply the
Laplace Transform on Equation (9) as

√
π
(

q2
(

ξ2 + τ0Pr
)
(q + τ2)

)
Ts(ξ, q) =

√
2ξ(q + τ1), (10)

We introduce the rheological parameters involved in Equation (10) as τ0 = 1
1−δ ,

τ1 = τ0δ, τ2 = τ1ξ2

(ξ2+Pr τ0)
. Writing Equation (10) into equivalent form then applying Fourier

sine transform, we get

T(y, q) =
2
π

∞∫
0

sin(yξ)

{
ξ−1q−2 − (q + τ2)

−1Prτ0ξ−1

(Pr τ0 + ξ2)q

}
dξ, (11)
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Pertaining to the processes of integral
∫ ∞

0
sin(yξ)

ξ dξ = π
2 on Equation (11) and inverting

by means of Laplace transform, the final solution of temperature distribution is

T(y, t) = t− 4Prτ0ξ−1π−2

(
√

τ2ξ2 +
√

τ2Pr τ0)

∞∫
0

√
τ2t∫

0

t1/2eτ2−τ2t sin(yξ) dξdτ. (12)

Equation (12) can be verified for imposed initial and boundary conditions as discussed
in Equation (8).

3.2. Solution of Concentration

Applying the Fourier sine transform on spatial variable involved in linearized and
fractionalized differential Equations (6) and (8), we have(√

2
π

ξ

Sc

)−1(
∂δ

∂tδ
+

ξ2

Sc

)
Cs(ξ, t) = Cs(0, t), (13)

where an image of Fourier sine transform of C(y, t) is Cs(ξ, t) has to validate the imposed
conditions (8). We combine Fourier sine transform method with the Laplace transform
method for the solution of fractional derivative involved in Equation (13); we apply the
Laplace Transform on Equation (13) as

√
π
(

q2
(

ξ2 + τ0Sc + θ
)
(q + τ5)

)
Cs(ξ, q) =

√
2ξ(q + τ1), (14)

We introduce the rheological parameters involved in Equation (14) as τ3 = τ1ξ2

(ξ2+Sc τ0)
,

τ4 = τ1
(
ξ2 + θ

)
and τ5 = τ3

τ4
. Writing Equation (14) into equivalent form then applying

Fourier sine transform, we get

C(y, q) =
2
π

∞∫
0

sin(yξ)

{
ξ−1q−2 − (q + τ5)

−1Scτ0ξ−1

(Sc τ0 + ξ2 + θ)q

}
dξ, (15)

Pertaining to the processes of integral
∫ ∞

0
sin(yξ)

ξ dξ = π
2 on Equation (15) and inverting

by means of Laplace transform, we finalize solution of temperature distribution as

C(y, t) = t− 4Scτ0ξ−1π−2

( θ
√

τ5 +
√

τ5ξ2 +
√

τ5Scτ0)

∞∫
0

√
τ5t∫

0

t1/2eτ2−τ5t sin(yξ) dξdτ. (16)

Equation (16) can be verified for imposed initial and boundary conditions as discussed
in Equation (8).

3.3. Solution of Velocity

Applying the Fourier sine transform on the spatial variable involved in linearized and
fractionalized differential Equations (7) and (8), we have

(√
2
π

vξ

)−1{
∂δ

∂tδ
+
(

M + vξ2 + β1 + Φ
)}

ws(ξ, t)− GmCs(ξ, t)− GrTs(ξ, t) = ws(0, t) (17)

where an image of Fourier sine transform of w(y, t) is ws(ξ, t) has to validate the imposed
conditions (8). We combine Fourier sine transform method with the Laplace transform
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method for the solution of fractional derivative involved in Equation (17); we apply the
Laplace Transform on Equation (17) as

ws(ξ, q) =

√
2
π

ξ

[{(
<M +<νξ2 +<β1 +<Φ

)
+ qτ0

(
q− a
q + τ1

)}−1
+

(q + τ1)
2

q2(qτ6 + τ7)

× Gr
(q(Prτ0 + ξ2) + ξ2τ1)

+
Gm

(q(Scτ0 + ξ2 + θ) + ξ2τ1 + θτ1)

]
,

(18)

We introduce the rheological parameters involved in Equation (18) as τ6 = Φ + τ0 +
ξ2 + M + β1 and τ7 = Φτ1 + ξ2τ1 + β1τ1 + Mτ1. Writing Equation (18) into equivalent
form then applying Fourier sine transform, we get

w(y, q) = <(q− a)−1 −
2ξ−1(τ6 + ξ2)<

πτ6

∞∫
0

sin(yξ)
(q + τ8)

(q + τ9)(q− a)
dξ +

2Grξ−1

π(τ6Prτ0 + ξ2τ6)

∞∫
0

sin(yξ)

× (q + τ1)
2

q2(q + τ2)(q + τ9)
dξ +

2Gmξ−1

π(τ6Sc + τ6ξ2 + τ6θ)

∞∫
0

sin(yξ)
(q + τ1)

2

q2(q + τ5)(q + τ9)
dξ,

(19)

Here, τ8 = τ7+ξ2τ1
τ7+ξ2 and τ9 = τ7

τ6
are letting parameters for the simplification. Pertaining

to the processes of integral
∫ ∞

0
sin(yξ)

ξ dξ = π
2 on Equation (19) and inverting by means of

Laplace transform, we finalize solution of temperature distribution as

w(y, t) = <eat − 2ξ−1(τ6+ξ2)<
πτ6(τ8−τ9)

−1

∞∫
0

t∫
0

sin(yξ)e(a−τ9)t−aτdτ dξ + 2ξ−1Gr
(πτ6Prτ0+πτ6ξ2)

∞∫
0

sin(yξ)

×
{

2τ1+τ2
1 t

τ2τ9
− τ2

1 (τ2+τ9)

(τ2τ9)
2 + e−τ2t

(τ9−τ2)
− 2τ1e−τ2t

τ2(τ9−τ2)
+

τ2
1 e−τ2t

τ2
2 (τ9−τ2)

+ e−τ9t

(τ2−τ9)
− 2τ1e−τ9t

τ9(τ2−τ9)

+
τ2

1 e−τ9t

τ2
9 (τ2−τ9)

}
dξ + 2ξ−1Gm

(πτ6Scτ0+πτ6ξ2+πτ6θ)

∞∫
0

sin(yξ)

{
2τ1+τ2

1 t
τ5τ9

− τ2
1 (τ5+τ9)

(τ5τ9)
2 + e−τ5t

(τ9−τ5)

− 2τ1e−τ5t

τ5(τ9−τ5)
+

τ2
1 e−τ5t

τ2
5 (τ9−τ5)

+ e−τ9t

(τ5−τ9)
− 2τ1e−τ9t

τ9(τ5−τ9)
+

τ2
1 e−τ9t

τ2
9 (τ5−τ9)

}
dξ.

(20)

We utilized the following Equations (21) and (22) for inverting Equation (19) by means
of Laplace transform to have Equation (20) as

L−1
{

s + b
s + c

}
= (b− c)exp(−ct), (21)

L−1
{

s2 + a1s + a0

s2(s + a)(s + b)

}
=

a1 + a0t
ab

− a0(a + b)

(ab)2 +
e−at

b− a
+

e−bt

a− b
− a1e−at

a(b− a)
− a1e−bt

b(a− b)
+

a0e−at

a2(b− a)
+

a0e−bt

b2(a− b)
. (22)

Equation (20) can be verified for imposed initial and boundary conditions as discussed
in Equation (8).

3.4. Particular Solutions of Concentration and Velocity without Chemical Reaction

The general solutions in the absence of chemical reaction have importance in the
chemical engineering for mixing the chemical reactions or ecology, such fields arise in
physics. The general solutions of concentration and velocity can be investigated in the
absence of chemical reaction by substituting θ = 0 in Equations (16) and (20). For the
sake of general solutions of concentration and velocity in the absence of chemical reaction,
we obtain

C(y, t) = t− 4Scτ0ξ−1π−2

(
√

τ11ξ2 +
√

τ11Scτ0)

∞∫
0

√
τ11t∫

0

t1/2eτ2−τ11t sin(yξ) dξdτ. (23)



Energies 2022, 15, 2196 7 of 14

w(y, t) = <eat − 2ξ−1(τ6+ξ2)<
πτ6(τ8−τ9)

−1

∞∫
0

t∫
0

sin(yξ)e(a−τ9)t−aτdτ dξ + 2ξ−1Gr
(πτ6Prτ0+πτ6ξ2)

∞∫
0

sin(yξ)

×
{

2τ1+τ2
1 t

τ2τ9
− τ2

1 (τ2+τ9)

(τ2τ9)
2 + e−τ2t

(τ9−τ2)
− 2τ1e−τ2t

τ2(τ9−τ2)
+

τ2
1 e−τ2t

τ2
2 (τ9−τ2)

+ e−τ9t

(τ2−τ9)
− 2τ1e−τ9t

τ9(τ2−τ9)

+
τ2

1 e−τ9t

τ2
9 (τ2−τ9)

}
dξ + 2ξ−1Gm

(πτ6Scτ0+πτ6ξ2)

∞∫
0

sin(yξ)

{
2τ1+τ2

1 t
τ11τ9

− τ2
1 (τ11+τ9)

(τ11τ9)
2 + e−τ11t

(τ9−τ11)

− 2τ1e−τ11t

τ11(τ9−τ11)
+

τ2
1 e−τ11t

τ2
11(τ9−τ11)

+ e−τ9t

(τ11−τ9)
− 2τ1e−τ9t

τ9(τ11−τ9)
+

τ2
1 e−τ9t

τ2
9 (τ11−τ9)

}
dξ.

(24)

Equations (22) and (23) have been investigated with help of letting parameters as
τ10 = τ1ξ2 and τ11 = τ3

τ10
. Meanwhile, Equations (23) and (24) can be verified for imposed

initial and boundary conditions as discussed in Equation (8). Furthermore, one can also
investigate the solutions in the absence of magnetic field and preamble media by letting
M = Φ = 0 from Equation (20).

3.5. Expressions of Nusselt and Sherwood Numbers and Skin Friction

The role of Nusselt number is to give the ratio of thermal energy convected to the
thermal energy conducted within the fluid. The expression of Nusselt number can be ob-

tained by Nusselt number = Nu = L−1
(

lim
y→0

∂T(y,q)
∂y

)
= ∂T(y,t)

∂y

∣∣∣
y=0

. The Role of Sherwood

number is to provide the ratio of the convective mass transfer to the rate of diffusive mass
transport. The expression of Sherwood number can be obtained by Sherwood number =

Sh = L−1
(

lim
y→0

∂C(y,q)
∂y

)
= ∂C(y,t)

∂y

∣∣∣
y=0

. The Role of Skin friction is to observe the resistance

to the laminar flow of an object moving through a fluid. The expression of Skin friction can

be obtained by Skin f riction = C f = L−1
(

lim
y→0

∂w(y,q)
∂y

)
= ∂w(y,t)

∂y

∣∣∣
y=0

.

4. Parametric Results

In summary, an optimization of fractional model of hydromagnetic Brinkman fluid
with a chemical reaction in permeable media is proposed, subject to an application of
the non-Newtonian fluid. Fractional calculus is introduced to characterize the conjugate
heat transfer and thermal-stress analysis. In addition, the superiority of the proposed
model is tested via the Fourier analysis and Laplace transform techniques on temperature,
concentration and velocity. A comparative study based on mathematical expressions of
velocity field is investigated for the description of long memory and hereditary properties
from fractionalized analytical solutions. The graphical depiction for vibrant characteristics
of hydromagnetic Brinkman fluid with chemical reaction in permeable media is exhibited
for disclosing the sensitivities of different embedded rheological parameters of fluid flow.
On the basis of the above discussion, with a theoretical point of view, we depicted graphical
illustrations in which interesting outcomes have been underlined and obtained. Figure 2
is depicted for the temperature distribution on the basis of a condition imposed on the
Prandtl number in terms of 2D and 3D. The Prandtl number is considered smaller as
Pr = 0.1, 0.3, 0.5, 0.7 for disclosing the hidden characteristics of the fluid. In order to
achieve heat diffusivity quickly, we have observed the smaller as Pr = 0.1, 0.3, 0.5, 0.7
on temperature distribution. It is quite clear from Figure 2 that thermal boundary layer
is much thicker, due to the consideration of smaller number. The shear component for
diffusivity, viscosity and density to the diffusivity can be illustrated by means of proper
choice of Schmidt number, such phenomenon is observed in Figure 3. Mass concentration is
discussed by means of Schmidt number subject to investigating the relative thickness of the
hydrodynamic layer and mass-transfer boundary layer. It is further noted that mass con-
centration has decreasing behavior as Schmidt number increases. The magnetic influences
on fluid the motion is elucidated for velocity field in Figure 4 for pulling and attracting
the magnetic particles from the fluids. It is quite clear from Figure 4 that the velocity field
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is completely repelled due to magnetic effects applied on fluid. The behavior depicted in
Figure 4 for velocity field shows that those intrinsic properties of the magnetic field cause
a reduction in the fluid flow. From a physical point of view, the Hall effects (magnitude
of a magnetic field) were measured on due to Lorentz forces. In order to describe the
fraction of void space in the fluid, we presented Figure 5 for the effective role of porosity
on the velocity field. The porosity has an interesting behavior on velocity field because the
fluid type is Brinkman, such fluids already have the maximum amount of pour structures,
and such a phenomenon is always proportional to hydraulic conductivity. In our case,
increasing the values of porosity enhances the velocity field. It is also observed that role
of the magnetic field and the porosity on the velocity field is reciprocal. A comparative
analysis is performed for fractional verses non-fractional operators in Figures 6–8 for the
behavior of velocity field and temperature distribution with and without magnetic field
and porosity. Figure 6 is for a comparison of three types of models: (i) velocity with the CF
approach with magnet, (ii) velocity with the CF approach without magnet, and (iii) velocity
with non-fractional approach with magnet. It is clear from Figure 6 that velocity with the
CF approach with magnet is higher than velocity with the CF approach without magnet
and velocity with non-fractional approach with magnet. On the other hand, Figure 7 is
prepared for the comparison of three types of models in which (i) a velocity with the CF
approach with porous, (ii) a velocity with the CF approach without porous and (iii) a
velocity with non-fractional approach with porous. Here, the similar trend is observed
in comparison with magnetic field. The comparison of temperature distribution is also
highlighted on the effective role of chemical reaction with fractional verses non-fractional
techniques in Figure 8. We present here four models based on chemical reaction involved
in temperature distribution: (i) temperature with the CF approach with chemical reaction,
(ii) temperature with the CF approach without chemical reaction, (iii) temperature with
classical approach with chemical reaction and (iv) temperature with classical approach
without chemical reaction. Here, it is observed how new forms of temperature distribution
are investigated reciprocally in comparison with Figures 6 and 7. Meanwhile, the tempera-
ture with the CF approach with chemical reaction has a lower velocity than the other three
types of temperature distribution models. This may be due to the fact that the chemical
reactions help in investigating the crucial role of temperature distribution to understand
the properties of Brinkman fluid flow on the basis of a non-singular kernel involved in the
Caputo–Fabrizio fractional operator.

Energies 2022, 15, x FOR PEER REVIEW  9  of  15 
 

 

 

Figure 2. Effective role of temperature distribution depicted from Equation (12) for  𝑃௥. 

 

Figure 3. Effective role of mass concentration depicted from Equation (16) for  𝑆௖. 

 

Figure 4. Effective role of velocity field depicted from Equation (19) for 𝑀. 

Figure 2. Effective role of temperature distribution depicted from Equation (12) for Pr.



Energies 2022, 15, 2196 9 of 14

Energies 2022, 15, x FOR PEER REVIEW  9  of  15 
 

 

 

Figure 2. Effective role of temperature distribution depicted from Equation (12) for  𝑃௥. 

 

Figure 3. Effective role of mass concentration depicted from Equation (16) for  𝑆௖. 

 

Figure 4. Effective role of velocity field depicted from Equation (19) for 𝑀. 

Figure 3. Effective role of mass concentration depicted from Equation (16) for Sc.

Energies 2022, 15, x FOR PEER REVIEW  9  of  15 
 

 

 

Figure 2. Effective role of temperature distribution depicted from Equation (12) for  𝑃௥. 

 

Figure 3. Effective role of mass concentration depicted from Equation (16) for  𝑆௖. 

 

Figure 4. Effective role of velocity field depicted from Equation (19) for 𝑀. Figure 4. Effective role of velocity field depicted from Equation (19) for M.

Energies 2022, 15, x FOR PEER REVIEW  10  of  15 
 

 

 

Figure 5. Effective role of velocity field depicted from Equation (19) for  𝛷. 

 

Figure 6. Comparison of velocity field depicted from Equation (19) with 𝑀 ൌ 0  and  𝛿 ് 1, Equa‐
tion (19) for  𝑀 ് 0  and  𝛿 ് 1, Equation (19) for  𝑀 ് 0  and  𝛿 ൌ 1. 

Figure 5. Effective role of velocity field depicted from Equation (19) for Φ.



Energies 2022, 15, 2196 10 of 14

Energies 2022, 15, x FOR PEER REVIEW  10  of  15 
 

 

 

Figure 5. Effective role of velocity field depicted from Equation (19) for  𝛷. 

 

Figure 6. Comparison of velocity field depicted from Equation (19) with 𝑀 ൌ 0  and  𝛿 ് 1, Equa‐
tion (19) for  𝑀 ് 0  and  𝛿 ് 1, Equation (19) for  𝑀 ് 0  and  𝛿 ൌ 1. 

Figure 6. Comparison of velocity field depicted from Equation (19) with M = 0 and δ 6= 1, Equation (19)
for M 6= 0 and δ 6= 1, Equation (19) for M 6== 0 and δ = 1.

Energies 2022, 15, x FOR PEER REVIEW  11  of  15 
 

 

 

Figure 7. Comparison of velocity field depicted from Equation (19) with  𝛷 ൌ 0  and  𝛿 ് 1, Equa‐
tion (19) for  𝛷 ് 0  and  𝛿 ് 1, Equation (19) for  𝛷 ് 0  and  𝛿 ൌ 1. 

 

Figure 8. Comparison of velocity field depicted from Equation (11) with  𝜃 ് 0  and  𝛿 ് 1, Equa‐
tion  (11)  for  𝜃 ൌ 0  and  𝛿 ് 1, Equation  (11)  for  𝜃 ് 0  and  𝛿 ൌ 1  and Equation  (11)  for  𝜃 ൌ 0 
and  𝛿 ൌ 1. 

5. Conclusions 

The conjugate heat transfer and thermal‐stress analysis for hydromagnetic Brinkman 

fluid with chemical reaction in permeable media is investigated. Non‐Newtonian Brink‐

man  fluid with exponential boundary conditions  is analyzed with help of Fourier Sine 

Figure 7. Comparison of velocity field depicted from Equation (19) with Φ = 0 and δ 6= 1, Equation (19)
for Φ 6= 0 and δ 6= 1, Equation (19) for Φ 6= 0 and δ = 1.



Energies 2022, 15, 2196 11 of 14

Energies 2022, 15, x FOR PEER REVIEW  11  of  15 
 

 

 

Figure 7. Comparison of velocity field depicted from Equation (19) with  𝛷 ൌ 0  and  𝛿 ് 1, Equa‐
tion (19) for  𝛷 ് 0  and  𝛿 ് 1, Equation (19) for  𝛷 ് 0  and  𝛿 ൌ 1. 

 

Figure 8. Comparison of velocity field depicted from Equation (11) with  𝜃 ് 0  and  𝛿 ് 1, Equa‐
tion  (11)  for  𝜃 ൌ 0  and  𝛿 ് 1, Equation  (11)  for  𝜃 ് 0  and  𝛿 ൌ 1  and Equation  (11)  for  𝜃 ൌ 0 
and  𝛿 ൌ 1. 

5. Conclusions 

The conjugate heat transfer and thermal‐stress analysis for hydromagnetic Brinkman 

fluid with chemical reaction in permeable media is investigated. Non‐Newtonian Brink‐

man  fluid with exponential boundary conditions  is analyzed with help of Fourier Sine 

Figure 8. Comparison of velocity field depicted from Equation (11) with θ 6= 0 and δ 6= 1, Equation (11)
for θ = 0 and δ 6= 1, Equation (11) for θ 6= 0 and δ = 1 and Equation (11) for θ = 0 and δ = 1.

5. Conclusions

The conjugate heat transfer and thermal-stress analysis for hydromagnetic Brinkman
fluid with chemical reaction in permeable media is investigated. Non-Newtonian Brinkman
fluid with exponential boundary conditions is analyzed with help of Fourier Sine and
Laplace transforms. The analytical results of temperature, concentration and velocity
have been established via long memory and hereditary properties. The characteristics of
hydromagnetic Brinkman fluid with chemical reaction in permeable media has exhibited
the following rheological outcomes:

• The temperature distribution for a smaller and larger Prandtl number has disclosed
quick and thicker heat diffusivity;

• Mass concentration has a decreasing behavior as the Schmidt number increases; this is
because of the relative thickness of the hydrodynamic layer;

• The repelled magnetic effects have been observed in the velocity field due to the
intrinsic properties of the magnetic field causing a reduction in the fluid flow;

• Increasing values of porosity that enhances the velocity field;
• The velocity via the CF approach with magnet is faster than velocity via the CF

approach without magnet;
• Temperature via the CF approach with chemical reaction has slower distribution.

Physically, chemically reacting temperatures comprise with Arrhenius activation
energy at different rates.

6. Future Directions

For the sake of an optimization of the fractional model of hydromagnetic Brinkman
fluid with a chemical reaction in permeable media, the same mathematical model of
magnetized Cassion fluid can be extended by the following:

• A comparative study of magnetized Cassion fluid can be investigated through fractal
differential operator with fractional differential operator;

• The similar problem can be traced out for optimal heat transfer via Keller-Box method
and Lie group theory;

• The magnetized Cassion fluid model can be modified for newly developed boundary
conditions namely Mittag–Leffler function.
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Nomenclature

w(y, t) Velocity field
T(y, t) Temperature distribution
C(y, t) Mass concentration
β1 Brinkman type fluid parameter
ν Kinematic viscosity
g Gravitational acceleration
µ Dynamic viscosity
βT Coefficient of thermal expansion
βC Coefficient of mass expansion
ρ Density of the fluid
Cp Specific heat at constant pressure
D Mass diffusivity
θ Chemical reaction
k Coefficient of mass diffusion
φ Permeability of the porous medium
K Porosity
B2

0 Magnitude applied magnetic field,
σ Electrical conductivity of the fluid.
∂δ

∂tδ Non-integer order derivative of Caputo–Fabrizio.
δ Fractional differential parameter
Gm Mass Grashof number
Gr Thermal Grashof number
Pr Prandtl number
SC Schmidt number
θ Coefficient of mass diffusion
R Non-zero parameter
y Spatial variable
t Time variable
ξ Fourier Sine transformed variable
τ0 − τ11 Letting parameters
M Magnetic field
Φ Preamble media
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