Influence of Impurities in Electrical Contacts on Increasing the Efficiency of Energy Transmission
Abstract
:1. Introduction
1.1. Related Works
1.2. Paper Contributions
2. Control of Properties of Electro-Technical Materials for Electrical Contacts
Overheating of the Current Path of the Electrical Contact
3. An Analysis of the Thermal Characteristics of Electrical Contacts
3.1. High-Current Direct Contact
3.2. Direct Contact Parameters
3.3. Simulation of Direct Contact Temperature Distribution
4. Influence of Materials and Impurities of Direct Contact on Temperature Distribution
4.1. Influence of Impurities on the Thermal Distribution of Direct Contact from Copper
4.2. Summary of the Results of the Temperature Distribution of Direct Contact from Copper
4.3. Comparison of Simulation Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IEEE Standard Dictionary of Electrical and Electronics Terms. In IEEE Transactions on Power Apparatus and Systems; IEEE: Piscataway, NJ, USA, 1980; Volume PAS-99, p. 37a. [CrossRef]
- Grachev, N.; Andryukhin, A.; Chernoverskaya, V. Investigation of the Characteristics of the Transient Electrical Resistance of Contacts in the Designs of Radio Electronic Devices in the Conditions of the Formation of Contact Radio Interference. In Proceedings of the 2021 International Seminar on Electron Devices Design and Production (SED), Prague, Czech Republic, 27–28 April 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Medved, D.; Presada, J. Thermal Analysis of High-current Electric Contact. Acta Electrotech. Inform. 2021, 21, 38–42. [Google Scholar] [CrossRef]
- Medved, D.; Zbojovský, J. Influence of the Position of the Electrical Contact on the Size of the Temperature Distribution. Prz. Elektrotech. 2021, 97, 230–233. [Google Scholar] [CrossRef]
- Gatzsche, M.; Lücke, N.; Großmann, S.; Kufner, T.; Freudiger, G. Validity of the voltage-temperature relation for contact elements in high power applications. In Proceedings of the IEEE 61st Holm Conference on Electrical Contacts (Holm), San Diego, CA, USA, 11–14 October 2015; pp. 29–38. [Google Scholar] [CrossRef]
- Behrens, V.; Siegle, E.; Schreiber, J.; Honig, T.; Finkbeiner, M. Effect of Ambient Temperature and Contact Force on Contact Resistance and Overtemperature Behaviour for Power Engineering Contacts. In Proceedings of the IEEE 58th Holm Conference on Electrical Contacts (Holm), Portland, OR, USA, 23–26 September 2012; pp. 1–6. [Google Scholar] [CrossRef]
- Israel, T.; Gatzsche, M.; Schlegel, S.; Großmann, S.; Kufner, T.; Freudiger, G. The impact of short circuits on contact elements in high power applications. In Proceedings of the IEEE Holm Conference on Electrical Contacts, Denver, CO, USA, 10–13 September 2017; pp. 40–49. [Google Scholar] [CrossRef]
- Paunescu, M.; Dan, M.; Dragan, F.; Topa, V. The Effect of Corrosion on Electrical Contacts. In Proceedings of the 8th International Conference on Modern Power Systems (MPS), Cluj-Napoca, Romania, 21–23 May 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Damle, T.; Xu, C.; Varenberg, M.; Graber, L. Electric Field Between Contacts of Fast Mechanical Switches Subjected to Fretting Wear. In Proceedings of the IEEE 66th Holm Conference on Electrical Contacts and Intensive Course (HLM), San Antonio, TX, USA, 30 September–7 October 2020; pp. 144–148. [Google Scholar] [CrossRef]
- Shen, Q.; Lv, K.; Liu, G.; Qiu, J. Impact of Electrical Contact Resistance on the High-Speed Transmission and On-Line Diagnosis of Electrical Connector Intermittent Faults. IEEE Access 2017, 5, 4221–4232. [Google Scholar] [CrossRef]
- Byerly, J.M.; Schneider, C.; Schloss, R.; West, I. Real-time circuit breaker health diagnostics. In Proceedings of the 70th Annual Conference for Protective Relay Engineers (CPRE), College Station, TX, USA, 3–6 April 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Carvou, E.; Ben Jemaa, N.; Porte, M.; Razafiarivelo, J. Contact heating by long arcing during connector disconnection. In Proceedings of the Fifty-First IEEE Holm Conference on Electrical Contacts, Chicago, IL, USA, 26–28 September 2005; pp. 360–365. [Google Scholar] [CrossRef]
- Parkansky, N.; Boxman, R.L.; Goldsmith, S.; Rosenberg, Y. Arc erosion reduction on electrical contacts using transverse current injection. IEEE Trans. Plasma Sci. 1997, 25, 543–547. [Google Scholar] [CrossRef]
- Zhou, Y.; Lv, Y.; Wang, H.; Ma, A.; Liu, H. Electrical Contact Behavior of Several Typical Materials in Dust at Static and Dynamic Conditions. In Proceedings of the 56th IEEE Holm Conference on Electrical Contacts, Charleston, SC, USA, 4–7 October 2010; pp. 1–12. [Google Scholar] [CrossRef]
- Xixiu, W.; Meihua, D.; Zhenbiao, L.; Chengyan, L. The composition change of contact material surface. In Proceedings of the Forty-Ninth IEEE Holm Conference on Electrical Contacts, Washington, DC, USA, 10 September 2003; pp. 139–144. [Google Scholar] [CrossRef]
- Saha, S.; Wynne, S.; Jackson, R.L. Electro-thermo-mechanical Contact Analysis Considering Temperature Dependent Material Properties and Electrical Contact Resistance Determination. In Proceedings of the IEEE 66th Holm Conference on Electrical Contacts (HLM), San Antonio, TX, USA, 24–27 October 2021; pp. 8–15. [Google Scholar] [CrossRef]
- Monnier, A.; Froidurot, B.; Jarrige, C.; Meyer, R.; Teste, P. A mechanical, electrical, thermal coupled-field simulation of a sphere-plane electrical contact. In Proceedings of the Fifty-First IEEE Holm Conference on Electrical Contacts, Chicago, IL, USA, 26–28 September 2005; pp. 224–231. [Google Scholar] [CrossRef]
- Szulborski, M.; Łapczyński, S.; Kolimas, Ł.; Zalewski, D. Transient Thermal Analysis of the Circuit Breaker Current Path with the Use of FEA Simulation. Energies 2021, 14, 2359. [Google Scholar] [CrossRef]
- Vinaricky, E. Elektrische Kontakte, Werkstoffe und Anwendungen; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef]
- Elbekri, T.; Chaâbane, L. Experimental investigation on parameters of switches contacts. In Proceedings of the 26th International Conference on Electrical Contacts (ICEC 2012), Beijing, China, 14–17 May 2012; pp. 390–392. [Google Scholar] [CrossRef]
- Kubler-Riedinger, M.; Bauchire, J.-M.; Hong, D.; Déplaude, G.; Joyeux, P. Electrical and Morphological Investigations of Electrical Contacts used in Low-Voltage Circuit-Breakers. In Proceedings of the IEEE 66th Holm Conference on Electrical Contacts and Intensive Course (HLM), San Antonio, TX, USA, 30 September–7 October 2020; pp. 115–122. [Google Scholar] [CrossRef]
- Chen, J.; Yang, F.; Luo, K.; Wu, Y.; Rong, M. Experimental investigation of the electrical contact characteristics in Rolling Contact Connector. In Proceedings of the IEEE 61st Holm Conference on Electrical Contacts (Holm), San Diego, CA, USA, 11–14 October 2015; pp. 235–240. [Google Scholar] [CrossRef]
- Dyck, T.; Bund, A. Design of Contact Systems Under Consideration of Electrical and Tribological Properties. IEEE Trans. Compon. Packag. Manuf. Technol. 2018, 8, 427–438. [Google Scholar] [CrossRef]
- Zhou, X.; Schoepf, T. Characteristics of Overheated Electrical Joints Due to Loose Connection. In Proceedings of the IEEE 57th Holm Conference on Electrical Contacts (Holm), Minneapolis, MN, USA, 11–14 September 2011; pp. 1–7. [Google Scholar] [CrossRef]
- Tang, L.; Ruan, J.; Yang, Z.; Chen, R.; Li, G.; Yin, X. Hotspot Temperature Monitoring of Fully Insulated Busbar Taped Joint. IEEE Access 2019, 7, 66463–66475. [Google Scholar] [CrossRef]
- Obach, I.I.; Abouellail, A.A.; Soldatov, A.I.; Soldatov, A.A.; Sorokin, P.V.; Shinyakov, Y.A.; Sukhorukov, M.P. Monitoring of Power Supply. In Proceedings of the International Siberian Conference on Control and Communications (SIBCON), Tomsk, Russia, 18–20 April 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Cesky, L.; Janicek, F.; Kubica, J.; Skudrik, F. Overheating of primary and secondary coils of voltage instrument transformers. In Proceedings of the 18th International Scientific Conference on Electric Power Engineering (EPE), Kouty nad Desnou, Czech Republic, 17–19 May 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Rot, D.; Kozeny, J.; Jirinec, S.; Jirinec, J.; Podhrazky, A.; Poznyak, I. Induction melting of aluminium oxide in the cold crucible. In Proceedings of the 18th International Scientific Conference on Electric Power Engineering (EPE), Kouty nad Desnou, Czech Republic, 17–19 May 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Ampac. High Current Direct-Contacts 500 up to 4000 Ampere. Available online: https://www.ampacremscheid.de/en/products/high-current-contacting-for-galvano-and-eloxal-technology/direct-contacts/ (accessed on 8 September 2021).
- Wang, Y. Coupled Electromagnetic and Thermal Analysis and Design Optimization of Synchronous Electric Machines. Master’s Thesis, University of Wisconsin-Milwaukee, Milwaukee, WI, USA, 2014. [Google Scholar]
- Ekpu, M.; Bhatti, R.; Ekere, N.; Mallik, S. Advanced thermal management materials for heat sinks used in microelectronics. In Proceedings of the 18th European Microelectronics & Packaging Conference, Brighton, UK, 12–15 September 2011; pp. 1–8. [Google Scholar]
- Chudnovsky, B.H. Electrical Contacts Condition Diagnostics Based on Wireless Temperature Monitoring of Energized Equipment, Electrical Contacts–2006. In Proceedings of the 52nd IEEE Holm Conference on Electrical Contacts, Montreal, QC, Canada, 25–27 September 2006; pp. 73–80. [Google Scholar] [CrossRef]
Material Combination | k |
---|---|
Copper—copper | (0.08 ÷ 0.14) × 10−3 |
Aluminum—aluminum | (3 ÷ 6.7) × 10−3 |
Brass—brass | 0.67 × 10−3 |
Steel—silver | 0.06 × 10−3 |
Steel—copper | 3.1 × 10−3 |
Steel—brass | 3 × 10−3 |
Contact Shape | n |
---|---|
Flat—flat | 1 |
Pyramid—flat | 0.5 |
Sphere—flat | 0.6 |
Sphere—sphere | 0.5 |
Multi-strand brush—flat | 1 |
Current bar (busbar) contact | 0.5 ÷ 0.7 |
Current [A] | Dimensions [mm] | Number of Contacts | |||
---|---|---|---|---|---|
B1 | B2 | L | S | ||
500 ÷ 1000 | 50 | 100 | 160 | 10 | 2 |
1500 | 70 | 120 | 160 | 10 | 4 |
2000 ÷ 2500 | 100 | 150 | 160 | 10 | 6 |
3000 | 150 | 250 | 160 | 15 | 8 |
4000 | 200 | 300 | 160 | 20 | 10 |
Material | λ [W/(m⋅°C)] | ρ [Ω⋅m] |
---|---|---|
Copper | 390 | 1.72 × 10−8 |
Aluminum | 237 | 2.65 × 10−8 |
Brass | 111 | 6.3 × 10−8 |
Silver | 428 | 1.59 × 10−8 |
Impurity | 30 | 1 × 10−8–1 × 10−4 |
ρ [Ω⋅m] | Base Center ϑ [°C] | Fold ϑ [°C] | Contact Center ϑ [°C] | Knife Center ϑ [°C] | Impurity Center ϑ [°C] | Contact Top ϑ [°C] |
---|---|---|---|---|---|---|
1 × 10−4 | 118.21 | 118.37 | 118.62 | 118.66 | 118.67 | 118.11 |
1 × 10−5 | 54.133 | 54.175 | 54.236 | 54.246 | 54.243 | 54.066 |
1 × 10−6 | 46.632 | 46.659 | 46.696 | 46.7 | 46.698 | 46.564 |
1 × 10−7 | 45.15 | 45.239 | 45.272 | 45.276 | 45.274 | 45.147 |
1 × 10−8 | 44.79 | 44.813 | 44.845 | 44.849 | 44.847 | 44.723 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medveď, D.; Beňa, Ľ.; Kolcun, M.; Pavlík, M. Influence of Impurities in Electrical Contacts on Increasing the Efficiency of Energy Transmission. Energies 2022, 15, 2339. https://doi.org/10.3390/en15072339
Medveď D, Beňa Ľ, Kolcun M, Pavlík M. Influence of Impurities in Electrical Contacts on Increasing the Efficiency of Energy Transmission. Energies. 2022; 15(7):2339. https://doi.org/10.3390/en15072339
Chicago/Turabian StyleMedveď, Dušan, Ľubomír Beňa, Michal Kolcun, and Marek Pavlík. 2022. "Influence of Impurities in Electrical Contacts on Increasing the Efficiency of Energy Transmission" Energies 15, no. 7: 2339. https://doi.org/10.3390/en15072339
APA StyleMedveď, D., Beňa, Ľ., Kolcun, M., & Pavlík, M. (2022). Influence of Impurities in Electrical Contacts on Increasing the Efficiency of Energy Transmission. Energies, 15(7), 2339. https://doi.org/10.3390/en15072339