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Abstract: The international community has set ambitious targets to replace the use of fossil fuels
for electricity generation with renewable energy sources. The use of large-scale (e.g., solar farms)
and small-scale solutions (e.g., onsite green technologies) represents one way to achieve these goals.
This paper presents a mathematical optimization framework to coordinate the energy decisions
between the distribution network and the networked microgrids embedded within it. Utility-scale
renewable and conventional generators are considered in the distribution network, while the micro-
grids include onsite renewable generation and energy storage. The distribution network operator
utilizes demand-side management policies to improve the network’s efficiency, and the microgrids
operate under these programs by reducing their energy usage, scheduling the electricity usage under
dynamic tariffs, and supplying energy to the grid. The uncertainty of renewable energy sources is
addressed by robust optimization. The decisions of the distribution network and the microgrids are
made independently, whereas the proposed collaboration scheme allows for the alignment of the
systems’ objectives. A case study is analyzed to show the capability of the model to assess multiple
configurations, eliminating the necessity of load shedding, and increasing the power supplied by the
microgrids (22.3 MW) and the renewable energy share by up to 5.03%.

Keywords: renewable energy integration; demand response; intelligent energy management systems

1. Introduction

According to the World Bank [1], between 1960 and 2018 the world’s total greenhouse
gas emissions increased from 9.46 to 34.04 Gt of CO2 and the emissions per capita increased
from 3.12 to 4.48 metric tons of CO2. Additionally, electricity consumption increased from
1200.15 to 3128.30 kWh per capita between 1971 and 2014 [1]. To satisfy the growing
energy demand, efficient electricity supply systems with a higher capacity are necessary.
Nevertheless, a linear increment in the current power generation share, which is mainly
composed of fossil fuel sources, will result in an accelerated increase in greenhouse gas
concentration. For example, according to the U.S. Energy Information Administration
(EIA) [2], the U.S. power grid in 2020 was composed of 60.6% fossil fuels, 19.7% nuclear,
and 19.8% renewables. The use of renewable energy sources (RES) to generate electricity is
an option to reduce greenhouse gas emissions. As a result, there is a growing environmental
awareness in the international community, and in some cases, specific goals have been
derived to address this climate change, e.g., the United Nations Sustainable Development
Goals [3]. Other international efforts, such as the Paris Agreement, provide quantifiable
targets to reduce greenhouse gas emissions or to increase the renewable share of the
generation mix. For example, the European Union targets are to generate 27% of the
electricity from renewables by 2030, while the U.S. state of California’s targets are 50% by
2030 [4].

Reducing the environmental footprint from global-scale systems requires the participa-
tion of both large-scale and small-scale entities. In this context, the utilization of renewable
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energy to satisfy the electricity demand is aligned with the international community’s
objectives. Increasing the renewables share in the electricity generation mix can be achieved
by two different approaches: (1) By the utilization of large-scale generators, such as wind
farms, hydropower, solar farms, and solar concentration; (2) By using multiple small-scale
generators owned by the consumers for onsite electricity generation. Each of these ap-
proaches presents different advantages and disadvantages. Large-scale generators owned
by utility companies allow some control in their operations and more precise forecasts,
while from the consumer point of view there will be more to pay in utility bills due to
the investment required for these projects and the cost associated with the intermittency.
In the case of small-scale solutions, the utility company reduces its control and forecast
capabilities over these sources, but it transfers the investment costs to the consumers, while
the owners can actively participate in the electricity market due to demand-side manage-
ment (DSM) policies, the capacity to form microgrids—discussed later in this paper—and
reduced electricity bills, even if there is an initial investment. In any case, one of the main
challenges of renewable sources compared to conventional generation systems is that they
present a higher variability which can jeopardize the grid stability and reliability [5,6], and
more advanced control techniques are required to efficiently manage this uncertainty.

On the energy policy side, DSM is a series of activities that distribution network oper-
ators (DNOs) undertake to change the users’ energy consumption pattern to achieve power
grid efficiency. For a comprehensive review of DSM policies, see [7–9]. DSM policies can be
divided into two categories: energy efficiency and demand response (DR). While energy
efficiency proposes policies to reduce the energy consumption, e.g., the replacement of
older equipment with efficient equipment, DR utilizes activities in which the consumers
can participate to change the load pattern [9]. Laitsos et al. [10] mention that the main
advantages that DSM policies provide to energy systems include (i) peak shaving, (ii) reduc-
tion in operational and capacity costs, (iii) improved system reliability, and (iv) emission
reduction via the utilization of greener technologies. These advantages are the result of the
consumer’s load curve control, carried out in six modalities [9,10]:

• Peak shaving: This aims to reduce the power usage during high-demand periods
(peak), either via direct load control or through pricing contracts.

• Valley filling: The goal of this strategy is to encourage consumers to increase their
load during periods with low demand (off-peak) to secure the system’s stability.

• Load shifting: This consists of shifting the consumers’ loads from peak periods to
off-peak periods with minimum or no change in the total energy consumption.

• Load growth or load building: The overall consumption increases during the planning
horizon.

• Load reduction or energy conservation: The overall consumption during the planning
horizon is reduced.

• Flexible load curve: The loads can be redistributed during the planning horizon
flexibly. The consumers receive benefits for participating in this strategy, while the
DNOs have the flexibility to improve the reliability of the system or to respond
to emergencies.

In general, consumers are interested in two types of DR policies: incentive-based
programs, in which the users receive incentives to participate in specific events defined
by the grid operator, and price-based programs, which present different electricity tariffs
at certain periods depending on the demand level of the grid and the generation cost.
The basic price-based program is the Time-of-Use, in which different price tariffs are present
in different time blocks; the tariffs are higher during peak periods than during off-peak
periods. A modification of this approach, known as Time-and-Level-of-Use (TLOU) [11]
also considers the level of consumption at each time block. Other price-based programs are
the real-time pricing, in which the tariffs are based on the real-time generation cost, and
the critical peak pricing, which imposes very high tariffs during (very short) critical peak
periods, e.g., during emergency conditions [8].
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From the consumer side, the evolution in distributed energy resources, defined as
demand- and supply-side resources that can be deployed throughout an electric distribution
system to meet the energy and reliability needs [12], has changed the nature of the grid
from passive to active [13]. These resources, such as roof solar photovoltaic (PV) panels and
diesel generators with capacities ranging up to hundreds of MW, small-scale storage cells,
electric vehicles, and smart meters, among other technologies, provide the consumers with
the opportunity to generate and store energy. Different from utility-scale energy resources,
such as coal-based thermal power plants, hydropower, and large-scale solar and nuclear
plants, which are centralized and designed to supply energy for long distances, distributed
energy resources are located close to the consumption points. This reduces the transmission
and generation costs, particularly when the distributed resources are utilized to cover peak
periods [14].

Distributed energy technologies allow for the formation of microgrids. A microgrid is
defined as a small-scale power system with at least one distributed energy resource and
one load, with clearly defined electrical boundaries, and a smart infrastructure that allows
self-supply and islanding, providing security, reliability, autonomy, and resilience [14,15].
Microgrid technology lets electricity consumers improve their energy efficiency, including
the use of clean energy. Some examples of microgrids include small distribution networks,
manufacturing systems, data centers, smart buildings, and other systems that have onsite
energy resources. For a comprehensive discussion about microgrids, including architecture,
functions, challenges, and opportunities, see the research of Yoldaş et al. [16]. As discussed
by Khodaei [15], microgrids offer improved reliability, resiliency, and efficiency, reduction
of carbon emissions due to a higher power quality, the utilization of less costly RES, and
supply of loads in remote areas. The management of a microgrid can be more sophisticated
when compared to the distribution network (DN) due to their significantly smaller scale,
allowing the potential to mitigate the effects of resource uncertainty and contingencies [17],
particularly when load components are deferrable at some level [18]. By utilizing informa-
tion and communication technologies, microgrids can coordinate the distributed energy
resources and controllable loads efficiently, as well as switch over to islanded mode and
operate autonomously for safety purposes [19,20]. Controllable distributed generators
within a microgrid are much smaller than the utility-scale ones of the DN, allowing eas-
ier switching operations and a more flexible scheduling that can mitigate the impact of
the intermittency of the RES [21,22]. Microgrids are connected to the DN through the
point of common coupling, a special bus that allows electricity flow in both directions.
A sophisticated energy management system (EMS) to monitor, control, and optimize the
(onsite and grid) energy resources and find the system’s energy balance contributes to the
above-mentioned benefits, making the microgrid technology attractive for the operation
of diverse systems. For a comprehensive review of microgrids’ EMSs, see the research of
Battula et al. [14].

The existence of microgrids that are capable of advanced energy-related decisions
within the DN allows for the efficient implementation of DR policies. One of the main bar-
riers that prevents achieving this implementation is the lack of effective collaboration and
negotiation protocols between the DNO and the operators of the microgrids, considering
that the former obtains profits for selling electricity to the latter, while the microgrids seek
to minimize their operational costs. This paper proposes (i) a mathematical optimization
framework to find the optimal operation of a DN with networked microgrids embedded
into it and (ii) a collaboration scheme to coordinate the energy decisions between the
DN and the microgrids. It is assumed that the DNO works closely with the operators of
large-scale generators that power the network. Therefore, the decisions to be made include
the unit commitment of the utility-scale generators, the optimal power flow problem for the
DN, the incentives offered to the microgrids, and the bidirectional power flow between the
DN and the microgrids to satisfy the network’s energy demand. The DNO uses a dynamic
pricing scheme, and requests load reductions to the microgrids in exchange for economic
incentives. The proposed model allows the microgrids to make their own decisions, consid-
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ering the dynamic tariff policies and energy consumption reductions requested by the DNO.
Additionally, the point of common coupling allows net metering; i.e., the microgrids can
sell their power surplus to the DN. Each microgrid includes an EMS that takes into account
the energy supply from the DN, the uncertainty related to the onsite renewable generators,
the utilization of energy storage, and the DR policies to find the decisions that minimize its
operational cost. The DN can utilize the microgrids’ energy resources and decisions as a
reserve to improve the network’s flexibility. The proposed algorithm helps to carry out the
collaboration between the DNO and the microgrids in terms of the interchange of energy,
and the participation of the microgrids in the DR programs.

The main contributions of this paper are: (i) We introduce an optimization model
that finds the optimal unit commitment and power flow of a DN with multiple embedded
microgrids, without direct control nor complete information of the microgrids’ operations;
the uncertainty related to the renewable sources is quantified and incorporated into the
model via robust optimization. (ii) A collaboration and negotiation protocol between
the DNO and the microgrids to allow the latter to reduce their energy usage, schedule
the electricity usage under dynamic tariffs, and supply energy to the grid. (iii) A case
study based on a modified instance of the IEEE 30-Bus System is analyzed to show the
effectiveness of the proposed approach under different configurations, eliminating the
necessity of load shedding and increasing the renewable energy share and power supplied
by the microgrids to the distribution network.

The remainder of this paper is organized as follows: Previous work is reviewed in
Section 2. In Section 3, the model for the optimal operation of the DNO with multiple
embedded microgrids is presented, including the discussion of the uncertainty management
and solution algorithm to solve the proposed model and the negotiation protocol. In
Section 4, a case study and sensitivity analysis are presented, and the results are discussed
in Section 5. Finally, Section 6 presents the conclusions.

2. Literature Review

DSM policies have been studied widely, and algorithms have been proposed to opti-
mize the operation of diverse systems under these conditions. Habibian et al. [23] study
the ability of an industrial consumer of electricity to flexibly reduce demand and offer
interruptible load reserve and its impacts in the market. Anjos et al. [11] propose a
framework to optimize the operation of an electricity retailer that sells energy using a
TLOU pricing structure, finding the optimal price in this scheme considering a compet-
itive environment and flexible loads from the consumers. Laitos et al. [10] present an
implementation of DR emergency programs to induce the energy consumption of a power
system’s consumers, considering renewable energy sources via particle swarm optimization.
Mohammad et al. [24] propose an EMS for residential buildings with onsite PV, energy
storage, and electric vehicles utilized as another storage system while minimizing the oper-
ating cost, peak to average ratio, and the user discomfort (including the electric vehicles’
availability). Zator [25] presents a case study to measure the impact of the utilization of
an EMS for homes with PV and heat and electric energy storage system installations on
self-consumption of a single-family house with price-based DSM. Kumar et al. [26] propose
a method to integrate customer-oriented and utility-oriented DSM policies into micro-
grids’ EMS, considering non-dispatchable energy resources. Vergara-Fernandez et al. [27]
present a case study for a seawater reverse osmosis desalination plant, whose operation
is optimized using mixed-integer linear programming (MILP) that includes DSM policies.
Baldi et al. [28] propose an optimal control framework for heat, ventilation, and air conditioning
units in interconnected commercial buildings equipped with PV generators, achieving DR man-
agement and thermal comfort conditions for users. On the other hand, Korkas et al. [29] propose
an optimal control algorithm for demand response and thermal comfort management for micro-
grids with onsite renewables (namely PV and wind turbines) and energy storage, considering the
thermal requirements based on the occupancy level of the buildings under study. The framework
performs a local optimization for each building as well as an aggregate level management carried
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out by a central controller. Gomez-Herrera and Anjos [30] present an optimization scheme
for the operation of residential smart buildings, balancing cost and users’ comfort while
participating in DR programs. Ruiz Duarte et al. [31] present an optimization framework
for manufacturing facilities including onsite energy generation and storage technologies,
operating under DSM policies. The approaches presented in the above-mentioned research
present opportunities to the DN in which these systems are embedded to increase the
network’s efficiency.

The optimization of networked microgrids has also been studied. Wang et al. [32]
develop a mathematical model that captures heterogeneous management systems with flex-
ible demands to find the optimal operation of a centralized DN with embedded networked
microgrids with electricity consumer and producer characteristics. Fang et al. [33] present
a cooperative energy dispatch approach to coordinate multiple networked autonomous
microgrids with intermittent renewable generators. In a similar approach, Fang et al. [34]
propose a collective energy dispatch approach to coordinate distributed generation, en-
ergy storage, and critical demand across multiple autonomous microgrids, considering
small-scale distributed renewable generators. In their research, Wang et al. [35] develop a
mathematical programming algorithm to optimally coordinate the operation of networked
microgrids and the DNO, each of them with different objectives, considering uncertainties
related to RES. Similarly, Wang et al. [36] propose a decentralized management system
for networked microgrids, each with individual objectives and operating autonomously,
considering both grid-connected and islanded modes. Wang et al. [37] present an algo-
rithm for the operation of networked microgrids, which are connected through a physical
common bus, to find the optimal schedule for distributed generation, energy storage, and
controllable loads of each microgrid. Kou et al. [38] propose a distributed economic model
to achieve coordination among multiple microgrids under a stochastic energy management
approach for multiple microgrids and the DNO. Lv and Ai [39] propose a dynamic energy
management strategy for an energy system consisting of multiple microgrids, with interac-
tions between the DNO and the microgrids, and among the microgrids, with large-scale
integration of solar and wind RES. Haddadian and Noroozian [40] develop an approach for
optimizing a DN, first in an integrated approach, and after that decomposing the DN into a
set of networked microgrids, considering RES and energy storage. Wang and Wang [41]
propose a networked microgrid framework for outage detection and service restoration via
network reconfiguration and power support from the microgrids. Ma et al. [42] propose
a distributed algorithm for online energy management for networked microgrids with
high RES integration utilizing regret minimization and alternating the direction method of
multipliers. Ferro et al. [43] propose a bi-level optimization framework for an aggregator
that manages different local consumers and/or producers (prosumers). The DN under
study include the participation of microgrids and smart buildings as prosumers with re-
newable sources and storage systems, which can receive incentives for DR participation in a
network topology. The aggregator, represented as the higher-level stage, determines the ref-
erence values that the prosumers try to reach at the lower-level stage. The main differences
between the presented literature review and this paper are (i) the assumption that each
microgrid optimizes its operation and energy usage individually, resulting in electricity
demand/surplus; and (ii) the negotiation protocol assumes that the DNO does not have
direct control nor complete information of the microgrids’ internal systems but requires a
day-ahead estimate of the energy usage, availability, and decisions about participating in
DR programs.

3. Materials and Methods

The system under study consists of a DN that requires finding the optimal unit
commitment to satisfy its demand. It consists of a set of large-scale conventional generators,
G (indexed by g), and a set of large-scale renewable generators, R (indexed by r), that
provide electricity to a set of buses, I (indexed by i), of which some are microgrids,M⊆ I ,
(indexed by m), and a set of transmission lines, E (indexed by e), that distribute the electric
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energy. The DNO requires electric energy to be provided to satisfy the demand of set I ,
by either using the large-scale generators G andR, or leveraging on the onsite production
of the microgrids, during a planning horizon T (indexed by t). The electricity is supplied
under a dynamic tariff (DT) policy in which the prices per unit of electricity are adjusted
according to K levels of consumption (indexed by k). Additionally, the DNO can request
that the microgrids reduce their loads in exchange for economic incentives. Each microgrid
m ∈ M can satisfy its demand via a combination of onsite energy generation and storage
technologies, as well as energy purchased from the DN. The microgrid can decide to accept
a reduction in their energy consumption levels when the DNO requests them. Furthermore,
the microgrid has the capability of selling the surplus of onsite produced energy to the
DN. Each microgrid has different characteristics depending on the system it represents,
and its goal is to find its optimal operational and energy decisions. The microgrids under
study include residential facilities, manufacturing facilities, data centers, and agricultural
facilities. The system is shown in Figure 1, in which the large-scale generators are on the
left-hand side of the figure, the non-microgrids buses are in the middle, and the microgrid
buses are on the right-hand side.

Vertical 
farming

Production

General 
microgrid

Utility-scale 
generators

Networked 
Microgrids

Non-microgrid 
buses

Data center

Distribution Network

Information flow
Energy flow

Information flow
Energy flow

Figure 1. DN with multiple microgrids.

The mathematical formulation is presented below. Tables 1–3 summarize the nomen-
clature utilized in the formulation. In particular, Table 1 lists the sets and indices for the
time horizon, buses, microgrids, transmission lines, conventional and renewable generators,
and dynamic electricity tariffs. Table 2 presents the costs associated with unit commitment,
electricity generation and ramping, electricity purchased, and load shedding; the sales price
of electricity; electricity generation and ramping capacities, as well as electricity trades
limits; capacity and susceptance of transmission lines; and electricity demand of the buses.
Table 3 lists the decision variables, including unit commitment, power generation, and
ramping, energy flow in the transmission lines, power sold to and bought from microgrids,
load reductions, and load shedding.
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Table 1. Sets and indices.

Symbol Description

T Set of time frames in the planning horizon, indexed by t ∈ {1, 2, . . . , T}, T = |T |
I Set of buses, indexed by i
M⊆ I Set of microgrid buses, indexed by m (connected to bus im ∈ I)

E Set of transmission lines, indexed by e (denoted by e = (ie, je), with tail bus ie and
head bus je)

G Set of conventional energy generators, indexed by g (connected to bus ig ∈ I)
R Set of renewable energy generators, indexed by r (connected to bus ir ∈ I)
K Set of consumption levels for dynamic tariff policy, indexed by k

Table 2. Model parameters.

Symbol Description

PG
g /PG

g Lower/upper limits of power output for generation unit g

Td0/u0
g Minimum number of periods generation unit g must be initially offline/online

Td/u
g Minimum number of periods generation unit g must remain offline/online once it is shut down/started up

R̃d/u
g Maximum shutdown/startup ramping rate for generation unit g ∈ G when is shut down/started up

Rd/u
g Maximum ramp-down/up rate for generation unit g between adjacent periods

CTd/Tu
g Fixed shutdown/startup cost for generation unit g

CRd/Ru
g Ramp-down/up unitary cost for generation unit g

CP
g Generation cost function for generation unit g

Fe Capacity of transmission line e
Be Susceptance of transmission line e
PF/N

m,t Limit under Firm (F)/Non-firm (N) contract for power purchased from microgrid m, at period t
CF/N

m,t Cost of power purchased from microgrid m, under Firm (F)/Non-firm (N) contract, at period t
Di,k,t Energy demand at bus i, at consumption level k, at period t
CIn

m,k,t Load reduction incentive per unit offered to microgrid m, at consumption level k, at period t
CR

r Production cost of renewable type r
CDT

i,k,t Energy price for bus i at consumption level k, at period t
CS

i,k,t Cost of load shedding per unit on bus i, at consumption level k, at time t

PR
r,t Availability of renewable power of RES type r at period t

PDT
i,k,t Amount of conventional energy available at bus i, at consumption level k, at period t

Qm,k,t Limit for load reduction requests for microgrid m, at consumption level k, at period t

Table 3. Decision variables.

Symbol Description

xg,t ∈ {0, 1} Binary variable indicating if generation unit g is committed (xg,t = 1) or not (xg,t = 0) at period t
yu/d

g,t ∈ {0, 1} Binary variable indicating if generation unit g is started up/shut down (yu/d
g,t = 1) or not (yu/d

g,t = 0) at period t
pG+/G−

g,t Electricity generation/curtailment of conventional generator g at period t
pG

g,t Power supplied from generator g to the DN at period t

pu/d
g,t Ramp up/down of conventional generator g at period t

pR
r,t Electricity generation of renewable generator r at period t

fe,t Electricity flow on line e, at period t
ze,t ∈ {0, 1} Binary variable indicating if line e is switched on (ze,t = 1) or off (ze,t = 0), at period t
θie ,t Voltage angle of bus i on line e, at period t
pF/N

m,t Electricity purchased from microgrid m, under Firm (F)/ Non-firm (N) contract, at period t

p(−)i,k,t
Electricity sold to bus i, at consumption level k at period t

qm,k,t Amount of load reduction requested to microgrid m, at consumption level k, at period t
si,k,t Amount of load shed from bus i, at consumption level k, at period t
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3.1. The Distribution Network

The DN needs to find the day-ahead schedule of the conventional generation units, the
power used from the renewable generators, the optimal power flow, the energy transactions
with the microgrids, the application of DR policies, and the energy balance that minimize
the cost.

3.1.1. Unit Commitment

Since utility-scale conventional generators require larger periods to change their
status, the problem of finding their optimal scheduling problem has been well studied.
The unit commitment problem refers to the decisions of starting up and shutting down
generators. A modified version of the unit commitment problem presented in [44] is shown
in Equations (1)–(8).

Tu0
g

∑
t=1

(1− xg,t) = 0, ∀g ∈ G (1)

Td0
g

∑
t=1

xg,t = 0, ∀g ∈ G (2)

t+Tu
g−1

∑
t′=t

xg,t′ ≥ Tu
g · yu

g,t, ∀g ∈ G, t ∈ {Tu0
g + 1, . . . , T − Tu

g + 1} (3)

t+Td
g−1

∑
t′=t

(1− xg,t′) ≥ Td
g · yd

g,t, ∀g ∈ G, t ∈ {Td0
g + 1, . . . , T − Td

g + 1} (4)

T

∑
t′=t

(xg,t′ − yu
g,t) ≥ 0, ∀g ∈ G, t ∈ {T − Tu

g + 2, . . . , T} (5)

T

∑
t′=t

(
(1− xg,t′)− yd

g,t

)
≥ 0, ∀g ∈ G, t ∈ {T − Td

g + 2, . . . , T} (6)

yu
g,t − yd

g,t = xg,t − xg,t−1, ∀g ∈ G, t ∈ T (7)

xg,t, yu
g,t, yd

g,t ∈ {0, 1}, ∀g ∈ G, t ∈ T (8)

Constraints (1) and (2) represent the initial online/offline requirements for generation
unit g, which consists of Tu0

g and Td0
g periods, respectively. The minimum number of

periods that the generator unit g must remain online/offline after the minimum initial
online/offline periods is represented by (3) and (4) (Tu

g and Td
g periods, respectively). These

constraints are modified to account for the minimum number of periods that the generator
unit g must remain online/offline at the end of the time horizon, as presented on (5) and (6).
The relationship between starting up/shutting down generator unit g, represented by
binary variables yu

g,t and yd
g,t, respectively, and its commitment status, modeled as the

binary variable xg,t, is modeled in (7). The binary requirements for the decision of the
online/offline status as well as the starting up/shutting down the generator unit g are
modeled in (8).

3.1.2. Conventional Power Generation

The amount of power that the utility-scale generators produce, modeled as pG+
g,t ,

is bounded by the lower and upper limits (PG
g and PG

g , respectively) determined by their
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technical capacities. Additionally, a generator can contribute only if it is turned on during a
certain period. The power generation is shown in Equations (9)–(14).

PG
g xg,t ≤ pG+

g,t ≤ PG
g xg,t, ∀g ∈ G, t ∈ T (9)

pG+
g,t = pG+

g,t−1 + pu
g,t − pd

g,t, ∀g ∈ G, t ∈ T (10)

0 ≤ pu
g,t ≤ Ru

g · xg,t−1 + R̃u
g · yu

g,t, ∀g ∈ G, t ∈ T (11)

0 ≤ pd
g,t ≤ Rd

g · xg,t + R̃d
g · yd

g,t, ∀g ∈ G, t ∈ T (12)

0 ≤ pG−
g,t ≤ pG+

g,t , ∀g ∈ G, t ∈ T (13)

pG
g,t = pG+

g,t − pG−
g,t , ∀g ∈ G, t ∈ T (14)

A generator g can produce power only if it is online, as modeled in (9). Generator
unit g can change its power supply depending on its ramping rates, which determine
how fast the electricity generation can be increased (pu

g,t) or decreased (pd
g,t) per unit

time, or when the generator is turned on/off; this is modeled in (10). The generator’s
ramping rate limits are presented in equations (11) and (12), where Ru

g and Rd
g represent

the increase/decrease ramping limits when the generator is online, whereas R̃u
g and R̃d

g
represent the increase/decrease ramping rates when the generator has started up or is
shut down, respectively. In the case that the power generation of unit g is more than the
required amount, it is possible to curtail some of that power to achieve power balance; the
power curtailed, modeled as pG−

g,t , cannot be larger than the power generated, as modeled
in (13). The amount of power supplied to the DN is modeled as pG

g,t in (14).

3.1.3. Renewable Power Generation

For utility-scale renewable generators, the renewable power, modeled as pR
r,t, is con-

sidered to depend only on the renewable power availability, PR
r,t. The amount of renewable

power that can be generated is presented in Equation (15).

0 ≤ pR
r,t ≤ PR

r,t, ∀r ∈ R, t ∈ T (15)

For this paper, the available renewable power is treated as uncertain. The integration
of this uncertainty in the proposed model is discussed in Section 3.3.

3.1.4. Transmission Lines

A network topology is utilized to model the DN. Transmission lines can be considered
as the edges of the network, while the buses are analogous to the nodes. The power
flow that is generated on a bus i can satisfy the demand on a bus j if there is a path that
connects buses i and j through transmission lines. The initial node of transmission line e is
modeled as ie and its end node is modeled as je. The dynamics of transmission lines are
modeled as the DC approximation for the optimal power flow problem, as presented in
Equations (16)–(18).

−Fe · ze,t ≤ fe,t ≤ Fe · ze,t, ∀e ∈ E , t ∈ T (16)

fe,t = Be · (θie ,t − θje ,t) · ze,t, ∀e ∈ E , t ∈ T (17)

ze,t ∈ {0, 1}, ∀e ∈ E , t ∈ T (18)

The flow in transmission line e, modeled as fe,t, is bounded by its physical capacity,
Fe, and the line switching status, ze,t, as modeled in (16). Kirchhoff’s law for the DC
optimal power flow problem, which considers that the power flow in a transmission
line within the microgrid is proportional to the difference of the voltage phase angles at
the terminal buses of the line (θie ,t and θje ,t) and the line’s susceptance (Be), taking into
account the decision of connecting/disconnecting the transmission line as modeled in (17).
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The connected/disconnected binary status of the transmission lines is modeled in (18).
Note that (17) involves a nonlinear term. Then, it can be reformulated as presented in (19).

Be · (θie ,t− θje ,t)− (1− ze,t) · Fe ≤ fe,t ≤ Be · (θie ,t− θje ,t)+ (1− ze,t) · Fe, ∀e ∈ E , t ∈ T (19)

3.1.5. Electricity Bought from Microgrids

The DNO has to supply electricity to every bus in the network. In the case of mi-
crogrids, it is assumed that they have electricity production capacity through distributed
generation. It can be the case that the microgrid produces more electricity than the re-
quirements for its operation. In this case, the DNO can leverage this surplus of electricity
to satisfy other buses in the network by purchasing it from the microgrids. This type of
transaction can be carried out at different rates. The electricity traded under a contract limit
is called firm, modeled as pF

m,t, and any amount of electricity traded beyond the contract
limit is considered non-firm, modeled as pN

m,t. The trade prices for both firm and non-firm
purchases are different. The constraints for the connection and trades between the DNO
and the microgrids are modeled in the Equations (20)–(22).

∑
k∈K

p(−)im ,k,t − (pN
m,t + pF

m,t) = ∑
e∈E :je=im

fe,t, ∀m ∈ M, t ∈ T (20)

0 ≤ pF
m,t ≤ PF

m,t, ∀m ∈ M, t ∈ T (21)

0 ≤ pN
m,t ≤ PN

m,t, ∀m ∈ M, t ∈ T (22)

The total power flow in the transmission lines between the DNO and microgrid m is
modeled in (20), where the left-hand side represents the net trade calculated by subtracting
the electricity supplied from the microgrid to the DN from the energy sold to the microgrid
node, modeled as p(−)im ,k,t. The limits of the power that can be traded under firm and non-firm

contracts, PF
m,t and PN

m,t, are modeled in (21) and (22), respectively.

3.1.6. Demand Response

In this paper, two DR policies are considered: DT and load-reduction incentives. Par-
ticularly, the DT policy is modeled for the power sold to the buses. Therefore, the demand
at each bus i is divided based on the |K| consumption levels of the DT policy and repre-
sented by Di,k,t. Moreover, if bus i represents a microgrid, the DNO may request a load
reduction of qm,k,t units of electricity at a particular period t. If the DNO is still unable to
satisfy that demand, it is possible to incur load shedding of si,k,t units of electricity. The
amount of electricity sold to bus i after the above-mentioned considerations is modeled in
Equations (23)–(25).

p(−)i,k,t = Di,k,t − si,k,t − qim ,k,t, ∀i ∈ I , k ∈ K, t ∈ T (23)

0 ≤ qm,k,t ≤ Qm,k,t, ∀m ∈ M, k ∈ K, t ∈ T (24)

0 ≤ si,k,t ≤ Di,k,t, ∀i ∈ I , k ∈ K, t ∈ T (25)

The electricity sold to bus i equals its demand minus the load that is shed, and, in the
case of microgrid nodes, minus the amount that is requested to reduce, as modeled in (23).
The maximum amount that can be requested to be reduced from microgrids at each DT
level is modeled as Qm,k,t in (24). The load that can be shed from a certain bus cannot be
greater than the demand of this bus, as modeled in (25).

Note that the design of the set of equations to model the power sold to each bus allows
other pricing policies, such as real-time pricing and critical peak pricing, by modifying the
price parameters on each time frame t, which are discussed in Section 3.1.8.
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3.1.7. Power Balance

The power supply and demand balance should be satisfied at each of the nodes
of the DN. Equation (26) represents the power balance at bus i for each time frame t.
The power supply (in the left-hand side of the equation) is the sum of the power generated
by conventional and renewable generators placed at bus i and the incoming power flow.
The power demand (on the right-hand side of the equation) is the power sold to bus i and
the sum of the outgoing power flow.

∑
g:ig=i

pG
g,t + ∑

r:ir=i
pR

r,t + ∑
e:je=i

fe = ∑
k∈K

p(−)i,k,t + ∑
e:ie=i

fe, ∀i ∈ I , t ∈ T (26)

3.1.8. Cost Management

The cost function consists of the production cost for conventional and renewable
generators, the ramping and commitment processes of the conventional generators and
load shedding, the revenues obtained for selling electricity under DT policy, as well as
the incentives paid for load reduction requests accepted by the microgrids. In general,
the unit commitment and power generation costs are nonlinear and nonconvex. A linear
approximation of the cost function consisting of a piecewise-linear reformulation based on
the AC optimal power problem flow is presented in this paper. The unit commitment cost
associated with starting and shutting down the generators, cUC, is shown in Equation (27).

cUC = ∑
t∈T

∑
g∈G

(
CTu

g · yu
g,t + CTd

g · yd
g,t

)
, (27)

where CTu
g and CTd

g represent the cost for starting up and shutting down the conventional
generators, respectively.

The power generation and ramping cost for both conventional and renewable genera-
tors, cPG, are shown in Equation (28).

cPG = ∑
t∈T

(
∑
g∈G

(
CP

g · pG+
g,t + CRu

g · pu
g,t + CRd

g · pd
g,t

)
+ ∑

r∈R
CR

r · pR
r,t

)
, (28)

where CP
g , CRu

g , CRd
g and CR

r indicate the generation cost, ramping up, and raping down of
conventional generators, as well as the generation cost of renewable generators, respectively.

The cost of the electricity purchased from the microgrids and the incentives paid for
accepting load reductions, cµG, are shown in Equation (29).

cµG = ∑
t∈T

∑
m∈M

(
CF

m,t · pF
m,t + CN

m,t · pN
m,t + ∑

k∈K
CIn

m,k,t · qm,k,t

)
, (29)

where CF
m,t, CN

m,t and CIn
m,k,t model the cost of energy purchased from the microgrids un-

der firm and non-firm contracts, as well as the load reduction incentives per electricity
unit, respectively.

The cost of load shedding from different buses of the DN, cSh, is reflected in Equa-
tion (30). Note that, depending on the criticality level of a given bus, the load shedding
penalty CS

i,k,t can be adjusted, e.g., this parameter can be relatively low for a residential bus,
and very high for a hospital.

cSh = ∑
t∈T

∑
k∈K

∑
i∈I

(
CS

i,k,t · si,k,t

)
(30)

Finally, the revenue obtained from selling energy at different DT levels, cDT, is shown
in (31). Note that the definition of the DT parameters CDT

i,k,t allows the model to be flexible
to utilize different tariffs schemes, such as TLOU (used in this paper), real-time pricing (by
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using different values on each time frame), and critical peak pricing (by setting very high
values in particular time frames).

cDT = ∑
t∈T

∑
k∈K

∑
i∈I

(
CDT

i,k,t · p
(−)
i,k,t

)
(31)

3.1.9. Optimization Model

The optimization model for the operation of the DNO consists of minimizing the
total cost, subject to the operational constraints. In order to facilitate the discussion of the
solution methodology, a compact form of the problem is presented in (32). Let vector x
represent the unit commitment (binary) decision variables, xg,t, yu

g,t, yd
g,t; vector y denote

the power generation and power flow (continuous) decision variables, pG+/G−/G
g,t , pu/d

g,t ,

pR
r,t, fe,t, θie ,t, pF/N

m,t , p(−)i,k,t , qm,t, and si,t; and vector z represents the line switching (binary)
decision variables, ze,t.

min
x,y,z

cUC + cPG + cµG + cSh − cDT

s.t. Constraints (1)–(16), (18)–(26)
(32)

3.2. The Microgtrids

In this paper, it is assumed that each microgrid is capable of making its own operational
and energy decisions. Optimal control techniques for microgrids are discussed in more
detail by Minchala-Avila et al. [45]. It is out of the scope of this paper to get into the details
for each type of microgrid but is assumed, without loss of generality, that their management
team utilizes mathematical optimization to find their optimal operation. A general cost
minimization model for the optimal operation and energy decisions of microgrids that
considers DSM policies can be modeled as shown in (33)–(36).

min
o,p|δDSM

f (o, p) (33)

s.t. g(o, p) ≤ 0 (34)

o ∈ O (35)

p ∈ P , (36)

where o and p represent the operational and energy decisions, respectively, δDSM represents
the DSM policies used by the DNO, and constraints (34)–(36) represent the operational
and energy constraints. In this paper, δDSM is composed of the incentives offered for load
reduction requests, CIn

m,k,t; the load reduction requested by the DNO, qm,k,t; the DT levels,

PDT
im ,k,t; the DT prices, CDT

im ,k,t; the price of the energy bought at firm and non-firm contracts,
CF

m,t and CN
m,t, respectively; and the maximum amount of the firm and non-firm contracts,

PF
m,t and PN

m,t, respectively.
To achieve the optimal coordination of operational and energetic goals, an EMS is

assumed to be installed within each microgrid to jointly optimize the use of energy and its
operations. Figure 2 presents the scheme for a microgrid with a central EMS that utilizes
information from the operational requirements, as well as the available onsite energy
technologies and the DN, finding the optimal operations.

It is assumed that each microgrid can generate and store its own electricity, and utilize
the electricity from the DN to optimize its processes. The EMS considers information, such
as costs and incentives offered by the DN, including the DSM policies, to optimally decide
how much energy to purchase or sell to the DN. It is assumed that the microgrid’s EMS
will produce and communicate the following information to the DNO:

1. The amount of energy consumed from the grid at each DT level, Dim ,k,t.
2. The amount of energy sold to the grid under firm and non-firm contracts, p̂F/N

m,t .
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3. The amount of electricity consumption willing to reduce, q̂m,k,t.

Point of 
common coupling

- DSM policies

- State of 
charge

Information flow
Energy flow

EMS

Onsite energy storage

Controllable loads

Microgrid

Distribution network - Power 
availability

- Operations

- Participation in 
DSM policies

- Demand
- Possible trades

Onsite generation

PV

PV

Conventional

Figure 2. The EMS of microgrids.

The information obtained from each microgrid can be used by the DNO to find its
optimal operation.

The microgrids considered in this paper are classified into three categories, based on
the definition of energy-consuming sectors defined by the U.S. EIA [46]:

(1) Residential microgrids: The residential sector consists of living quarters for private
households. Residential microgrids include the operation of appliances such as space
heating, water heating, air conditioning, lighting, refrigeration, cooking, and running a
variety of other appliances. Some of the residential appliances allow certain flexibility
in the time frames they need to be operated. As an example, a washing machine can be
scheduled to operate during specific periods that optimize energy usage.

(2) Industrial microgrids: The industrial sector consists of facilities and equipment
used for producing, processing, or assembling goods. This sector encompasses agriculture,
forestry, fishing, hunting, mining, oil and gas extraction, and construction. Industrial
microgrids present flexibility in their operation as long as the demand of goods is satisfied
during the planning horizon. A change in their operation results in a change in their energy
consumption patterns.

(3) Commercial microgrids: The commercial sector consists of service-providing facili-
ties and equipment of businesses, governments, and other private and public organizations.
Common uses of energy associated with this sector include space heating, water heating,
air conditioning, lighting, refrigeration, cooking, and running a wide variety of other
equipment. Commercial microgrids present a certain flexibility in their operation, as long
as a certain quality of service level is satisfied. Similarly to the industrial microgrids, a
change in their operation results in a change in their energy consumption patterns.

3.3. Solution Methodology

In this section, the solution approach for the DN alone is presented in Section 3.3.1,
and the framework for the collaboration between the DN and the microgrids is presented
in Section 3.3.2.

3.3.1. Optimal Operation of the Distribution Network

In mathematical optimization, uncertainty can be addressed by finding the optimal
operation of the system under the most adverse scenario with robust optimization. It is
suitable for assessments in the long term, e.g., to compare the performance of the system
after applying certain DSM policies. It is also suitable for short-term decisions since it can
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be assumed that, if the system can perform successfully in the worst-case scenario, then it
can perform successfully in any other scenario as well.

The uncertainty of the presented model comes from the renewable power availability,
PR

r,t, given that its intermittency depends on weather conditions. Nevertheless, it is assumed

that the expected value, E[PR
r,t], and the variance, Var[PR

r,t], of the renewable power output
at each period can be obtained. Then, an uncertainty set, U , can be constructed utilizing
the mean and the standard deviation, without a loss of generality. For the purpose of this
paper, the uncertainty set is constructed by a lower bound and an upper bound, defined
as follows:

U =
{

PR
r,t ∈ [E[PR

r,t]− Υr,t,E[P
R
r,t] + Υr,t], ∀r ∈ R, t ∈ T

}
(37)

where Υr,t and Υr,t denote the deviations that define the lower and upper bounds for
a renewable source r at period t, and are a function of the variance. For this paper,

Υr,t = Υr,t = Var[PR
r,t]

1/2
. To determine the specific solar availability, auxiliary variables υr,t

and υr,t are used to measure the deviation from the mean value, and a budget of uncertainty,
U, limits the total deviation. The uncertainty set (37) can be formulated as follows:

PR
r,t = E[PR

r,t]− υr,t · Υr,t + υr,t · Υr,t, ∀r ∈ R, t ∈ T
0 ≤ υr,t, υr,t ≤ 1, ∀r ∈ R, t ∈ T

∑
t∈T

∑
r∈R

(υr,t + υr,t) ≤ U

By design, the budget of uncertainty allows the DNO to control the level of con-
servativeness utilized in the planning process. If the DNO sets U = 0, the renewable
power output parameters are fixed to the mean value at each period; on the other hand, if
U = T · |R|, it allows each renewable source to vary during all the time frames during the
planning horizon.

The problem of finding the optimal operation of the DN with networked microgrids
can be analyzed in two stages: First, the DNO finds the optimal unit commitment decisions
for day-ahead planning. After this, the conventional and renewable generators produce
the energy under the operational constraints and distribute it via the power grid. Note that
the unit commitment occurs before the availability of the intermittent renewable sources is
revealed in the first stage, and the power flow and line switching decisions occur in the
second stage, once the renewable availability is unfolded. The model stated in (32) can be
rewritten to follow the robust optimization approach as follows:

min
x

cUC + max
r∈U

min
y,z|x̂

cPG + cµG + cSh − cDT

s.t. Constraints(1)− (16), (18)− (26)
(38)

where vector r denotes the uncertain parameters of renewable availability, PR
r,t. The op-

timization model finds the worst-case renewable availability by utilizing the operator
maxr∈U . This can be understood as follows: While the DNO tries to minimize the opera-
tional cost by controlling the unit commitment (minx) and power flow (miny,z), another
“agent” (i.e., the uncontrollable weather conditions) tries to maximize the cost by adjusting
the renewable power availability (maxr∈U ). The resulting problem is a two-stage MILP
problem, in which the first stage has only binary variables, while the second stage has both
continuous and binary variables. This structure can be solved utilizing a nested column-
and-constraint-generation approach, as demonstrated in [31].

3.3.2. Coordination between DNO and the Microgrids

The DNO and the microgrids try to optimize their operations and there may exist
conflicting objectives, considering that the DN business consists of selling electricity to the
latter, while the microgrids seek to minimize their operational costs, including the energy
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purchase. It is assumed that the DNO does not have direct control of the operation of the
microgrids nor complete information of the microgrids’ internal systems. Nevertheless,
the DNO leverages the DSM policies to influence the behavior of the microgrids, but
the microgrids have the last decision on their operation. In this paper, the collaboration
process is considered as follows: First, each of the microgrids presents an estimation of
their electricity demand to the DNO, without considering any reduction request or power
traded to the DN. Second, the DNO uses the consumption estimated by the microgrids
to assess its operation and requests load reduction to each of the microgrids, with their
respective incentives. Third, the microgrids consider the load reduction requests and the
possibility of trading power to the DNO under firm and non-firm contracts, resulting in a
new estimation for demand. Finally, the DNO uses the information of the accepted requests
and power available from the microgrids to find its optimal operation. This approach can
be summarized in the following algorithm:

1. Let the following elements on δDSM be equal to zero: CIn
m,k,t, qm,k,t, CF

m,t, CN
m,t, PF

m,t and

PN
m,t, and solve each of the microgrids optimization models to obtain Dim ,k,t.

2. Let Qm,k,t = Dim ,k,t, and PF
m,t = PN

m,t = 0 and solve the DNO optimization model
in (38) to obtain q∗m,k,t.

3. Let all elements of δDSM take their original values, and qm,k,t = q∗m,k,t, and solve each

of the microgrids optimization models to obtain Dim ,k,t, p̂F/N
m,t , and q̂m,k,t.

4. Let Qm,k,t = 0, PF
m,t = p̂F

m,t and PN
m,t = p̂N

m,t and solve the DNO optimization model
shown in (38) with the updated values obtained from the microgrids, adding the
following term to its optimal cost ∑t∈T ∑k∈K ∑m∈M

(
CIn

m,k,t · q̂m,k,t

)
, which represents

the cost paid to the microgrids for accepting the load reduction requests.

4. Results

The algorithms and formulations presented in this paper were implemented using the
C++ API of CPLEX 20.10 via ILOG Concert Technology. The hardware utilized consists of a
DELL machine with Intel(R) Core(TM) i7-10700 CPU 2.90 GHz (eight-core) processor and
32 GB RAM, and it runs on Microsoft Windows 10. The computational time is reported
as CPU seconds. For testing the framework discussed above, a benchmark case was
carried out and compared with different configurations to demonstrate the flexibility of the
proposed approach. The following experiments were carried out: (1) The benchmark case
in Section 4.2 was studied under the configuration presented in Section 4.1; (2) In the case
presented in Section 4.3, the settings of the conventional generators set, G, were modified to
improve the results obtained in the benchmark case; (3) In the case presented in Section 4.4,
the size of the renewable energy generators in both the DN and the microgrids was doubled.
The second and third experiments are examples of long-term planning decisions.

4.1. Case Settings

A modified version of the IEEE 30-Bus System [47] was utilized as the DN. The
operation of the DN was evaluated for a daily horizon divided into |T | = 24 periods, each
corresponding to one hour. Within the DN, |M| = 5 microgrids are included in buses
5, 11, 18, 26, and 29. Each of the microgrids have onsite technologies of energy storage
and PV farms, as well as an EMS that finds its optimal operation considering both the
operational and energy constraints, as described in Section 3.2. The microgrid in bus 5 is
a manufacturing facility with multi-process production scheduling, which optimization
model is based on [31]; the microgrids in buses 11 and 26 are two interconnected green
data centers with job migration capabilities, which optimization model is based on [48]; the
microgrid in bus 18 is a vertical farm with controlled environment, whose optimization
model is based on [49]; finally, the microgrid in bus 29 is a smart residential building,
based on [32]. A total of |G| = 12 conventional generators are located within the DN. The
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parameters of the generators, adjusted based on the Annual Energy Outlook 2021 published
by the EIA [50], are presented in Table 4.

Table 4. Parameters of conventional generators.

ig PG
g PG

g Td0
g Tu0

g Td
g Tu

g R̃d
g R̃u

g Rd
g Ru

g CTd
g CTu

g CRd
g CRu

g CP
g

1 12 80 0 0 2 4 40 40 40 40 0 125 10.78 10.78 107.83
2 12 80 0 0 1 1 40 40 40 40 0 125 10.66 10.66 106.62
3 12 80 0 0 1 1 40 40 40 40 0 249 9.75 9.75 97.50
4 12 80 0 0 4 8 40 40 40 40 0 249 9.73 9.73 97.32
7 12 80 0 0 2 4 40 40 40 40 0 0 3.71 3.71 37.11

12 7.5 50 0 0 1 1 25 25 25 25 0 0 3.32 3.32 33.21
13 7.5 50 0 0 1 1 25 25 25 25 0 125 11.20 11.20 111.97
15 4.5 30 0 0 1 1 15 15 15 15 0 0 4.12 4.12 41.77
22 8.25 55 0 0 4 8 27.5 27.5 27.5 27.5 0 125 10.78 10.78 107.83
23 4.5 30 0 0 2 4 15 15 15 15 0 249 9.75 9.75 97.50
27 6 40 0 0 1 1 20 20 20 20 0 249 9.73 9.73 97.32
28 6 40 0 0 4 8 20 20 20 20 0 0 3.32 3.32 33.21

There are |R| = 3 large-scale solar PV facilities of 10, 15, and 20 hectares located in
buses 6, 10 and 19, respectively, with a corresponding levelized cost of energy of USD 29.04,
30.43, and 23.92 per MWh [50]. The expected value and variance of solar availability are
estimated for the weather conditions of July 15 in Tucson, Arizona, based on the information
from the National Renewable Energy Laboratory [51]. A budget of uncertainty of U = 9 is
utilized. The expected solar value and the uncertainty for the solar availability for the case
of 10 hectares are reported in Table 5, in MW. The availability for the other two solar PV
farms are adjusted proportionally to the size of the facilities.

Table 5. Parameters of the solar photovoltaic facility of 10 hectares in MW.

t 1...7 8 9 10 11 12 13 14 15 16 17 18 19...24

E[PR
1,t] 0 1.24 4.90 9.06 12.84 16.07 17.31 16.47 14.64 11.63 7.78 2.24 0

Var[PR
1,t]

1/2 0 0.48 1.14 1.05 1.25 2.56 9.76 2.63 1.71 1.43 1.44 1.87 0

The DNO utilizes |K| = 3 TLOU levels. The rates in USD per MW and levels for
TLOU are presented in Table 6 [50].

Table 6. Parameters of TLOU.

Level
Residential Industrial Commercial

MW Peak Off-Peak MW Peak Off-Peak MW Peak Off-Peak

k = 1 [0,5) 171.86 122.05 [0,15) 99.50 70.66 [0,10) 150.53 106.90

k = 2 [5,10) 183.01 133.20 [15,50) 105.95 77.12 [10,30) 160.30 116.67

k = 3 [10,∞) 189.83 140.02 [50,∞) 109.90 81.06 [30,∞) 166.26 122.64

The demand for the buses that do not contain microgrids is showed in Tables 7 and 8,
where Table 7 reflects the maximum demand during the day for each bus and Table 8
reflects the proportion of that demand during each hour to describe the demand curve.
The demand of the nodes with microgrids are not reported in Table 7.

Table 7. Maximum demand for each bus.

Bus 1 2 3 4 6 7 8 9 10 12 13 14 15

Demand 0 21.7 2.4 7.6 0 22.8 30 0 5.8 11.2 0 6.2 8.2

Bus 16 17 19 20 21 22 23 24 25 27 28 30 -

Demand 3.5 9 9.5 2.2 17.5 0 3.2 8.7 0 0 0 10.6 -
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Table 8. Hourly demand for each bus.

Hour 1 2 3 4 5 6 7 8 9 10 11 12

Demand 0.75 0.73 0.69 0.66 0.65 0.65 0.68 0.74 0.83 0.89 0.92 0.94

Hour 13 14 15 16 17 18 19 20 21 22 23 24

Demand 0.91 0.90 0.90 0.86 0.85 0.88 0.92 1.00 0.97 0.95 0.90 0.85

The cost in USD per MW reduced by the microgrids is CIn
m,1,t = 8, CIn

m,2,t = 4 and
CIn

m,3,t = 2. The price in USD per MW for power purchased from each microgrid under firm
contract is CF

m,t = 30 and CF
m,t = 25, for each microgrid and during each period. The cost of

load shedding in USD per MW shed is CS
m,1,t = 2000, CS

m,2,t = 1000 and CS
m,3,t = 500.

The above-described DN with three large-scale solar PV facilities and five microgrids
embedded is illustrated in Figure 3.
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Figure 3. IEEE 30-Bus system as the DN with large-scale solar PV farms and five embedded microgrids.

The information of the microgrids is as follows: (1) the manufacturing microgrid,
considered as an industrial microgrid, has five consecutive processes and is planning
to produce 30,000 units during the planning horizon, with an onsite solar PV facility
of 7.5 hectares; (2) the networks of two green data centers, considered as commercial
microgrids located in separate buses, need to process 90 batch-type jobs, and one has PV
facilities of 2.5 hectares on each green data center; (3) the vertical farm facility, considered
as an industrial microgrid, has a growing area of 1.5 hectares and a solar PV facility with
the same extension; (4) the residential building, considered as a residential microgrid, has
20 different appliances with flexible load capabilities and a non-flexible electric demand for
each period, and a solar PV facility of 0.5 hectares.

4.2. Benchmark Experiment

The algorithm is tested with the setup mentioned in Section 4.1, and is utilized for
a comparison with a sensitivity analysis in the following sections. As shown in Table 9,
the microgrids and the DNO collaborated negotiating load reduction requests and electricity
trades from the microgrids to the DN. The information of the table can be interpreted as
follows: the first and second columns provide general information of the microgrids; the
third and fourth columns represent the optimal cost of the microgrids before (Cost 1)
and after (Cost 2) the negotiation with the DNO; the fifth and sixth columns present
the load reduction requested by the DNO and accepted by the microgrids; the seventh
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column represents the power that the DNO purchases from the microgrids; finally, the last
column represents the green energy coefficient (GEC), which is the proportion of renewable
energy utilized in the microgrids. The cost and GECs of microgrids 2 and 4 are the same
because they both belong to the same network of green data centers, and both indicators
are calculated globally for the network. As can be seen, there is no collaboration between
the DNO and the microgrids in this case.

Table 9. Collaboration of DN and microgrids in the benchmark experiment.

Microgrid Type Cost 1 (USD) Cost 2 (USD) L. R. Req L. R. Acc Trades (MW) GEC (%)

1 Manufacturing 7,480,520.00 7,480,520.00 22 0 0 21.28

2 Data center 24,952.80 24,952.80 13 0 0 33.63

3 Vertical farm 1363.27 1363.27 0 0 0 42.73

4 Data center 24,952.80 24,952.80 3 0 0 33.63

5 Residential 8933.85 8933.85 0 0 0 21.84

The optimal unit commitment and power generation of the conventional generators
(labeled from g1 to g12) are shown in Figure 4. Generators 3, 4, 7 and 10 were not utilized
during the planning horizon.
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Figure 4. Unit commitment and generation of conventional generators for the benchmark experiment.

The balance between supply, demand and load shedding is shown in Figure 5. There
is a signification amount of load shedding, mainly on buses 19 (4% of total shed) and 30
(96%). The total load shed is 172.15 MW.
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Figure 5. Balance between electricity supply and demand for the benchmark experiment.

The GEC for the DN is 6.79%, while the global GEC is 9.22%, and the total cost for
the DNO is USD 25,810.40, indicating that the penalties incurred due to load shedding
are greater than the incomes obtained from the electricity sold. The algorithm solved this
instance in 55.44 CPU seconds, of which 32.81 CPU seconds corresponds to the two rounds
of the DNO problem.
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4.3. Change in Location of Generators

The results of the benchmark experiment in Section 4.2 show that there is load shedding
on buses 19 and 30. Additionally, this reflects that some generators are not utilized during
the planning horizon. Therefore, in this experiment, generator 7 was moved from bus 13
to bus 19, and generator 10 was moved from bus 23 to bus 30. The rest of the parameters
remain the same. The results of the microgrid collaboration are shown in Table 10. It can be
observed that the only collaboration consists of 0.50 MW of power sold from the vertical
farm to the DNO.

Table 10. Collaboration of DN and microgrids when generators are relocated.

Microgrid Type Cost 1 (USD) Cost 2 (USD) L. R. Req L. R. Acc Trades (MW) GEC (%)

1 Manufacturing 7,480,510.00 7,480,510.00 22 0 0 21.28

2 Data center 24,952.30 24,952.30 1 0 0 33.59

3 Vertical farm 1366.28 1363.27 1 0 0.50 45.18

4 Data center 24,952.30 24,952.30 2 0 0 33.59

5 Residential 8933.52 8933.52 2 0 0 21.84

The optimal unit commitment and power generation of the conventional generators
are shown in Figure 6. Generators 3, 4, 9, and 11 were not utilized during the planning
horizon.
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Figure 6. Unit commitment and generation of conventional generators when generators are relocated.

The balance between supply, demand and load shedding is shown in Figure 7. There
is no load shed in this experiment due to the relocation of generators 7 and 10.
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Figure 7. Balance between electricity supply and demand when generators are relocated.

The GEC for the DN is increased to 7.01%, while the global GEC is 9.37%, as a result
of relocation and utilization of generators 7 and 10, and the total cost for the DNO is −USD
276,667.00, representing the profits obtained by the energy sold and no penalties associated
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to load shedding. The algorithm solved this instance in 56.02 CPU seconds, of which 30.86
CPU seconds corresponds to the two rounds of the DNO problem.

4.4. Double Size of Renewable Generators

The results of the experiments in Sections 4.2 and 4.3 reflect low GEC values. Therefore,
in this instance, the size of the renewable generators is doubled. In the DN, this is repre-
sented by installing another three large-scale solar PV facilities of 10, 15, and 20 hectares in
buses 8, 9, and 14, respectively. The relocation of generators, as described in Section 4.3, is
also applied in this experiment. In the microgrids, the size of the solar farms is doubled.
The rest of the parameters remain the same as in Section 4.3. The results of the microgrids
collaboration are shown in Table 11. It can be observed that the collaboration between the
DNO and the microgrids is more significant than in the previous cases due to the expansion
of solar capacity of the microgrids, allowing the data centers and the vertical farm sell the
surplus energy to the DN.

Table 11. Collaboration of DN and microgrids when solar capacity is doubled.

Microgrid Type Cost 1 (USD ) Cost 2 (USD) L. R. Req L. R. Acc Trades (MW) GEC (%)

1 Manufacturing 7,427,570.00 7,427,570.00 22 0 0 28.23

2 Data center 21,211.80 18,968.5 1 0 7.30 49.00

3 Vertical farm 1116.81 1076.14 1 0 6.89 67.87

4 Data center 21,281.20 21,211.80 1 0 8.11 49.00

5 Residential 8370.91 8370.91 0 0 0 27.12

The optimal unit commitment and power generation of the conventional generators is
reflected in Figure 8. Generators 3, 4, 9, and 11 are not utilized during the planning horizon.
In general, the amount of power generated is reduced particularly in the periods in which
there exists solar availability.
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Figure 8. Unit commitment and generation of conventional generators when solar capacity is doubled.

The balance between supply, demand and load shedding is shown in Figure 9. There
is no load shed in this experiment and there exists a considerably higher share of renewable
energy utilized.

The GEC for the DN increases to 12.88%, while the global GEC is 17.91%, as a result
of adding new renewable generators, and the total cost for the DNO is −USD 286,109.00,
corresponding to the incomes obtained from the energy sold, and a cost reduction due to
the use of cheaper renewable energy. The algorithm solved this instance in 156.70 CPU
seconds, of which 138.48 CPU seconds correspond to the two rounds of the DNO problem.
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Figure 9. Balance between electricity supply and demand when solar capacity is doubled.

5. Discussion

The framework discussed in this paper presents a collaborative approach between
the DN and the microgrids operating within it. The results show that the communication
between both entities allows a cost reduction for both systems and a better integration of
RES. In the benchmark experiment, the DN requests 38 load reductions to the microgrids,
none of which is accepted; additionally, there is not power sold from the microgrids to the
DN. The GEC of the DN was 6.79%, and rose up to 9.33% when the RES of the microgrids
were considered. The configuration presented in the first case was not capable of satisfying
all the demand and some load shedding was carried out, resulting in a total cost of USD
25,810.40, mainly due to shedding penalties. The second case represents the long-term
decision of relocating two conventional generators. The total demand is satisfied and no
penalty costs are incurred. The profits obtained were USD 276,667.00, and the GEC of
the DN increased to 7.01%, and up to 9.37% after considering the microgrids. The third
experiment represents the long-term decision of increasing the renewable energy capacities
and relocating the generators as was carried out in the second experiment. In this case, the
profits increased to USD 286,109.00, a growth of 3.41%, while the GEC of the DN reached
12.88%, and up to 17.91% when the microgrids are considered (an increment of 5.03%).

6. Conclusions

In order to substantially increase the share of renewable energy in the generation mix,
large-scale and small-scale solutions should be taken into consideration. The microgrids,
small- to medium-scale power systems, provide an opportunity to achieve higher renew-
able penetration due to the optimized energy management frameworks and the rapid
response provided by small-scale generators. The collaboration between microgrids and
the distribution network in which they are installed is crucial for the optimal operation
of the whole system. Nevertheless, this collaboration is complex due to the conflicting
objectives between the distribution network operator and the operators of the microgrids,
considering that the former obtains profits for selling electricity to the latter, while the
microgrids seek to minimize their operational costs. This paper presents a collaborative ap-
proach based on mathematical optimization to coordinate the energy decisions between the
distribution network and the multiple microgrids embedded into it. The model considers
the energy consumption patterns of the microgrids based on their optimal operation, which
is influenced by the demand-side management policies implemented by the distribution
network, such as dynamic tariffs, load reduction requests, and energy trades with the
main grid.

The proposed model is applied to a case study utilizing the IEEE 30-Bus system with
five microgrids embedded into it, including one manufacturing facility, two interconnected
data centers located in different buses, one vertical farm, and one smart residential building.
Each of these microgrids has onsite renewable generators and energy storage technologies.
Both the microgrids and the distribution network obtain their optimal operation by utilizing
robust optimization to include the uncertainty related to renewable intermittency. A sensi-



Energies 2022, 15, 2350 22 of 24

tivity analysis was carried out to demonstrate the flexibility of the algorithm to evaluate
the diverse decision that can be made by utilizing it. The numerical experiments indicate
that a correct network configuration eliminates the necessity of load shedding, allows a
significant utilization of power supplied by the microgrids (22.3 MW), and increases the
renewable energy share from 12.88 to 17.91% when microgrids are taken into consideration.

The presented algorithm considers the independence of the microgrids to make their
own decisions to optimize their operation under the environment of demand-side manage-
ment policies proposed by the distribution network operator. The collaboration between
the distribution network operator and the microgrids allows finding the optimal operation
of the distribution network without direct control nor complete information of the micro-
grids’ internal systems. Future work may consider other types of negotiation schemes and
demand-side management policies, as well as the impact on greenhouse gas emissions.
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