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Abstract: In weakly cemented reservoirs or coal-bed methane reservoirs, the conductivity of hydraulic
fractures always declines after a period of production, which greatly influences gas production. In this
paper, a comprehensive model considering fine-grained particle migration and proppant embedment
is proposed to give a precise prediction for conductivity decline. Then, an experiment was conducted
to simulate this process. A published experiment using coal fines was also tested and simulated.
The results indicate that both fine-grained particle migration and proppant embedment have great
negative effect on conductivity of fractures in weakly cemented sandstone and coal-bed methane
reservoirs. The formulation we proposed matches the experimental data smoothly and can be widely
used in the prediction of conductivity decline in weakly cemented sandstone and coal-bed methane
reservoirs. In order to discuss the influencing factors of the filtration coefficient in the particle
transport model, a porous media network model was established based on the theoretical model.
The simulation results show that the filtration coefficient increases with the increase in particle size
and/or throat size, and the filtration coefficient increases with the decrease in the fluid velocity. At
the same time, it was found that the large larynx did not easily cause particle retention. Large size
particles tend to cause particle retention.

Keywords: fine-grained particle migration; proppant embedment; fracture conductivity loss; weakly
cemented reservoir; coal-bed methane reservoir; filtration coefficient

1. Introduction

Hydraulic fracturing as an efficient way to stimulate production is widely used in
various reservoirs and has achieved great success in the oil field. However, the production
of fractured reservoirs always declines after a while, especially for weakly cemented
reservoirs, which have been reported many times and have increasingly become the concern
of researchers [1–5]. Many of the research regarding the permeability and fluid transport
processes of shale point out that a number of factors influence fluid flow. One important
reason is closure of the fractures, and another is fine-grained particle migration causing
plugging, which only occurs in weakly cemented and coal-bed methane reservoirs [6–9].
However, many researchers only focus on conductivity loss caused by the closure of
fractures that occur in shale or hard rock layers due to embedment. As for fine migration,
few researchers study it [10–12].

Fine migration is of concern and has been studied for many years. Herzig et al. [13]
proposed a model to simulate deep bed filtration and permeability decline in porous media
based on mass conservation. Deposition, adsorption and straining are considered as the
main mechanism of fine-grained particle retention. Bedrikovetsky et al. [14] used a deep
bed filtration model to simulate fine-grained particle migration in an oil field and proposed
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a modified fine-grained particle migration formulation. Straining is thought to be the main
mechanism in oil production causing a decline in permeability. Sharma and Yortsos [15]
conducted an experiment to investigate formation damage and proposed formulas to
simulate this process. Zou et al. [2] conducted experiments to simulate coal fine-grained
particle migration in hydraulic fractures. The experimental results showed that coal fine-
grained particle migration causes a significant decline in permeability. Zhang et al. [16]
used an experiment to illustrate fine-grained particles and stress on permeability. However,
the experiment was simple and the formulas did not consider all factors. While many of
them are only related to transport in porous media, few focus on fracture proppant layer
problems, which can also be the cause of potential damage to production.

As for proppant embedment, Tan et al. [17] experimentally investigated the effects
of the layer number and type of proppant on fracture permeability. Zheng et al. [18]
analyzed the special proppant distribution pattern of channel fracturing, and the expression
of fracture permeability was derived. The effects of proppant distribution density and
proppant pillar radius on fracture conductivity were analyzed. Although several effects
were considered, fine-grained particle migration, especially on weakly cemented sandstone
and coal-bed methane reservoirs should be analyzed.

As known to the petroleum industry, permeability is one of the most important factors
to maintain economic production. Hydraulic fracturing has been widely used to intro-
duce fractures with high permeability. However, the permeability of fractures in weakly
cemented sandstone and coal-bed methane reservoirs decreases quickly after hydraulic
fracturing [19]. Two potential factors, fine-grained particle migration and embedment, are
usually considered solely due to the limits of experimental conditions. The investigation
of embedment is usually in shale rock, and fine-grained particle migration is considered
in formation with high-content clay. However, fractures in the weakly cemented layer
can be a great situation to couple these two factors, which have not been fully discussed
before. How to couple these two factors has been unviable in previous research. The
motivation of our research is to identify the mechanism of fracture conductivity reduction
due to proppant migration and embedment. Based on these understandings, the hydraulic
fracturing parameters could be adjusted to maintain fracture conductivity for a longer time,
which is also helpful to the reservoir protection and reliable production prediction.

In this paper, the imitation of a clay-like sparse sandstone core made in the Wenchang
area, a comprehensive formula incorporating effects of closure pressure and fine-grained
particle migration, was developed to simulate fracture conductivity loss. The Wenchang
area is a medium-porosity and low-permeability reservoir with porosity ranging from
23.7% to 29.7% with an average of 26.9% and a permeability of 14.7 to 95.3 mD, averaging
at 44.5 mD. The average Poisson’s ratio is 0.153–0.169, the average Young’s modulus of
the rock is 150 MPa, the uniaxial compressive strength of the rock is 1.15–4.4 MPa, the
formation fracturing pressure is 24–25 MPa, and the closure pressure of the fracture is
about 16 MPa. The formula for the artificial core comprises quartz sand, clay mineral,
water, and plagioclase, with a cementing ratio of 30:15:8:4:1, compression pressure of
12.5 MPa, and a loading rate of 100 N/s. Then, an experiment was conducted under
proper conditions to validate this formula. Another experiment result by Zou et al. [2] was
employed to validate the accuracy of formulation. Finally, a porous media network model
was established based on the theoretical model to calculate the filtration coefficient and
analyze its influencing factors.

2. Fracture Conductivity Damage Model

Fine-grained particle generation, migration and deposition can be divided into four
stages in the fractured layer, as shown in Figure 1. First, fine-grained particles are generated
in the rock pore surface and are then rushed into the proppant layer. Second, fine-grained
particles are transported to and are retained in the proppant layer. Third, suspended fine-
grained particles flow into the vertical well from the proppant layer. Lastly, the mixture of
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fine-grained particles and oil flow into the vertical well. This article mainly focuses on the
second stage, which can give a reasonable explanation for conductivity loss.
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2.1. Fine-Grained Particle Migration Formulation

The equation describing fluid flow in porous media is shown below:

φ
∂p
∂t
−∇·[ k

µ
∇p] = 0 (1)

where k is the permeability of proppant; φ is the porosity of the proppant layer; µ is the
viscosity of the injected fluid, p is pressure, and t is time.

Suspension induced from the rock flow into the proppant layer and retention in this
area both lead to a decline in permeability. Damage mechanisms of fine-grained particle
migration have been reported in several previous studies in detail (e.g., [4,13]). However,
in this situation, the attachment of particles to the surface of the proppant is mainly due to
deposition and adsorption because fine-grained particles are smaller than the proppant
throat. Thus, it is obvious that straining can be negligible. The equation describing fine-
grained particle dispersion attachment in porous media based on the mass balance equation
is derived as:

φ
∂C
∂t

+
∂σ

∂t
+∇·[UC− D∇C] = 0 (2)

where D is the diffusion coefficient in m2/s; U is Darcy velocity in m/s; σ is the retention
particle volume; C is the concentration of the suspension; φ is the porosity of the media.

Particle diffusion is negligible because the particle size in experiments is larger than
one micrometer. Thus, D is equal to zero. A main mechanism of fine-grained particle
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retention is attachment [13]. The particle retention rate is a linear kinetics equation where
the capture rate is proportional to particle flux CU:

∂σ

∂t
= λCU (3)

2.2. Embedment Formulation

During production, the permeability in hydraulic fractures can be generally attributed
to two main effects (as shown in Figure 2): (i) the permeability reduction due to proppant
pack compaction with the increase in closure stress; (ii) the permeability decrease induced
by proppant embedment, which reduces the fracture aperture [20]. The total hydraulic
permeability change is the combined effect of the two factors mentioned above. The model
describing hydraulic fracture permeability under the combined effect of compaction and
embedment is shown below [21]:

kp = kp0·e−3cp(σe−σe0)·

(
b0 − η(σe)

λ
)3

b3
0

(4)

where cp is the average proppant pack compressibility; σe is the effective stress; σe0 is the
initial effective stress; b0 is the fracture aperture before embedment; β and λ are fitting
parameters from the experiment [21].

cp =
cp0

α(σe − σe0)

(
1− e−α(σe−σe0)

)
(5)

where α is the changing rate of the proppant pack compressibility; cp0 is the initial prop-
pant compressibility.
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Figure 2. Schematic of proppant embedment in a fracture under stress: (a) the proppant before
embedment; (b) the proppant embedment with increased stress (after [21]).

2.3. Permeability Decline

Following former research (e.g., [22]), the inverse to normalized permeability k
k0

is a
linear function of the retained particle.

k =
k0

1 + β·σ(t) (6)

where β is the formation damage coefficient; k is the permeability of the proppant layer in
mD; k0 is the initial permeability in mD.
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The model describing the hydraulic fracture conductivity is below:

ctotal = k·b0 (7)

where c is the conductivity of fracture.

2.4. Boundary Condition and Solution

The shape of the container is shown in Figure 3. The inlet is the Dirichlet boundary
(− k

µ )(
∂p
∂µ ) = q

πr2 . The outlet is the Neumann boundary, P(x, y, t) = Pout. The initial
condition is P(x, y, t = 0) = 0. The commercial software COMSOL is employed here to
solve the equation by the finite element method [23].
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3. Experiments on Fracture Conductivity Damage
3.1. Experiment Procedure

The experimental apparatuses used in this paper are shown in Figure 3. Weakly
cemented rock plates used in this experiment were made in the lab to simulate the real
underground rock condition. Rock plates were made under great pressure, consisting of 6%
montmorillonite, 8% plagioclase, 24% illite and 60% quartz sand. Different cement contents
were added onto the rock plates to produce different kinds of rock mechanical properties.
A higher cement content means a stronger bond between particles.

Fracture width, pressure difference and flow rate were measured by sensors, including
a pressure difference sensor, pressure sensor, and displacement sensor. The pressure
difference sensor was used to measure the inlet pressure, and the pressure sensor was
used to measure the pressure loaded by the press, with a measurement accuracy of 1 MPa.
The displacement sensor was used to measure the width of the joint with an accuracy of
0.01 mm. The flow rate of the fluid was measured by an electronic balance at the outlet,
with an accuracy of 0.1 mL/min.

The experimental procedure is as follows:

(i) The conductivity cell was paved with proppant. The fine-grained particles were
mixed with water in an intermediate container with a stirrer at the bottom of the
container, which kept the suspension stable. Two slices of rock plates were used to
simulate a real rock fracture.

(ii) The desired closure pressure was applied to the plates using a hydraulic pump. The
constant-flux pumps were then push-pistoned inside the intermediate container to
draw the suspension into the conductivity cell.
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(iii) After a period, the pressure drop between the front and end of the cell was gauged.
The distribution of the coal fine-grained particles in the proppant pack was then
observed. The experimental data were analyzed.

3.2. Result and Discussion

In this section, the results of the conductivity change, due to the fine-grained particle
migration and embedment, are displayed. Then, we applied our model to analyze the
results and examine model capacity. In the experiments, it was estimated that the injec-
tion was at a constant flow rate. The basic parameters of the experiment materials and
coefficients are listed in Table 1.

Table 1. Parameters used in the experiment.

Parameter Value

Proppant size, d 20–40 mesh
Porosity, φ 22.5%
Initial permeability, k 700 mD
Suspension viscosity, µs 1 mPa·s
Injection rate, Q 10 mL/min
Pressure at outlet, P 1 atm
Filtration coefficient, λ 11.8 L−1

Proppant pack compressibility, α −0.022
Initial effective stress, σe0 0 MPa
Damage coefficient 212 (g/L)−1

Figure 4 shows the depth of the proppant embedment into the rock plate as a function
of different tested closure pressures. The proppant embedment depth increases as the
closure pressure increases. When the closure pressure is low, the slope of the embedment
depth is large, indicating that it is easier to embed at a low embedding depth. When the
closure pressure is high, the slope decreases, indicating that it is not easy to embed under
high closure pressure. This is due to the fact that the contact area between the slab and the
proppant particles increases with the loading as the embedment depth increases, which
disperses the contact pressure and makes the proppant embedment more difficult than
at lower contact areas. The depth increases steadily as a function of the closure pressure
and reaches one millimeter when the closure pressure is 24 MPa. Conversely, the cement
content represents a consolidated extent that reflects the strength of the rock. The proppant
embedment depth decreases as the cement content increases. This is mainly reflected in the
elastic modulus of the rock. The high content of cement leads to a large elastic modulus;
thus, the embedding depth decreases. The fitting parameter λ corresponding to 2%, 4%, 6%
cement contents are 0.015, 0.025, and 0.032, and the fitting parameter η corresponding to
different cements are 0.65, 0.72, and 0.518.

Moreover, the change of conductivity with pressure is shown in Figure 5. With an
increase in closure pressure, conductivity declines dramatically in an exponential trend.
This is consistent with the results of [17].

A series of fine-grained particle migration experiments was performed at concen-
trations of 3%, 4% and 5% when the closure pressure increases from 8 to 25 MPa. The
effects of the concentration and closure pressure on conductivity damage is presented in
Figure 6, in which conductivity decreases with an increase in closure pressure. As the
concentration increases, conductivity decreases. Conductivity declines as the concentration
of the suspension increases because of a higher retention under higher concentrations.
However, under high closure pressure, it can be seen that the conductivity of 3% and 4%
concentrations decreases and gradually shrinks. Similarly, the difference between 4% and
5% concentrations shows that the influence of concentration becomes insignificant with
the increase in closure pressure, which means that the difference of conductivity between
different concentrations becomes less significant. This is due to the fact that when the
closing pressure increases, the effect of the decrease in conductivity due to embedding
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is proportionally larger than that of the concentration. It can be predicted that when the
closure pressure reaches a certain degree, the fracture conductivity has little relation with
the concentration.
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The effects of flow rate on fine-grained particle deposits and conductivity damage
are shown in Figure 7. By injecting 3%, 4% and 5% suspension into the conductivity cell
and by altering the flow rate from 3 to 10 mL/min, conductivity decreases significantly as
flow rate is enhanced. In the case of a low flow rate, the conductivity with flow rate slope
is larger, indicating that the permeability decreases sharply in the presence of particles in
the proppant. As the flow rate increases, the slope tends to flatten. At the same time, the
difference between the different concentrations remains roughly constant. A high flow rate
means that many more particles flow into the porous media simultaneously and many
more fine-grained particles are retained in the proppant pack.
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3.3. Experiment Comparison with Published Data

Here, we cite the experiments conducted by Zou et al. [2], coal fines were used as
migration fines to study conductivity decline as a function of fine migration and embedment.
A series of coal fines migration experiments was performed using 212–425 µm sand at
concentrations of 5 kg/m2, coal fines concentrations of 2%, 5%, or 10%, and 2 wt% KCl
brine serving as carrier media. The conductivity was then measured under closure pressure
ranging from 5 to 25 MPa. The experiment container size is similar to our set-up above.
The basic parameters of the experiment materials and coefficients are listed in Table 2.

Table 2. Parameters involved in the experiment by Zou et al. (2014).

Parameter Value

Proppant size, d 200–425 µm
Porosity, φ 20.3%
Initial permeability, k 400 mD
Suspension viscosity, µs 1 mPa·s
Injection rate, Q 200 mL/min
Pressure at outlet, P 1 atm
Filtration coefficient, λ 10 L−1

proppant pack compressibility, α −0.028
Initial effective stress, σe0 0 MPa
Damage coefficient 182 (g/L)−1

Rock plates were not employed in this experiment; thus, embedment is ignored and
only compression is considered. Coal fines were lain on the container instead of being
injected with fluid. Once the injection rate of the clean water was higher than the critical
velocity, the coal fines could be lifted up and migrated into the proppant layer [24]. Fine-
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grained particle distribution in the container after two hours is shown in Figure 8a. A
simulation of this process is displayed in Figure 8b–d.
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Figure 8. Coal fines distribution in conductivity cell after experiment, and simulation results. (a) Ex-
periment result from Zou et al. [2]; (b) fine-grained particle migration simulation after 20 min;
(c) fine-grained particle migration simulation after 1 h; (d) fine-grained particle migration simulation
after 2 h.

Conductivity behaviors as a function of closure pressure and concentration are dis-
played in Figure 9. The decrease in conductivity is caused by the combined effects of
clogging and the embedment of fine-grained particles as described above.
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With the same concentration of coal fines, the conductivity decreases with an increase
in closure pressure. The higher the concentration, the faster the decline rate of the conduc-
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tivity. When the concentration of the coal fines is 10% and the closure pressure reaches
25 MPa, the conductivity is almost zero.

4. Filtration Coefficient of Particle Transport

Generally, a microscopic model is used to simulate the filtration coefficient, which is
difficult to obtain experimentally. The advantages and disadvantages of each model are
shown in Table 3.

Table 3. Advantages and disadvantages of the models.

Micro Model Advantages Disadvantages

Capillary model The capillary model is simple
and easy to calculate.

The model is too simple to reflect the real
core, and the accuracy is not enough.

Network model The model has high accuracy. The model is relatively complex, and the
calculation is complicated.

Element model The model is simple. The calculation is relatively complex and
cannot simulate complex structure.

Numerical model Accurate calculation and
comprehensive consideration.

Computations take a long time and
require high-performance computers.

4.1. Development of Network Model

Through the model comparisons in Table 3, the network model is selected in this paper.
The network model is a simplification of the porous media model, which uses a geometric
network to replace the complex spatial structure in porous media and consists of relatively
large pores and throats connecting the pores. In order to make the network model closer
to the real core, the main characteristic parameters are the pore throat size, coordination
number, and shape factor.

The pore throat size:

r = (rmax − rmin){−δ ln[x(1− e−1/δ) + e−1/δ]}1/γ
+ rmin (8)

where rmax and rmin represent the maximum and minimum size of the throat in m; δ is the
truncated Weibull distribution constant, which is dimensionless; x represents a random
number between 0 and 1.

Coordination number: The average coordination number of all pores in a porous
medium is called the core coordination number. The larger the coordination number, the
better the pore throat connectivity and the more complex the fluid flow in the porous media.

Shape factor:
G = A/P2 (9)

where A is the cross-sectional area of pores; P represents the circumference of the pore
throat section in m.

4.1.1. Particle Motion

Figure 10 is a schematic diagram of the force on the particles in the throat, in which
gravity (Fg) on the particles in the fluid and the resultant van der Waals forces (Fb) on the
top and ground of the particles are represented, in which viscous resistance (Fd) on the
particles when they move along the Y-axis are represented [25].

Based on the force analysis in the y-direction, we obtain:

Fb + Fg − Fd = ρp·Vp·
duy

dt
(10)
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where uy is the velocity in the y-direction of the particle in m/s; ρp is the density of the
particle in kg/m3; Vp is the volume of the particles in m3. Assuming that the particle is at
the middle part of the throat when the particles enter the throat, we obtain:

uy =
(FA(l − R− y) + Fg − FA(l + R + y))

Dc
(11)

where Dc is the viscous resistance coefficient.
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4.1.2. Fluid Flow

The network model uses regularly shaped pipes to replace the throats and considers
these regular pipes as capillaries; thus, the fluid flow in the pore throat is in accordance
with the Poiseuille formula [19,26].

Conductivity is introduced to calculate the pressure at the pore throat:

g = k
A2G
µL

=
1
2

A2G
µL

(12)

where A represents the pore throat section area; G represents the shape factor, in which
circular pipes can generally be regarded as 1; µ represents the fluid viscosity; L represents
the effective pipe length of the pore throat.

The sum of the inflow and outflow flows at each hole throat in the model is 0, namely:

n

∑
j

qij = 0 (13)

where, i is the pore; j represents the throat connected with the pore; n represents coordina-
tion number.

The flow rate between two adjacent orifice throats can be calculated by:

qij = gij(pi − pj) (14)

where, gij is the conductivity of fluid between different orifices and throats.

4.1.3. Effective Radius

When particles are deposited in the throat, the flow field in the throat after deposition
changes due to the presence of particles, and the changed flow field is calculated by effective
radius. The effective radius is related to the original throat radius, throat length, particle
radius and deposition location [27].

β = −1.6401
( r

R

)4
+ 1.1412

( r
R

)3
− 0.6368

( r
R

)2
− 0.0804

( r
R

)
+ 1 (15)

( rnew

r

)4
= 1− 23.33(1− β)·

(
1− x

L

)√R
L

(16)
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where, rnew is the throat radius after deposition, m; x denotes the length of the particle
deposition position from the entrance, m; R represents the pore throat radius, m; L is the
pore throat length, m.

Particles are released sequentially from the network model inlet. The motion trajectory
of the particles is calculated by the force of the particles to determine whether they will
be separated from the network model or deposited in the porous media. During pore
migration, particles will move along the direction of high velocity in the throat path, and
the velocity will be selected randomly at the same time. As shown in the Figure 11, when
particles enter the pore throat, the throat with the 50% flow rate will be selected for the next
calculation [28].
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Based on the above calculation, the filtration coefficient can be calculated as [29–31]:

λ =
nd
nL

(17)

where λ is the filtration coefficient in m−1; nd denotes the number of particles remaining in
the porous medium; n denotes the total number of particles passing through the porous
medium; L represents the length of porous medium in m.

4.2. Calculation Process

The random network model is used to divide the mesh. The random network model
only needs to randomly distribute the pores and throats in the regular mesh according to
the pore throat statistics of the core and simplify the pore throat shape by using the regular
geometry, so as to build the network model [19,32–35].

Due to the uniformity of the proppant size and regularity of the proppant shape,
the selected network model can ignore the randomness of the pore throats, as shown in
Figure 12. Through the establishment of the particle migration network model, the force
and movement trajectory of the particle can be calculated. The calculation steps are shown
in Figure 13. The values of the specific parameters are listed in Table 4.

Table 4. Network model parameter selection table.

Name of Parameter Parameter Choice

Pore diameter 30 µm
Shouted the diameter 30 µm
Shouted the length 200 µm
Coordination number 4
Void ratio 28.2%
Number of particles 100
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The following are assumptions about the network model: (i) Only one particle can be
placed into each operation, and the calculation of the next particle can only be carried out
after the motion state of the former particle is determined. (ii) The random network model
only needs to randomly distribute the pores and throats in a regular grid according to core
pore–throat statistics. (iii) Regular geometry is used to simplify the shape of the pore throat,
such as cylinders of circles, triangles and squares. (iv) Pipes with regular shapes regarded
as capillaries are used to replace the throat.

4.3. Analysis of Influencing Factors of Filtration Coefficient

As can be seen from Figure 14, the filtration coefficient decreases gradually with
the increase in throat size. This is because when the throat size increases, the particle
volume becomes smaller compared to the throat space; thus, there is a smaller chance
of contact with the wall of the porous media, resulting in a lower probability of particle
deposition. The increase in throat size leads to the decrease in the filtration coefficient.
This indicates that large throats are less likely to cause particle retention and that large
throats can better maintain formation permeability and have a certain effect on the barrier
of foreign permeability.

As can be seen from Figure 15, the filtration coefficient will decrease slightly with the
increase in flow rate. This is because when the flow rate increases, the flow rate of the
particles also increases because it is assumed that the particle has the same velocity with
the flow rate. Therefore, the flow distance of the particles per unit time increases, and the
probability of staying decreases. The filtration coefficient decreases with the increase in
flow rate.
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As can be seen from Figure 16, the filtration coefficient increases with the increase in
particle size. This is because with the increase in particle size, the particle has more space to
contact the throat, which increases the possibility of deposition, thus leading to an increase
in the probability of particle deposition. The increase in throat size leads to an increase in
the degree of the filtration coefficient, indicating that large particles are more likely to cause
a retention of particles. Therefore, for the formation, the intrusion of large particles into the
layer should be avoided as much as possible.
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5. Conclusions

We have proposed a model here to show conductivity decline due to fine-grained
particle migration and proppant embedment in weakly cemented sandstone and coal-bed
methane reservoirs. A network model was established to solve the filtration coefficient of
porous media particles. The model can be used to study the relationship between the filtra-
tion coefficient of porous media particles and rock particle diameter, porous media particle
size, and formation fluid flow rate. In this new model, we considered the influence of rock
compressibility, proppant embedment and fine-grained particle attachment. The partial
differential equation system was solved numerically. An experiment with all influencing
factors was conducted here, which illustrate the effect of fine-grained particle migration
and embedment effect on conductivity.

The results illustrate that both embedment and fine-grained particle migration have
a great negative effect on conductivity of fractures in weakly cemented sandstone and
coal-bed methane reservoirs. The formulation we proposed matches the experimental
data smoothly and can be widely used in the prediction of conductivity decline in weakly
cemented sandstone and coal-bed methane reservoirs. The simulation results show that
the filtration coefficient increases with an increase in particle size, an increase in porous
medium throat size, and a decrease in fluid velocity. At the same time, it was found that
the large larynx did not easily cause particle retention. Large size particles tend to cause
particle retention.
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