Numerical Investigation and Optimization of Cooling Flow Field Design for Proton Exchange Membrane Fuel Cell
Abstract
:1. Introduction
2. Model Description
2.1. Computational Model
2.2. Model Assumptions
- (a)
- The flow in the cooling channel is incompressible;
- (b)
- The viscous loss between the fluid and the channel wall is not considered;
- (c)
- The medium in the channel has the characteristics of a continuous medium;
- (d)
- The boundary between fluid and solid is a non-slip boundary;
- (e)
- The heat flux distribution at the bottom is uniform.
2.3. Governing Equations
- (a)
- continuity equation
- (b)
- momentum equation
- (c)
- energy equation
2.4. Boundary Conditions and Convergence Criteria
2.5. Grid Independence Verification
2.6. Model Verification
3. Simulation Results and Discussion
3.1. Temperature Distribution
3.2. Pressure Distribution
3.3. Effect of Heat Flux
3.4. Effect of Fluid Reynolds Number
3.5. Flow Distribution Improvement
3.6. Effect of Bottom Non-Uniform Temperature Distribution
4. Conclusions
- The flow channel distribution of a multi-spiral flow field and honeycomb structure flow field is more conducive to improving the temperature uniformity. The flow channel model 4 with a uniform plate has poor temperature uniformity because the coolant is blocked by the uniform plate, but the heat dissipation capacity is still stronger than the traditional serpentine flow field. Reasonable distribution of flow between different channels can effectively improve the heat dissipation capacity of the cooling plate.
- The temperature distribution of a multi-spiral channel is uniform, but the pressure drop is large, and the pressure drop of model 2 is the largest, which is not conducive to pumping power, but the flow velocity in the channel is high and the heat dissipation capacity is strong. The flow channels are connected with each other, such as the uniform plate flow field and honeycomb structure flow field, which can make the pressure evenly distributed. Although the long flow passage can speed up the transmission of coolant, it can easily cause water congestion.
- The multi-spiral flow field has the strongest ability to maintain the temperature stability in the cooling plate when the heat flux increases. The increase in the Reynolds number can reduce the maximum temperature and temperature difference of the flow field, improve the temperature uniformity and improve the heat transfer capacity of the cooling plate, but it will increase the pressure drop.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, Y.; Xiao, X.; Kang, H.; Lv, J.; Zeng, R.; Shen, J. Thermal management of polymer electrolyte membrane fuel cells: A critical review of heat transfer mechanisms, cooling approaches, and advanced cooling techniques analysis. Energy Convers. Manag. 2022, 254, 115221. [Google Scholar] [CrossRef]
- Xu, Z.; Qiu, D.; Yi, P.; Peng, L.; Lai, X. Towards mass applications: A review on the challenges and developments in metallic bipolar plates for PEMFC. Prog. Nat. Sci. 2020, 30, 815–824. [Google Scholar] [CrossRef]
- Kim, D.J.; Jo, M.J.; Nam, S.Y. A review of polymer–nanocomposite electrolyte membranes for fuel cell application. J. Ind. Eng. Chem. 2015, 21, 36–52. [Google Scholar] [CrossRef]
- Tawfik, H.; Hung, Y.; Mahajan, D. Metal bipolar plates for PEM fuel cell—A review. J. Power Sources 2007, 163, 755–767. [Google Scholar] [CrossRef]
- Dhimish, M.; Vieira, R.G.; Badran, G. Investigating the stability and degradation of hydrogen PEM fuel cell. Int. J. Hydrog. Energy 2021, 46, 37017–37028. [Google Scholar] [CrossRef]
- Choi, E.J.; Hwang, S.H.; Park, J.Y.; Kim, M.S. Parametric analysis of simultaneous humidification and cooling for PEMFCs using direct water injection method. Int. J. Hydrog. Energy 2017, 42, 12531–12542. [Google Scholar] [CrossRef]
- Rahimi-Esbo, M.; Rahgoshay, S.M.; Hassani, M.M.; Firouzjaei, K.D. Novel design and numerical evaluating of a cooling flow field in PEMFC with metallic bipolar plates. Int. J. Hydrog. Energy 2020, in press. [Google Scholar] [CrossRef]
- Mohamed, W.; Atan, R. Experimental thermal analysis on air cooling for closed-cathode Polymer Electrolyte Membrane fuel cells. Int. J. Hydrog. Energy 2015, 40, 10605–10626. [Google Scholar] [CrossRef]
- Amirfazli, A.; Asghari, S.; Sarraf, M. An investigation into the effect of manifold geometry on uniformity of temperature dis-tribution in a PEMFC stack. Energy 2018, 145, 141–151. [Google Scholar] [CrossRef]
- Barbir, F.; Yazıcı, S.; Yazici, S.; Yazici, M.S. Status and development of PEM fuel cell technology. Int. J. Energy Res. 2007, 32, 369–378. [Google Scholar] [CrossRef]
- Shabani, B.; Andrews, J. An experimental investigation of a PEM fuel cell to supply both heat and power in a solar-hydrogen RAPS system. Int. J. Hydrog. Energy 2011, 36, 5442–5452. [Google Scholar] [CrossRef]
- Li, H.; Tang, Y.; Wang, Z.; Shi, Z.; Wu, S.; Song, D.; Zhang, J.; Fatih, K.; Zhang, J.; Wang, H.; et al. A review of water flooding issues in the proton exchange membrane fuel cell. J. Power Sources 2008, 178, 103–117. [Google Scholar] [CrossRef]
- Zakaria, I.; Azmi, W.H.; Mamat, A.M.I.; Mamat, R.; Saidur, R.; Abu Talib, S.A.; Mohamed, W.A.N.W. Thermal analysis of Al2O3–water ethylene glycol mixture nanofluid for single PEM fuel cell cooling plate: An experimental study. Int. J. Hydrog. Energy 2016, 41, 5096–5112. [Google Scholar] [CrossRef] [Green Version]
- Kurnia, J.C.; Sasmito, A.P.; Mujumdar, A.S. Numerical investigation of laminar heat transfer performance of various cooling channel designs. Appl. Therm. Eng. 2011, 31, 1293–1304. [Google Scholar] [CrossRef]
- Jeon, D.H. Numerical study of serpentine flow-field cooling plates on PEM fuel cells performance. Int. J. Energy Res. 2013, 37, 510–521. [Google Scholar] [CrossRef]
- Soupremanien, U.; Le Person, S.; Favre-Marinet, M.; Bultel, Y. Tools for designing the cooling system of a proton exchange membrane fuel cell. Appl. Therm. Eng. 2012, 40, 161–173. [Google Scholar] [CrossRef]
- Matian, M.; Marquis, A.; Brandon, N. Model based design and test of cooling plates for an air-cooled polymer electrolyte fuel cell stack—ScienceDirect. Int. J. Hydrog. Energy 2011, 36, 6051–6066. [Google Scholar] [CrossRef]
- Wilberforce, T.; El-Hassan, Z.; Khatib, F.; Al Makky, A.; Mooney, J.; Barouaji, A.; Carton, J.G.; Olabi, A.G. Development of Bi-polar plate design of PEM fuel cell using CFD techniques. Int. J. Hydrog. Energy 2017, 42, 25663–25685. [Google Scholar] [CrossRef] [Green Version]
- Rahgoshay, S.M.; Ranjbar, A.A.; Ramiar, A.; Alizadeh, E. Thermal investigation of a PEM fuel cell with cooling flow field. Energy 2017, 134, 61–73. [Google Scholar] [CrossRef]
- Yang, X.G.; Qiang, Y.; Ping, C. Matching of water and temperature fields in proton exchange membrane fuel cells with non-uniform distributions. Int. J. Hydrog. Energy 2011, 36, 12524–12537. [Google Scholar] [CrossRef]
- Shian, L.; Bengt, S. Numerical study on thermal performance of non-uniform flow channel designs for cooling plates of PEM fuel cells. Numer. Heat. Tr. A-Appl. 2018, 74, 917–930. [Google Scholar]
- Sasmito, A.P.; Kurnia, J.C.; Mujumdar, A.S. Numerical evaluation of various gas and coolant channel designs for high per-formance liquid-cooled proton exchange membrane fuel cell stacks. Energy 2012, 44, 278–291. [Google Scholar] [CrossRef]
- Ravishankar, S.; Prakash, K.A. Numerical studies on thermal performance of novel cooling plate designs in polymer electrolyte membrane fuel cell stacks. Appl. Therm. Eng. 2014, 66, 239–251. [Google Scholar] [CrossRef]
- Castelain, C.; Lasbet, Y.; Auvity, B.; Peerhossaini, H. Experimental study of the thermal performance of chaotic geometries for their use in PEM fuel cells. Int. J. Therm. Sci. 2016, 101, 181–192. [Google Scholar] [CrossRef]
- Liu, Z.; Zeng, X.; Ge, Y.; Shen, J.; Liu, W. Multi-objective optimization of operating conditions and channel structure for a proton exchange membrane fuel cell. Int. J. Heat Mass Transf. 2017, 111, 289–298. [Google Scholar] [CrossRef]
- Wen, C.-Y.; Lin, Y.-S.; Lu, C.-H.; Luo, T.-W. Thermal management of a proton exchange membrane fuel cell stack with pyrolytic graphite sheets and fans combined. Int. J. Hydrog. Energy 2011, 36, 6082–6089. [Google Scholar] [CrossRef]
- Lin, C.; Yan, X.; Wei, G.; Ke, C.; Shen, S.; Zhang, J. Optimization of configurations and cathode operating parameters on liquid-cooled proton exchange membrane fuel cell stacks by orthogonal method. Appl. Energy 2019, 253, 113496. [Google Scholar] [CrossRef]
- Özden, E.; Tolj, I.; Barbir, F. Designing heat exchanger with spatially variable surface area for passive cooling of PEM fuel cell. Appl. Therm. Eng. 2013, 51, 1339–1344. [Google Scholar] [CrossRef]
- Zhao, J.; Huang, Z.; Jian, B.; Bai, X.; Jian, Q. Thermal performance enhancement of air-cooled proton exchange membrane fuel cells by vapor chambers. Energy Convers. Manag. 2020, 213, 112830. [Google Scholar] [CrossRef]
- Afshari, E.; Ziaei-Rad, M.; Shariati, Z. A study on using metal foam as coolant fluid distributor in the polymer electrolyte membrane fuel cell. Int. J. Hydrog. Energy 2016, 41, 1902–1912. [Google Scholar] [CrossRef]
- Zhang, G.; Yuan, H.; Wang, Y.; Jiao, K. Three-dimensional simulation of a new cooling strategy for proton exchange membrane fuel cell stack using a non-isothermal multiphase model. Appl. Energy 2019, 255, 113865. [Google Scholar] [CrossRef] [Green Version]
- Hwang, S.H.; Kim, M.S. An experimental study on the cathode humidification and evaporative cooling of polymer electrolyte membrane fuel cells using direct water injection method at high current densities. Appl. Therm. Eng. 2016, 99, 635–644. [Google Scholar] [CrossRef]
- Saeedan, M.; Ziaei-Rad, M.; Afshari, E. Numerical thermal analysis of nanofluid flow through the cooling channels of a polymer electrolyte membrane fuel cell filled with metal foam. Int. J. Energy Res. 2020, 44, 5730–5748. [Google Scholar] [CrossRef]
- Asghari, S.; Akhgar, H.; Imani, B.F. Design of thermal management subsystem for a 5kW polymer electrolyte membrane fuel cell system. J. Power Sources 2011, 196, 3141–3148. [Google Scholar] [CrossRef]
- Ghasemi, M.; Ramiar, A.; Ranjbar, A.A.; Rahgoshay, S.M. A numerical study on thermal analysis and cooling flow fields effect on PEMFC performance. Int. J. Hydrog. Energy 2017, 42, 24319–24337. [Google Scholar] [CrossRef]
- Yu, S.H.; Sohn, S.; Nam, J.H.; Kim, C.-J. Numerical study to examine the performance of multi-pass serpentine flow-fields for cooling plates in polymer electrolyte membrane fuel cells. J. Power Sources 2009, 194, 697–703. [Google Scholar] [CrossRef]
- Inagaki, M.; Kaburagi, Y.; Hishiyama, Y. Thermal Management Material: Graphite. Adv. Eng. Mater. 2014, 16, 494–506. [Google Scholar] [CrossRef]
- Fan, R.; Huang, Y.; Han, X.; Peng, X. High thermal conductivity and mechanical properties of Si@Graphite/Aluminum nitride/aluminum composites for high-efficiency thermal management. J. Alloys Compd. 2021, 858, 157630. [Google Scholar] [CrossRef]
- Cao, J.; Ling, Z.; Lin, S.; He, Y.; Fang, X.; Zhang, Z. Thermochemical heat storage system for preventing battery thermal runaway propagation using sodium acetate trihydrate/expanded graphite. Chem. Eng. J. 2021, 433, 133536. [Google Scholar] [CrossRef]
- Baek, S.M.; Yu, S.H.; Nam, J.H.; Kim, C.-J. A numerical study on uniform cooling of large-scale PEMFCs with different coolant flow field designs. Appl. Therm. Eng. 2011, 31, 1427–1434. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Cooling area length | 180 mm |
Cooling area width | 180 mm |
Cooling area height | 3 mm |
Channel and rib width | 3 mm |
Channel depth | 1 mm |
Parameters | Values |
---|---|
Cooling plate properties | |
Material | graphite |
Density | 2250 kg/m3 |
Specific heat | 690 J/kg·K |
Thermal conductivity | 24.0 W/m·K |
Coolant properties | |
Density | 992.2 kg/m3 |
Specific heat | 4179 J/kg·K |
Thermal conductivity | 0.62 W/m·K |
Viscosity | 0.000653 Pa·s |
Operating conditions | |
Heat flux | 5000 W/m2 |
Inlet coolant temperature Inlet mass flow | 313 K 0.002 kg/s |
Mesh | Element Number | Pressure Drop(Pa) | Tmax(K) | Tave(K) |
---|---|---|---|---|
Mesh1 | 234,149 | 15,254.47 | 318.64 | 316.49 |
Mesh2 | 1,192,719 | 17,013.06 | 319.71 | 317.74 |
Mesh3 | 1,457,725 | 17,113.01 | 318.73 | 317.74 |
Mesh4 | 1,959,970 | 17,105.10 | 318.76 | 317.74 |
Mesh5 | 2,481,860 | 17,105.63 | 318.79 | 317.74 |
Case | ΔP (Pa) | ΔT (K) | Tmax (K) | UT |
---|---|---|---|---|
Model0 | 49,263.63 | 19.681 | 334.254 | 0.992421 |
Model1 | 19,242.26 | 7.1984 | 321.197 | 0.997850 |
Model2 | 79,753.15 | 7.1079 | 320.879 | 0.998066 |
Model3 | 17,105.10 | 5.1586 | 319.741 | 0.999358 |
Model4 | 1026.86 | 8.3532 | 322.542 | 0.997854 |
Model5 | 1593.00 | 9.2961 | 324.673 | 0.998077 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, J.; Huang, Y.; Liu, Y.; Ma, Z.; Chen, L.; Li, T.; Zhang, X. Numerical Investigation and Optimization of Cooling Flow Field Design for Proton Exchange Membrane Fuel Cell. Energies 2022, 15, 2609. https://doi.org/10.3390/en15072609
Song J, Huang Y, Liu Y, Ma Z, Chen L, Li T, Zhang X. Numerical Investigation and Optimization of Cooling Flow Field Design for Proton Exchange Membrane Fuel Cell. Energies. 2022; 15(7):2609. https://doi.org/10.3390/en15072609
Chicago/Turabian StyleSong, Jiangnan, Ying Huang, Yi Liu, Zongpeng Ma, Lunjun Chen, Taike Li, and Xiang Zhang. 2022. "Numerical Investigation and Optimization of Cooling Flow Field Design for Proton Exchange Membrane Fuel Cell" Energies 15, no. 7: 2609. https://doi.org/10.3390/en15072609
APA StyleSong, J., Huang, Y., Liu, Y., Ma, Z., Chen, L., Li, T., & Zhang, X. (2022). Numerical Investigation and Optimization of Cooling Flow Field Design for Proton Exchange Membrane Fuel Cell. Energies, 15(7), 2609. https://doi.org/10.3390/en15072609