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Abstract: The ultra-deep removal of thiophene is essential for the conversion of coke oven gas to
methane and metal modified Y zeolite has excellent thiophene adsorption capacity. The effects of
temperature on chemisorption between metal modified Y zeolite and thiophene and the reductive
gases in coke oven gas on the thiophene adsorption performance still remains ambiguous. To address
the aforementioned aims, series of NaMY (M = Ce, Ni, Zn and Ag) were prepared via ion-exchanged
with Na+ of NaY, and two comparable sets of thiophene adsorption evaluation were conducted in a
fixed bed reactor: (1) NaY and NaMY were evaluated at different temperatures in simulated coke
oven gas, and (2) NaCeY was evaluated in N2 and different reductive atmospheres. The results
show that NaNiY, NaZnY and NaAgY could adsorb thiophene via π-complexation, however, NaCeY
mainly through S-Ce bond. Π complexation becomes weak above 150 ◦C, and the strength of S-
Ce bond varies little when the temperature rises to 250 ◦C. Compared with that of other sorbents,
the breakthrough adsorption capacity for thiophene (Qb-thiophene) of NaAgY reaches the highest
144 mg/g at 100 ◦C, but decreases sharply when temperature rises to 200 ◦C. NaCeY has relatively
low variation in Qb-thiophene from 100 ◦C to 200 ◦C. Moreover, Ce(IV) in NaCeY is more favorable for
thiophene adsorption than Ce(III) in coke oven gas and the presence of H2 and CO would reduce
the desulfurization activity of NaCeY. For the industrial utilization of thiophene ultra-deep removal,
NaAgY has an excellent potential below 150 ◦C, while NaCeY with more Ce(IV) has a good prospect
at 150–250 ◦C.

Keywords: coke oven gas; thiophene; adsorption; Y zeolite; metal modification

1. Introduction

Coke oven gas (COG), rich in H2 (55–60%), CH4 (23–27%) and CO (5–8%), is the
main byproduct of the coking industry, and the annual production of COG in China is
approximately 180 billion m3 in recent years [1,2]. COG is sought as an important fuel
and chemical raw material, and methane synthesis is one of the most important ways in
which it can be used effectively [1,3,4]. COG also contains a variety of sulfur-containing
and nitrogen-containing compounds, and it needs to be removed by pretreatment and
fine desulfurization prior to methane synthesis [5]. Tar, naphthalene, benzene, ammonia
and H2S in COG could be efficiently removed through pretreatment. Organic sulfides
COS, CS2 and thiophene in COG can be converted into H2S through primary and sec-
ondary hydrogenation through fine desulfurization, and then H2S could be effectively
absorbed and eliminated by metal oxides [6–10]. After fine desulfurization, COS and
CS2 are almost completely eliminated, and thiophene can just be removed to ppmv level
because of its high chemical stability and low chemical reaction rate by hydrodesulfur-
ization technology [11–14], whereas the presence of ppmv thiophene in COG can lead to
the irreversible poisoning of Ni-based methanation catalyst, thereby shortening catalyst
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life, reducing methane production and increasing economic costs [1,3,15]. To meet the
stringent requirements of thiophene concentration for methane synthesis, thiophene should
be reduced to below 0.1 ppmv or even eliminated before the methanation process, therefore
the ultra-deep removal of thiophene in COG has become an urgent problem to be solved.

In recent years, methods for ultra-deep removal of thiophene have been developed,
and adsorption method with the advantages of high desulfurization accuracy and thio-
phene adsorption capacity has received widespread attention [16–19]. NaY zeolite ex-
hibits excellent thiophene removal performance and has been widely used in the field
of liquid fuel desulfurization [20]. Previous research has shown that metal modification
over NaY zeolite can significantly improve the thiophene adsorption capacity [21–26].
Oliveira et al. [27] studied the adsorption capacity for thiophene in isooctane over NiY,
ZnY and AgY, and the results show that the adsorption capacity for thiophene at 30 ◦C
follows the order AgY > NiY > ZnY, and it changes at 60 ◦C following that AgY > ZnY >
NiY. In the presence of aromatics and olefins in isooctane solution, the adsorption capacity
for thiophene of studied sorbent will decrease notably [27]. The results were also observed
by Zhang et al. [28] in the study of dibenzothiophene removal over various ion-exchanged
NaY zeolites in n-octane solutions at 60 ◦C. Lin et al. [29] presented results of the adsorption
behavior of AgY and CeY for thiophene in n-heptane solutions at 25 ◦C, which indicated
CeY has better desulfurization performance than AgY. Song et al. [23] used the AgY and
CeY zeolites for adsorption of thiophene in model gasoline at 50 ◦C and the results show
that the capacity for sulfur removal with model gasoline containing only thiophene and
benzothiophene has an order ranking of AgY > CeY, whereas, for any of the aromatics,
nitrogen, and olefins that exist in model gasoline, the order is changed: CeY > AgY. The
similar conclusion was reported by Han et al. [30] based on the adsorption removal of
thiophene over NiY zeolite in hexene and toluene solutions at ambient temperature. As
a summary, NiY, CeY, ZnY and AgY zeolite has good thiophene adsorption capacity in a
liquid fuel system, and the presence of aromatic, hydrocarbon and nitrogenous compounds
in feedstock has a negative impact on the thiophene adsorption capacity of metal modified
Y zeolite. Most of the previous studies on the adsorption desulfurization of thiophene over
metal modified Y zeolite have focused on liquid fuel desulfurization, and there is little
research on the adsorptive desulfurization of thiophene in COG.

The working conditions of thiophene adsorption in COG and liquid fuel systems are
quite different, and metal modified Y zeolite used for ultra-deep removal of thiophene
in COG mainly faces two problems that need to be clarified: (1) in a liquid fuel system,
the desulfurization temperature ranges from ambient temperature to about 60 ◦C [27,29].
In order to accommodate the methane synthesis process, the desulfurization temperature
usually ranges from 100 ◦C to 250 ◦C in COG. The chemisorption between metal modified
Y zeolite and thiophene is easy to be desorbed at relatively high temperature, and it is
essential to investigate the effect of temperature on the thermal stability of chemisorption.
(2) Components of the feedstock may negatively affect the thiophene adsorption properties
of Y zeolite [23]. Aromatic, hydrocarbon and nitrogenous compounds in gasoline feedstock
can greatly decrease the thiophene adsorption of metal modified Y zeolite [27,28]. The
effect of large amounts of reductive gases H2 and CO in COG on the thiophene adsorption
performance of metal modified Y zeolite remains unclear. Meanwhile, the reductive gases
will change the valence state of metal in Y zeolite. The Ce of NaCeY prepared by this
method mentioned above exists in the form of Ce(IV), and the reductive gases would
convert Ce(IV) into Ce(III), thereby affecting the thiophene adsorption capacity of NaCeY.
Therefore, the effect of Ce valence states in NaCeY on the adsorption capacity of thiophene
needs to be further investigated.

To solve the first problem mentioned above, series of NaCeY, NaNiY, NaZnY and
NaAgY were prepared from NaY by ion-exchanged method and subsequently used for
adsorptive desulfurization of thiophene in simulated COG at 100 ◦C and 200 ◦C. On this
basis, the chemisorption between thiophene and Y zeolite and their thermal stability were
investigated by in situ FT-IR. For the second question above, the effect of reductive gases on
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the adsorption performance of NaCeY was investigated by evaluating NaCeY in H2/CO
containing atmosphere and N2 atmosphere. A set of NaCeY sorbents, containing different
Ce valence states, was prepared and evaluated in N2 atmosphere to investigate the effect of
Ce valence state on the thiophene adsorption capacity of NaCeY.

2. Experimental Section
2.1. Sample Preparation

NaY zeolite was purchased from Nanjingheyi Chemical Co. Ltd., and they were
ground to 0.180–0.425 mm before use. Thiophene, with purity higher than 99.5%, was pur-
chased from Alfa Aesar Co. Ltd., USA. Ce(NO3)3·6H2O, Ni(NO3)2·6H2O, Zn(NO3)2·3H2O
and AgNO3 with purity higher than 99.0% were all supplied by Aladdin Co. Ltd.,
Shanghai, China.

First, 10.000 g NaY was treated with 0.1 mol/L 100 mL metal nitrate solution (M=Ce,
Ni, Zn, Ag) in a three-neck flask, and kept at 100 ◦C for 4 h with stirring under condensation
reflux. Then, the sample was separated by filtration and washed by deionized water. In
order to ensure that the metal nitrates not involved in ion exchange were completely
washed away, the sample was washed 10 times with about 150 mL deionized water for each
time, and the pH value of the filtered deionized water was ensured to be around 7. After
that, the sample was dried at 120 ◦C for 4 h, and calcined at 550 ◦C for 4 h in air. NaY zeolite
after metal modification was denoted as NaMY. For the Y zeolite after desulfurization, it
was denoted as NaMYS.

2.2. Desulfurization Instruments and Procedure

The sorbent was evaluated in a 680 mm × ϕ6.00 mm fixed bed reactor. Prior to
desulfurization, sorbent was calcinated at 350 ◦C for 3 h in a muffle furnace to remove the
adsorbed water in sorbent, and then cooled to ambient temperature in a closed desiccator.
The FT-IR spectra of NaY and NaMY sorbents during activation at 350 ◦C are shown in
Figure S1 in the Supplementary Materials, and it can be seen that the adsorbed water in
sorbent can be removed after being calcinated at 350 ◦C. The desulfurization equipment
is shown in Figure 1. Firstly, 0.80 g NaY or NaMY was placed in the fixed bed reactor.
Afterwards, the furnace was heated to 100 ◦C or 200 ◦C. The thiophene stream was taken
out through Ar flow (1.5 mL/min) and then met with simulated COG (115 mL/min).
The liquid thiophene in a container was precisely controlled by a cooling water recycling
system with an inlet thiophene concentration of 300 ppmv (1.14 mg/L). The space velocity
was 5500 h−1 during the thiophene removal process. Table 1 lists the composition of the
simulated COG. The thiophene adsorption performances of NaY and NaMY sorbents were
evaluated through online measurement of thiophene concentration at the outlet by an HPR-
20 QIC mass spectrometer (MS) (Hiden, Warrington, UK). The sorbent was considered to be
breakthroughed when the thiophene concentration reached 0.1 ppmv (0.00038 mg/L). The
breakthrough adsorption capacity for thiophene of sorbent was used to estimate the sorbent
desulfurization performance, and it was calculated using the following Equation (1).

Qb-thiophene =

∫ t
0 q(c1 −c)dt

1000m
(1)

where, Qb-thiophene (mg/g) was the breakthrough adsorption capacity for thiophene of
sorbent; t (min) was the breakthrough time; q (mL/min) was the total gas flow; c1 and
c (mg/L) were the inlet and outlet thiophene concentration, respectively; m (g) was the
sorbent weight.
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Table 1. Composition of simulated COG.

Gas H2 CH4 CO N2 CO2 O2

Content
(vol%) 58.77 26.70 8.09 3.58 2.04 0.82

The precise determination of thiophene concentration has a large impact on the accu-
racy of sorbent desulfurization evaluation. Therefore, obtaining the relationship between
thiophene concentration and its signal in MS is the basis for the accuracy of this study. We
reported detailed steps to obtain the thiophene concentration from its signal value in a
previous study [4].

According to different purposes of desulfurization, atmospheres can be changed. In
order to study the effect of desulfurization atmospheres on thiophene adsorption capacity
of sorbent, COG can be replaced by other gases for evaluation, including 8CO + 92N2
(vol%), 59H2 + 41N2 (vol%) and N2. To investigate the effect of the chemical valence
of Ce on desulfurization performance, the following experiments were designed: Four
copies of NaCeY sorbent were pretreated under four conditions for 3 h: 200 ◦C in H2,
600 ◦C in H2, 200 ◦C in CO and 200 ◦C in H2 + CO (Ar is equilibrium gas, H2 or CO
content is 10 vol%). The pretreated conditions were labelled as H2–200, H2–600, CO−200 and
H2 + CO−200, respectively. NaCeY sorbent after pretreated under four kinds of conditions
was evaluated in N2 atmosphere.

2.3. Characterization of Sorbent

TG-DTG curves of sorbent were obtained using a STA 449 F3 thermal analyzer (NET-
ZSCH, Germany). A roughly 10 mg sample was exposed to a heating rate of 5 ◦C/min
from 40 ◦C to 800 ◦C under a continuous flow of air (50 mL/min).

The surface area and pore structure of sorbent were analyzed by N2 adsorption-
desorption at −196 ◦C on an ASAP 2460 apparatus (Micromeritics, USA). Prior to anal-
ysis, the fresh sample was evacuated at 300 ◦C for 3 h. Total specific surface area, mi-
cropore specific surface area and pore volume were calculated by BET, t-plot and DFT
methods, respectively.

XRD analysis was measured using a Mini Flex 600 spectrometer (Rigaku, Japan) with
Cu-Kα radiation at 40 kV and 100 mA. During the measurement, the scanning rate is
5◦/min with the 2θ range of 5–35◦.
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The element contents in the sorbent were analyzed by a SPETRO ARCOS inductively
coupled plasma optical emission spectrometer (ICP-OES) (Spike, Karlsruhe, Germany).
Firstly, 0.05 g NaY or NaMY sorbent and 1.0 g potassium hydroxide were put into a crucible
and mixed evenly. It was then calcinated in a muffle furnace at 650 ◦C for 1 h and cooled to
ambient temperature. Finally, the mixture after calcination was dissolved with dilute nitric
acid for determination. The exchange degree of Na+ during the ion exchange process was
calculated using the following Equation (2).

ENa(%) = 100 × (nNaY − nNaMY)/nNaY (2)

where ENa (%) was the exchange degree of Na+; and nNaY and nNaMY (mmol/g) were the
Na content in parent NaY and NaMY zeolite, respectively.

FT-IR characterization of fresh and spent sorbent was conducted with a INVENIO R
FT-IR spectrometer (Bruker, Karlsruhe, Germany). The scanning ranges from 400 cm−1 to
4000 cm−1 with a resolution of 4 cm−1. Then, 1.0 mg of sorbent was mixed with 100 mg of
KBr and ground well to make a tablet prior to FT-IR.

In situ FT-IR of thiophene adsorption on sorbent surface was characterized by a FT-IR
spectrometer mentioned above. Firstly, 20 mg sorbent was made into a wafer with the
diameter of 13 mm and placed in a cell. The in situ FT-IR characterization contained the
following three steps: (1) The wafer was pretreated (6.0 × 10−5–7.0 × 10−5 Pa) at 550 ◦C
for 1 h in air to desorb the impurities such as moisture and CO2 in sorbent. (2) After
cooling to ambient temperature, the wafer was treated in Ar atmosphere to 350 ◦C with
5 ◦C/min heating rate and then cooled by water recycling. Infrared spectra at different
temperatures were collected during the cooling process. (3) Thiophene saturated steam
was adsorbed on sorbent under a high vacuum with a pressure less than 1.0 × 10−5 Pa for
0.5 h at ambient temperature, and then the temperature-processed desorption was carried
out under vacuum condition. Infrared spectra of sorbents were collected with 10 ◦C/min
heating rate from room temperature to 350 ◦C.

3. Results and Discussion
3.1. Effects of Temperature on Desulfurization Performance of Metal Modified Y Sorbent
3.1.1. Thiophene Adsorption Capacity of Sorbent

Thiophene breakthrough adsorption curves and Qb-thiophene of NaY, NaCeY, NaZnY,
NaNiY and NaAgY sorbents in simulated COG at different temperatures are shown in
Figure 2a–d. When the desulfurization temperature is 100 ◦C, the Qb-thiophene of different
metal modified Y zeolites is higher than that of NaY (Figure 2b), indicating that metal mod-
ification can significantly improve the desulfurization performance of NaY. The Qb-thiophene
of different metal modified Y zeolites follows the order: NaAgY >> NaZnY > NaNiY >
NaCeY > NaY. NaAgY sorbent has the highest Qb-thiophene, about 144 mg/g, while NaCeY
has the lowest Qb-thiophene among the four metal modified Y zeolites.

Notably, the order of Qb-thiophene changes significantly at 200 ◦C: NaCeY >> NaNiY
> NaAgY > NaY > NaZnY (Figure 2d). When the temperature increases to 200 ◦C, the
Qb-thiophene of NaNiY and NaZnY sorbents are almost 20 times less than that of 100 ◦C,
and the Qb-thiophene of NaAgY sorbent decreases to about one fiftieth of that at 100 ◦C. In
contrast, the Qb-thiophene reduction of NaCeY sorbent is not obvious, indicating that the
adsorption performance of NaCeY adsorbent for thiophene is less affected by temperature.
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Figure 2. Thiophene breakthrough adsorption curves (a,c) and Qb-thiophene (b,d) of different Y zeolites
at 100 ◦C and 200 ◦C in simulated COG.

Table 2 presents the thiophene adsorption capacities of Y zeolites in different systems
in the literature. The thiophene adsorption capacity of Y zeolite varies greatly when the
feedstock, initial thiophene concentration, temperature conditions are different. From the
studied results in the literature, it can be seen that the adsorption capacity of Y zeolite
to thiophene ranges from 5.39 mg/g to 394 mg/g [27,31]. In this work, the thiophene
adsorption capacities of NaAgY and NaCeY in simulated COG are still 114 mg/g and
31.7 mg/g, which may have certain potential for industrial application.

Table 2. A comparison of thiophene adsorption capacity of different Y zeolites at various conditions.

Sample Feedstock
Initial Thiophene

Concentration
(ppm)

Conditions
Thiophene
Capacity of

Sorbent (mg/g)
Reference

NaY

Isooctane 200 Static adsorption at 60 ◦C for 12 h

199

[27]
ZnY 313
NiY 302
AgY 394

AgY n-heptane 700 Dynamic adsorption at 25 ◦C 28.9
[29]CeY 35.9

CeY Benzene 600 Static adsorption at 25 ◦C for 24 h 5.39 [31]
NaAgY

Simulated COG 300
Dynamic adsorption at 100 ◦C
Dynamic adsorption at 200 ◦C

144
This workNaCeY 31.7
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3.1.2. Composition and Structure Analysis of Sorbent

The thiophene adsorption capacities of different NaMY sorbents in simulated COG
show a great difference with the increase of temperature. There are many factors affecting
the thiophene adsorption capacity of sorbent, the differences in the sorbent structure may
be one of the factors. In NaY zeolite framework, the [SiO4] tetrahedron is electrically
neutral and the [AlO4] tetrahedron carries one unit of negative charge [32]. Therefore,
aluminosilicate zeolite composed of Si and Al atoms have an anionic framework structure,
which needs to be equilibrated with Na+ in the vicinity of negatively charged [AlO4]−

(Figure 3). After Ag+ is ion-exchanged with NaY, the generally accepted model is that
Na+ in NaY is replaced by Ag+. Some studies show that after the ion exchange of the
higher-charged cations such as Ni2+, Ce4+ with NaY, Na+ is finally probably replaced by
[NiOH]+, [Ce(OH)O]+ [33,34]. During the ion exchange process, part of the structure of
metal modified Y zeolite would be destroyed due to the charge balance during metal
modification process [35,36].
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Figure 3. Schematic diagram of the structure of NaY zeolite.

To study the thermal stability of different Y zeolites, TG analysis was conducted. As
can be seen in Figure 4a, the weight loss of NaY and NaMY sorbents is between 20% and
25% during the heating process. DTG curves of different Y zeolites in Figure 4b have
distinct weight loss peaks before 300 ◦C, which is attributed to the adsorbed moisture in Y
zeolite [36–38]. The abundant micropores and OH groups in NaY and NaMY can easily
absorb moisture in air. After 300 ◦C, the weight of Y zeolite changes little, indicating that
the chemical structure of Y zeolite prepared after calcination is relatively stable.
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Figure 4. TG (a) and DTG (b) curves of different Y zeolites.

N2 adsorption and desorption isotherms of NaY and NaMY sorbents show that the
curves increase rapidly at low p/p0 and then rise slowly at high p/p0 (Figure 5a). The
N2 adsorption curve is typical of type I adsorption isotherm, implying NaY and NaMY
sorbents have micropore structure. The pore size of sorbents ranges from 0.5 nm to 1.2 nm
(Figure 5b). Table 3 shows the pore structure parameters of sorbents. Compared with that
of NaY sorbent, the BET surface area and micropore volume of metal modified Y zeolite
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have a slight decrease. Notably, the most available pore size (a0) of NaCeY sorbent is bigger
than that of other sorbents, which may be due to changes of pore structure caused by
desiliconization and dealumination during the ion exchange process.
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Figure 5. N2 adsorption and desorption isotherms (a) and pore size distribution (b) of different
Y zeolites.

Table 3. Surface area, micropore volume and the most available pore size (a0) of different Y zeolites.

Sample SBET (m2/g) Smicro (m2/g) Vmicro (cm3/g) a0 (nm)

NaY 834 789 0.30 0.68
NaCeY 735 682 0.26 0.80
NaNiY 783 724 0.27 0.73
NaZnY 775 721 0.27 0.73
NaAgY 766 719 0.27 0.64

In order to study the crystal structure of different Y zeolites, the XRD characterization
was performed. Figure 6a shows the XRD patterns of fresh NaY and NaMY sorbents.
Diffraction peaks at 10.21◦, 11.97◦, 15.73◦, 18.76◦, 20.44◦, 23.76◦, 27.14◦ and 31.49◦ be-
long to (220), (311), (331), (333), (440), (533), (642) and (555) crystal faces of Y zeolite,
respectively [34,36,39,40]. It can be seen from Figure 6a that the crystal structure of NaNiY,
NaZnY and NaAgY does not change significantly. For NaCeY sorbent, the (220) and (311)
crystal faces disappear, which suggests that ion exchange with Ce could destroy part of the
crystal faces of Y zeolite.
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The XRD patterns of the spent sorbents (Figure 6b) show that the crystal structures of
the spent NaCeY, NaNiY and NaZnY sorbents were almost unchanged. However, the (220)
and (311) crystal faces of spent NaAgY disappear, probably because thiophene covers the
(220) and (311) crystal faces during the desulfurization process.

ICP characterization was conducted to determine the element contents of different
sorbents. The characterization results (Table 4) show that the Si and Al contents in NaMY
sorbent decrease after metal modification. The lowest amount of Si and Al in NaCeY
demonstrates that Ce would cause desiliconization and dealumination of NaY during
metal modification process, which is consistent with the literature [35,36,41]. After metal
modification, Na content reduces from 3.78 mmol/g to approximately 3.2 mmol/g. The
ENa ranges from 12.4% to 17.7% and these values are lower than that in the literature [36,38],
which may be caused by nitrate solution concentration, low exchange temperature and
short exchange time. The order of loading metal contents in sorbents is as follows: Ag > Zn
> Ni > Ce. The contents of Ni and Ce are about 0.5 mmol/g, and Zn and Ag are relatively
higher (approximate 0.7 mmol/g). Combining the results of thiophene adsorption capacity
and metal element content (Figure 2d and Table 4), it is found that there is no correlation
between the contents of loading metals and Qb-thiophene, probably due to the low contents
of loading metals.

Table 4. Elemental contents and ENa of different Y zeolites.

Sample
Element Content (mmol/g)

ENa (%)
Si Al Na M

NaY 10.4 3.44 3.78 - -
NaCeY 9.58 3.24 3.31 0.505 12.4
NaNiY 10.2 3.34 3.23 0.519 14.6
NaZnY 10.4 3.41 3.13 0.692 17.2
NaAgY 9.72 3.28 3.11 0.723 17.7

Note: M represents Ce, Ni, Zn and Ag; ENa denotes the exchange degree of Na+.

From the above analysis, we can conclude that the crystal structure and metal content
of NaMY sorbent are not the main factors affecting its thiophene adsorption capacity. The
difference in the chemisorption mode and thermal stability between thiophene and NaMY
sorbent may be the fundamental reason for the difference in thiophene adsorption capacity
of sorbent at different temperatures.

3.1.3. Thermal Stability of Chemisorption between Thiophene and Sorbent

In general, the chemisorption between thiophene and metal ions has two modes:
π-complexation and S-M bond [21,27,42]. To study the chemisorption mode of thiophene
over different metal modified Y zeolites, FT-IR characterization of fresh and spent NaY
and NaMY sorbents was conducted and the results are shown in Figure 7a,b. The peaks at
3450 cm−1 and 1640 cm−1 are assigned to the OH groups in H2O molecules [43], which
is caused by the adsorbed moisture in air during the grinding process before FT-IR char-
acterization. Peaks in the range of 900–1200 cm−1 are assigned to Si-O-Si groups in Y
zeolite [5]. Compared with that of fresh sorbents, some new peaks appear in FT-IR spectra
of spent sorbents. For NaYS, NaCeYS, NaNiYS, NaZnYS and NaAgYS sorbents, the peak
at 1401 cm−1 is assigned to the symmetric stretching of C=C bond of thiophene [44–46],
indicating the presence of adsorbed thiophene in the spent sorbents (Figure 7b). In addition,
a characteristic peak at 1385 cm−1 appears for all spent sorbents. Theoretically, if the
adsorption of thiophene is achieved by the complexation between π electrons of thiophene
ring and metal, the electron density across the thiophene ring will decrease, resulting in
a red shift of C=C stretching bond [45,46]. Thus, the characteristic peak at 1385 cm−1 can
be assigned to a red shift of 1401 cm−1, and it reflects π-complexation between thiophene
and metal ions. It is concluded that when the temperature is 100 ◦C, Y zeolites loaded with
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Ce4+, Ni2+, Zn2+, Ag+ still have the ability to adsorb thiophene by π-complexation between
metal ions and thiophene.
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If the sulfur atom of thiophene directly interacts with metal as a bond, the electron
density of carbon atoms in thiophene will increase, leading to a blue shift of C=C stretch-
ing [45,46]. Therefore, the peak at 1452 cm−1 is assigned to the blue shift of 1401 cm−1, and
it reflects chemisorption of S-M bond. The peak at 1440 cm−1 is assigned to the stretching
vibration of S-Ce bond [47]. For NaCeYS sorbent, the appearance of peaks at 1452 cm−1

and 1440 cm−1 proves the existence of S-Ce bond in NaCeYS sorbent (Figure 7b), indicating
that Ce ion in Y zeolite could also adsorb thiophene via a direct S-Ce bond. Ni2+ in NaNiY
zeolite can adsorb thiophene via S-Ni bond, which is observed at room temperature [48]. In
this work, NaNiYS sorbent has no characteristic peak of 1452 cm−1, implying that in coke
oven gas S-Ni bond almost disappears at 100 ◦C.

The characteristic peak intensity of π-complexation of NaAgY is significantly stronger
than that of the other sorbents (Figure 7b), indicating that the thiophene content in NaAgY
is higher than that of the other sorbents, and this result is consistent with the Qb-thiophene
of sorbent. The Qb-thiophene of NaNiY, NaZnY and NaAgY is higher than that of NaCeY at
100 ◦C, implying that π-complexation is significantly more effective than the S-Ce bond
for thiophene adsorption at 100 ◦C. However, NaCeY has much higher Qb-thiophene than
the other sorbents at 200 ◦C, which suggests that thiophene absorbed via π-complexation
would be easily desorbed and via S-Ce bond is relatively hard to be desorbed.

Since the chemisorption between NaCeY and thiophene has both π-complexation and
S-Ce bond, NaCeY was selected to further study the thermal stability of π-complexation
and S-Ce by in situ FT-IR. The peak at 3102 cm−1 is assigned to the unsaturated C-H
stretching vibration of thiophene ring [37]. As the desorption temperature increases, the
peak of C-H stretching vibration shows an obvious red shift (Figure 8a). This indicates that
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as the desorption temperature increases, the energy of C-H group in thiophene molecular
becomes lower and the thiophene adsorbed on Y zeolite becomes more and more stable.
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Previous research has shown that the peak at 1395 cm−1 is attributed to the C=C
stretching vibration of thiophene adsorbed on NaCeY via π-complexation [45,46], while
the peak at 1442 cm−1 is attributed to the stretching vibration of S-Ce bond [47]. Figure 8b
shows that the peak intensity of S-Ce bond is much stronger than that of π-complexation,
indicating that thiophene is mainly adsorbed on NaCeY via S-Ce bond. The peak at
1395 cm−1 becomes weak when the desorption temperature reaches 150 ◦C, suggesting that
most of the thiophene adsorbed via π-complexation can be desorbed at 150 ◦C. The strength
of stretching vibration of S-Ce bond changes little when the desorption temperature ranges
from 50 ◦C to 250 ◦C, implying that thiophene adsorbed through S-Ce bond is difficult to
desorb below 250 ◦C.

The big difference in the thiophene adsorption capacity of NaAgY and NaCeY at
100 ◦C and 200 ◦C is mainly caused by their different chemisorption modes and thermal
stability. The thiophene adsorption over NaAgY and NaCeY is summarized in Figure 9.
Thiophene can be adsorbed on Ag active site of Y zeolite via π-complexation, while on
Ce ion mainly via S-Ce bond. The thermal stability of S-Ce bond is higher than that of
π-complexation in the range of 100 ◦C to 200 ◦C. When the desulfurization temperature is
100 ◦C, the thiophene adsorption capacity of NaAgY is much higher than that of NaCeY
due to the excellent thiophene adsorption capacity of Ag active site. With the increase of
temperature, a large amount of thiophene on NaAgY is desorbed, while a small amount of
thiophene adsorbed on NaCeY is desorbed. Therefore, the thiophene adsorption capacity
of NaCeY is much higher than that of NaAgY when the desulfurization temperature is
200 ◦C.

According to Table 4, 1.0 ton NaCeY contains 505 mol Ce and 1.0 ton NaAgY has
723 mol Ag. Taking the Aladdin price as an example, the current prices of per mole
Ce(NO3)3·6H2O and AgNO3 are about $27.8 and $411, respectively. The nitrate cost to
manufacture 1.0 ton NaCeY and NaAgY are about $14,039 (505 × 27.8) and $297,153 (723
× 411), respectively, neglecting the loss of metal nitrate during the ion exchange process. It
can be seen that the cost of AgNO3 is about 20 times higher than that of Ce(NO3)3·6H2O.
On balance, NaCeY sorbent may have better industrial utilization prospects than NaAgY
at relatively high temperature. The understanding of thiophene adsorption mechanism
over NaCeY in coke oven gas may provide a theoretical basis for the targeted design of
thiophene adsorption active sites in NaCeY zeolite.
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3.2. Desulfurization Performance of NaCeY Sorbent
3.2.1. Effects of Desulfurization Atmosphere on Thiophene Adsorption Capacity

The presence of reductive gases CO and H2 in COG may change the chemical valence
state of the active metals in sorbent, which in turn affects the thiophene adsorption capacity
of sorbent. The XRD and element content results of sorbents (Figure 6a and Table 4) show
that the chemical structure of NaCeY is more severely damaged than that of NaNiY, NaZnY
and NaAgY. In other words, NaCeY has lower chemical stability compared with other
NaMY sorbents, and the chemical valence state of Ce in NaCeY is easily changed during
the desulfurization process. Therefore, NaCeY was chosen to study the effect of reductive
gas in COG on the thiophene adsorption performance of NaMY sorbent.

NaCeY was evaluated in four kinds of atmospheres, and the thiophene breakthrough
adsorption curves and Qb-thiophene of NaCeY are shown in Figure 10a,b, respectively. The
Qb-thiophene of NaCeY sorbent is 57.6 mg/g in inert atmosphere N2, while the Qb-thiophene
of NaCeY decreases significantly in CO and/or H2 containing atmosphere, and there is a
more than 35% decrease in Qb-thiophene. It suggests that the reductive atmosphere is not
favorable for the adsorption of thiophene over NaCeY sorbent. NaCeY sorbent prepared
in this work was obtained by calcinating at 550 ◦C in air for 4 h, in which Ce exists in the
form of Ce(IV). Generally, part of Ce(IV) in NaCeY will probably be converted into Ce(III)
during desulfurization in reductive atmosphere, and the valence state of Ce may affect the
thiophene adsorption performance of NaCeY.

3.2.2. Effects of Ce Valence State on Thiophene Adsorption Capacity

Due to the relatively low chemical stability of NaCeY, H2 and CO in COG may
reduce Ce(IV) to Ce(III) during the heating process. In order to determine the reduction
temperature of Ce(IV) to Ce(III), H2 and CO temperature-programmed reduction of NaCeY
were conducted, respectively.
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Figure 10. Thiophene breakthrough adsorption curves (a) and Qb-thiophene (b) of NaCeY in different 

desulfurization atmospheres at 200 °C. 
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Figure 10. Thiophene breakthrough adsorption curves (a) and Qb-thiophene (b) of NaCeY in different
desulfurization atmospheres at 200 ◦C.

As displayed in Figure 11a, a small peak of H2 consumption occurs at around 200 ◦C,
while H2 consumption reaches a maximum at around 450 ◦C and disappears after 600 ◦C.
H2O is produced while H2 is consumed. It indicates that the complete conversion of Ce(IV)
species into Ce(III) in H2 containing atmosphere is around 600 ◦C. Similar results have been
observed in the literature, a reduction peak of H2 can be observed at around 450–600 ◦C
for NaCeY sorbent and this peak is assigned to the reduction of Ce(IV) species to Ce(III)
species on the surface and in the supercage of zeolite [36]. The reduction of NaCeY in CO is
shown in Figure 11b, CO content starts to decrease slowly from 150 ◦C, and its consumption
reaches a maximum at 610 ◦C. At the same time, the product CO2 was detected. The change
in CO2 content is exactly the opposite of that of CO. This suggests that CO is able to convert
a small amount of Ce(IV) in NaCeY into Ce(III) starting from about 150 ◦C. Combined with
the results of Ce reduction temperature, we can conclude that after being treated under
H2–200, CO−200 and H2 + CO−200 conditions, NaCeY contains a small amount of Ce(III).
Under the condition of H2–600, Ce(IV) in NaCeY sorbent can be completely converted
into Ce(III).
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Figure 11. Reduction process of NaCeY sorbent in H2 (a) and CO (b) containing atmospheres. Note
that the data were obtained by follows: 0.05 g NaCeY was weight in a fixed bed reactor coupled with
MS, and then was heated in 10H2/CO + 90Ar (vol%) with a flow rate of 50 mL/min from ambient
temperature to 800 ◦C with a heating rate of 2 ◦C/min.

The thiophene adsorption performance of NaCeY with different content of Ce(III) was
evaluated in N2 atmosphere, and thiophene breakthrough adsorption curves and Qb-thiophene
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of NaCeY are shown in Figure 12a,b, respectively. Compared with the Qb-thiophene of NaCeY
containing totally Ce(IV) (57.6 mg/g, Figure 10b), the Qb-thiophene of NaCeY containing
part of Ce(III) ranges from 13.6 mg/g to 19.0 mg/g. Significantly, the Qb-thiophene of NaCeY
containing only Ce(III) is 4.96 mg/g, which is 8.61% of the highest Qb-thiophene of NaCeY.
Therefore, it can be concluded that the adsorption capacity of Ce(IV) species in NaCeY for
thiophene is much better than that of Ce(III).
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4. Conclusions

The breakthrough adsorption capacity for thiophene in coke oven gas was successfully
improved by metal (Ce, Ni, Zn and Ag) modification of NaY zeolite. At 100 ◦C, NaAgY has
the highest breakthrough adsorption capacity for thiophene (144 mg/g), which is 1–2 times
higher than NaZnY, NaNiY, NaCeY, and NaY. The thiophene adsorption capacities of
NaNiY, NaZnY and NaAgY decrease remarkedly from 100 ◦C to 200 ◦C, while the thiophene
adsorption capacity of NaCeY is less affected by temperature. Thiophene is adsorbed via
π-complexation on NaAgY sorbent, and mainly through S-Ce bond on NaCeY sorbent.
π-complexation between thiophene and Y zeolite becomes weak above 150 ◦C, while the
strength of S-Ce bond changes little until 250 ◦C. In addition, Ce(IV) species are more
favorable for the adsorption of thiophene than Ce(III). The presence of H2 and CO in coke
oven gas can decrease the content of Ce(IV) of NaCeY, thereby reducing the desulfurization
performance. Therefore, Ag modified Y zeolite would be a potential adsorbent for the
ultra-deep removal of thiophene in coke oven gas below 150 ◦C, while Ce modified Y
zeolite containing more Ce(IV) species has a promising application prospect at 150–250 ◦C.
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