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Abstract: This paper concerns very-short-term (5-Minute) forecasting of photovoltaic power gen-
eration. Developing the methods useful for this type of forecast is the main aim of this study. We
prepared a comprehensive study based on fragmentary time series, including 4 full days, of 5 min
power generation. This problem is particularly important to microgrids’ operation control, i.e., for the
proper operation of small energy micro-systems. The forecasting of power generation by renewable
energy sources on a very-short-term horizon, including PV systems, is very important, especially in
the island mode of microgrids’ operation. Inaccurate forecasts can lead to the improper operation
of microgrids or increasing costs/decreasing profits for microgrid operators. This paper presents a
short description of the performance of photovoltaic systems, particularly the main environmental
parameters, and a very detailed statistical analysis of data collected from four sample time series of
power generation in an existing PV system, which was located on the roof of a building. Different
forecasting methods, which can be employed for this type of forecast, and the choice of proper input
data in these methods were the subject of special attention in this paper. Ten various prognostic
methods (including hybrid and team methods) were tested. A new, proprietary forecasting method—
a hybrid method using three independent MLP-type neural networks—was a unique technique
devised by the authors of this paper. The forecasts achieved with the use of various methods are
presented and discussed in detail. Additionally, a qualitative analysis of the forecasts, achieved using
different measures of quality, was performed. Some of the presented prognostic models are, in our
opinion, promising tools for practical use, e.g., for operation control in low-voltage microgrids. The
most favorable forecasting methods for various sets of input variables were indicated, and practical
conclusions regarding the problem under study were formulated. Thanks to the analysis of the utility
of different forecasting methods for four analyzed, separate time series, the reliability of conclusions
related to the recommended methods was significantly increased.

Keywords: microgrids; operation control; power generation; PV system; very-short-term forecasting;
machine learning; interval type-2 fuzzy logic system

1. Introduction

Microgrids are autonomous energy micro-systems that can operate in both the syn-
chronous (parallel) mode with distribution system operators’ grids and the island mode.
Control of the microgrid operation in both modes, in particular in the island mode, is a very
important issue. Forecasts of power generated from renewable energy sources and forecasts
of power demand, in a very-short-term horizon, affect the proper microgrid operation,
especially in the island mode. Because of this, forecasts are more and more important. Very-
short-term power-generation forecasts, if imprecise, can cause increased costs/decreased
profits for microgrids operators or improper operation of energy micro-systems.

It is expected that microgrids will undergo management of electrical power and energy
in a very-short-term horizon. All active components of the microgrid, e.g., controllable
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microsources, energy storage units, and controllable loads, take part in the management
process. For the electrical power and energy-management process to proceed correctly,
a lot of detailed data is needed. These data include, among others: data on current and
forecast loads, data on current and forecast values of power and energy generated by
nondispatchable sources (among them, renewable energy sources), and data on the current
and forecasted prices of the electrical energy market. These data enable the correct control
process of the above-mentioned active components of the microgrid. Obtaining accurate
forecasts of power generated in PV systems in a very-short-term horizon is therefore very
important from the point of view of power and energy management in the microgrid.

1.1. Related Works

The first part of the literature review refers to the very-short-term forecasting. Within
this field, we distinguish between load-demand forecasts and power-generation (wind
power and photovoltaic power) forecasts.

The problem of forecasting power demand in a very-short-term horizon is presented
in several publications, e.g., in [1–4]. The authors of [4] describe the 10 s forecasting of
power demand in the case of highly variable loads. In turn, paper [5] includes a very
comprehensive overview of load forecasting methods in short-term and very-short-term
horizons. Topics such as the different areas and locations to which this type of forecast can
be applied (smart buildings, microgrids, small cities), along with forecasted time horizons,
are described in this overview.

Various methods (models) can be applied to prepare forecasts of wind power genera-
tion in very short time horizons. In [6], a model of wavelet decomposition and weighted
random forests for very-short-term wind power forecasts is presented. The authors of [7]
describe hybrid empirical mode decomposition and team empirical mode decomposition
models for the needs of wind power forecasts. The authors of [8] present various ap-
proaches: neuro fuzzy systems, a support vector regression, and a regression tree in the
case of forecasting 1 h wind power. The authors of [9] address, in turn, different approaches
for forecasts of wind power in minute horizons. The fuzzy model of Takagi–Sugeno applied
to very-short-term forecasts of wind power is presented in [10]. In [11], models based on a
discrete-time Markov chain for very-short-term wind power forecasting are described.

Another aspect to be considered is photovoltaic power forecasting in very-short-term
or short-term horizons. Two methods, including smart persistence and random forests for
the needs of forecasts of PV energy production, are presented in [12]. The authors of [13]
address a team model for short-term PV power forecasts. In [14], a complex model for
solar power forecasts is described. The model combines wavelet transform, ANFIS, and
hybrid firefly and PSO algorithms. The authors of [15] discuss a physical hybrid ANN for
24 h-ahead PV power forecast in microgrids. A very comprehensive review and evaluation
of different methods (models) for PV power forecasting are included in [16]. A review of
various methods concerning power-generation forecasting in PV systems is also presented
in [17]. Paper [18] includes an extensive comparison of different physical models, which
can be used for the needs of forecasts concerning PV power generation. In turn, the impact
of the availability of design data on the exactness of power-generation forecasts in PV
systems, based on physical models, is described in [19].

The second part of the literature review specifically refers to microgrids.
The topic of microgrids was discussed intensively in the literature. In [20,21], a

formal definition of microgrids is presented. The idea of microgrids was described in
many other publications, e.g., [22,23]. A lot of books and papers address the topic of
microgrids’ operation control [22–29]. In [24,28,29], a very comprehensive overview of
works relating to optimum control (centralized control and decentralized (distributed)
control) in microgrids is presented. The authors of [25,28] describe the centralized control
logic. In turn, the distributed control logic in microgrids is discussed in [26,28,29]. The
authors of [25] present the model of predictive control in microgrids. The operational
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control in the microgrid island mode is addressed in [25,27]. In [30], a fault detection,
localization, and categorization method in the case of a PV-fed DC microgrid is described.

In the analyzed works, different issues concerning photovoltaic power forecasting in a
very-short-time horizon and microgrids were considered. The main aim of this paper is
to provide a very comprehensive review of the various possible methods of very-short-
term photovoltaic power-generation forecasting for the needs of low-voltage microgrids
operation, as well as select the best methods among those considered.

1.2. Objective and Contribution

The following are the main objectives of this paper:

• Carry out an analysis of the statistical properties of a time series of the measured
values of 5 min power generation in a PV system;

• Verify the usefulness of the available input variables—perform a validity analysis
(the time series of solar irradiance, air temperature, PV module temperature, wind
direction, and wind speed) using four different methods and select eight sets of input
variables to make forecasts using various methods;

• Check the efficiency of 5 min horizon power-generation forecasts by means of ten fore-
casting methods, including machine learning, hybrid, and ensemble methods (several
hundred various models with different set values of parameters/hyperparameters
have been verified for this purpose);

• Point out forecasting methods that are the most effective for this 5 min power-
generation time series depending on the number of input variables used.

• The selected contributions of this paper are as follows:
• The research concerns unique data—a time series of 5 min power-generation values

in a small, consumer PV system. In the case of such small PV systems and such a
short forecast horizon (5 min), meteorological forecasts are usually not used in the
forecasting process due to difficulties in obtaining them, which makes it problematic
to obtain forecasts with very high accuracy;

• We provide a detailed description of the performance of photovoltaic systems regard-
ing the main environmental parameters;

• We performed extensive statistical analyses of the available time series (including an
analysis of the importance of the input variables);

• We used tests of ten different prognostic methods (including hybrid and team methods);
• We developed a new, proprietary forecasting method—a hybrid method using three

independent, MLP-type neural networks;
• We indicate the most favorable prognostic methods for various sets of input variables

(from 3 input variables to 15 input variables) and formulate practical conclusions re-
garding the problem under study, e.g., from the point of view of microgrids’ operation.

• We provide a broad comparative analysis of forecasting methods of a very-short-term
horizon for power generation in PV systems that can be connected to low-voltage
microgrids.

After completing our studies, we can state that there are efficient, very-short-term
forecasting methods for PV power generation, which are suitable for practical use in
microgrids’ operation.

The organization of this paper is as follows: Section 2 describes the influence of the
main environmental parameters on the performance of photovoltaic systems. Section 3.1
includes an analysis of the statistical properties of the time series of PV power generation
data investigated in this paper. The analysis leading to the choice of proper input data
(explanatory variables) for various prognostic methods is shown in Section 3.2. Section 4
addresses the forecasting methods applied in this paper. In turn, Section 5 discusses criteria
employed to evaluate the quality of the forecasting models considered. A broad compar-
ative analysis of forecasting methods of a very short time horizon for power generation
in PV systems is presented in Section 6. Section 7 includes the main conclusions resulting
from our studies. A list of references ends the paper.
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2. Performance of Photovoltaic Systems

The two main environmental parameters affecting the performance of photovoltaic
(PV) systems are solar irradiance and cells’ temperature [31,32]. Changes in solar irradiance
result in a generally proportional shift of the I–V (current–voltage) curve along the current
axis, along with a relatively much smaller voltage change. Under low-irradiance conditions,
such as those during overcast weather, the maximum power of the PV module tends to
be further decreased due to the higher significance of the parallel resistance, which results
in a slight decrease in current with an increasing voltage. This effect is highly dependent
on PV cells’ technology. The current changes resulting from the changing irradiance are
instantaneous from the point of view of PV system energy yields. The PV system power
output is primarily dependent on the available irradiance.

The PV cell temperature is the second most important factor influencing the energy
output of a PV system, as demonstrated by analyses utilizing the performance ratio (PR)
parameter to model PV systems’ operations [33,34]. The increase in the PV cell temperature
results in a decrease in the PV device’s open-circuit voltage, along with a minor increase in
the short-circuit current. The PV output power temperature coefficients of silicon-based
solar cells are of the order of −0.45%/K [35]. Due to heat capacity of PV modules being
heavily dependent not only on the materials and structure of the module itself but also
on its mounting structure, tilt angle, and surrounding ground, the rate of response of
the module’s temperature to the environmental conditions (the irradiance, velocity, and
direction of wind and the ambient temperature) varies significantly and must be assumed
to be an individual property of the particular system under analysis. The literature provides
numerous similar approximations of the influence of temperature on PV systems’ efficiency
and output power, often using empirically established coefficients [36]. Direct measurement
of the temperature of laminated solar cells is difficult, and temperature sensors are usually
attached to the rear backsheet of the module. The significant temperature gradient between
different points of a single module exposed to sunlight (due to proximity of the frame
or mounting structure attachment) makes reliable module temperature challenging, with
guidelines suggesting the use of up to four temperature sensors on a single module to model
the temperature correctly [37,38]—an effort rarely undertaken, even in research-oriented
test systems, and even more so in commercial systems.

Spectral effects, related to the mismatch between the spectral response of a PV mod-
ule (which primarily depends on PV cell technology) and the spectrum of the incident
irradiance (which consists of the direct and diffused component of the solar spectrum
and light reflected from the surrounding objects—particularly important for bifacial and
multijunction modules), primarily contribute towards varying irradiance effects. However,
the spectral mismatch also impacts thermalization and sub-bandgap losses, which result in
PV module heating. These factors are difficult to quantify in the analysis of PV systems’
performance, as their inclusion would require long-term monitoring of the solar spectra
in the location of the system under analysis. Their impact is also highly specific to PV
cell technology [39]. The size and layout of a PV system may also impact both the degree
and pace of the change of its power output due to external factors, which is particularly
important in the case of large-area systems [40].

3. Data
3.1. Statistical Analysis of the Time Series of Power-Generation Data

The installed power of the analyzed PV system is 3.2 kW. The power output of the
analyzed system was monitored using the built-in capability of the system’s inverter, type
SMA Sunnybox SB3000. The built-in measurement system records parameters, such as AC
and DC side power, voltages, and currents. The data points are recorded in 5 min intervals.
These electrical data are then merged with the data gathered by the meteorological station.
Statistical analysis is based on fragmentary time series, including 4 full days. Each day
is from a different season. The daily time series includes 288 periods of 5 min. The total
number of 5 min periods of power generation in watts is 1152. Before statistical analysis
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was performed, the data “cleaning” process was performed. Wrong data were identified
and replaced with data most relevant to their location (e.g., in the case of non-zero power-
generation values in the period between sunset and sunrise or zero-generation values in
the period when solar irradiance was non-zero).

Table 1 shows selected statistical measures of the time series of power generation in
the PV system. As much as 50% of power generation from the time series was due to small
values, below 46.914 (W) (which is more than 68 times less than the installed power of the
PV system).

Table 1. Descriptive statistics of time series of power generation.

Statistical Measures PV System Data

Mean 635.61 (W)
Percentage ratio of mean power to installed power 19.86%

Standard deviation 930.63 (W)
Minimum 0.00 (W)
Maximum 3114.81 (W)

Range 3114.81 (W)
Coefficient of variation 146.41%

The 10th percentile 0.00 (W)
The 25th percentile (lower quartile) 0.00 (W)

The 50th percentile (median) 46.91 (W)
The 75th (upper quartile) 1127.19 (W)

The 90th percentile 2368.10 (W)
Variance 866,074.80 (-)
Skewness 1.23 (-)
Kurtosis −0.04 (-)

Figure 1 shows the daily time series of power generation for every season of the
year (actual measurement data). The whole spring day was cloudless (generation was
close to the rated power, very smoothed time series). The opposite of a spring day was
a winter day with a much shorter power-generation period and a significantly smaller
generation compared to a spring day and a summer day. Dynamic changes in the quantity
of generation during the summer and autumn days are evidence of the high variability of
cloud cover on these days.
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For the time series of power generation, the autocorrelation coefficient (ACF) slowly
decreased from 0.974 (one period back, e.g., 5 min) to 0.892 (twelve periods back, e.g., 1 h)
(see Figure 2). All autocorrelation coefficients are statistically significant (5% significance
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level). The use of several past values of the forecasted time series of power generation as
input data for forecasting models seems justified.
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3.2. Analysis of Potential Input Data for Forecasting Methods

The forecasted output is the power generation in the PV system (generation in the DC
part of the system). Five additional time series (measured, real values) are available for
analysis as potential input data. There are no forecasts of these time series. The following
time series are available:

• Solar irradiance (W/m2);
• Air temperature (◦C);
• PV module temperature (◦C);
• Wind direction (degrees);
• Wind speed (m/s).

Only the past values of the five exogenous explanatory variables and the past values
of the dependent variable (endogenous variable) can be selected as input data for the
forecasting methods. Furthermore, a weighted averaging of the time series of power-
generation values can be performed. This activity should reduce the random component of
this time series. The selected past values of such transformed time series may be a valuable
set of input data. They can even potentially replace the past values of the forecasted time
series as input data in the forecasting model. The values of the smoothed time series of
power generation were calculated from Equation (1).

Psmoothed
t = Pt−1·wt−1 + Pt−2·wt−2 + Pt−3·wt−3, ∑k=3

k=1 wt−k = 1 (1)

where Psmoothed
t is the smoothed value of power generation for period t and Pt−k is the value

of power generation for period t−k, wt−1 = 0.6, wt−2 = 0.3 and wt−3 = 0.1.
Table 2 shows Pearson linear correlation coefficients (R) between the 5 min power

generation and the potential explanatory variables considered. All correlation coefficients
are statistically significant (5% level of significance). The number of expertly proposed past
values (from one to three withdrawals) for each explanatory variable results from the value
of the Pearson correlation coefficient (the higher the value of the Pearson coefficient, the
greater the significance of the variable) and the independence of information contained
in a given explanatory variable (the small value of the Pearson coefficient comparing the
analyzed explanatory variable and other explanatory variables).
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Table 2. Values of Pearson linear correlation coefficients between 5 min power generation and the
explanatory variables considered.

Code of Variable Potential Explanatory Variables Considered R

SPG(T-1) Smoothed power generation in period t−1 0.9756
PG(T-1) Power generation in period t−1 0.9744
PG(T-2) Power generation in period t−2 0.9601
PG(T-3) Power generation in period t−3 0.9536
SI(T-1) Solar irradiance in period t−1 0.9661
SI(T-2) Solar irradiance in period t−2 0.9587
SI(T-3) Solar irradiance in period t−3 0.9385
AT(T-1) Air temperature in period t−1 0.4261

PV_MT(T-1) PV module temperature in period t−1 0.7134
WD(T-1) Wind direction in period t−1 −0.2475
WS(T-1) Wind speed in period t−1 0.1825

The three past values of power generation and the three past values of solar irradiance
have very large and similar values of the Pearson’s coefficient related to the dependent
variable (output data)—power generation. PV module temperature in period t−1 has a
significantly greater R value than the air temperature in period t−1. The smallest R values
have wind direction in period t−1 and wind speed in period t−1. All R values except wind
direction in period t−1 are positive.

Figure 3 presents dispersion diagrams–relationships between power generation in
period t and smoothed power generation in period t−1. The relationship is close to
linear. The strongest linear relationship is visible for values close to the extremes (power
generation close to zero and power generation close to the rated power). The few points
significantly deviating from the linear relationship can be interpreted as a change in cloud
cover over a period of 5 min. The Pearson linear correlation coefficient between the output
data (the power generation in period t) and proposed new input data (the smoothed
power generation in period t−1) is equal to 0.9756. This R value for the smoothed power
generation in period t−1 is the biggest of all potential input data.
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In order to determine the importance of the potential input data, the following methods
of selecting variables were additionally used, using all possible 11 inputs and 1 output:

• C&RT decision trees algorithm for the selection of variables in regression problems—for
each potential predictor (input data), the coefficient of determination R2 is calculated;

• Analysis of variances (F statistics)—this method calculates the quotient of the intergroup
variance to the intragroup variance (the dependent variable) in predictor intervals (the
number of quantitative predictor classes is determined before the analysis);

• Global Sensitivity Analysis (GSA statistics) for multilayer perceptron (MLP) neural
network. A neural network with one hidden layer and four neurons in this layer was
used for the analysis. The training algorithm is BFGS, the activation function in the
hidden layer is the hyperbolic tangent, and the activation function in the output layer
is linear. The value of the importance factor for input data number k is the quotient of
the RMSE error of the forecasts of the trained MLP network using the remaining 10
input data and the input data number k is replaced by its mean value from the total
data to the RMSE error of the forecasts using all 11 sets of input data. The greater the
value of the importance factor for the given input data, the greater their significance.
Results below 1 for a given input data mean that these input data can probably be
eliminated because the MLP network without these input data has a lower RMSE error
in the forecasts;

• The importance of input data using the random forest (RF) algorithm is the many
decision trees (DCs). The importance of the given input data is measured by checking
to what extent nodes (in all decision trees) using the input data reduce the impurity
Gini indicator, with the weight of each node being equal to the number of associated
training samples [38]. It was assumed for the analysis that each decision tree would
have 6 randomly selected sets of input data from the total of 11.

The results of the input data selection with the C&RT decision tree algorithm are
shown in Figure 4. The values of the coefficient of determination are sorted in descending
order. The most important explanatory variable according to this method is smoothed
power generation in period t−1.
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In Figure 5, the results of the input data selection with the use of the analysis of variance
(F statistics) are presented. The F values are sorted in descending order. Power generation
in period t−1 is the most important explanatory variable according to this method.
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The results of input data selection using the Global Sensitivity Analysis for the mul-
tilayer perceptron (MLP) neural network are shown in Figure 6. The importance factor
values are sorted in descending order. The most important explanatory variable according
to this method is solar irradiance in period t−1.
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In Figure 7, the results of the input data selection with the use of the random forest
algorithm are presented. The importance values are sorted in descending order. Smoothed
power generation in period t−1 is the most important explanatory variable according to
this method.
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Based on the analysis of the selection of variables using these four methods, the
following conclusions can be drawn:

• For all analyzed methods of selecting variables, the significantly least important input
data are wind direction in period t−1 and wind speed in period t−1. In the vast
majority of cases, the last, least-important input data are (somewhat surprisingly)
wind speed in period t−1;

• The best input data include smoothed power generation in period t−1, power genera-
tion in period t−1, and solar irradiance in period t−1.

• The results of the individual selection methods were quite similar, except for the
input-data-selection method using global sensitivity analysis for the MLP-type neural
network. In this case, the most important input data—solar irradiance in period
t−1—are significantly more important than the second (surprisingly) in order input
data, the PV module temperature in period t−1. This method also obtained validity
results with the greatest diversification of numerical values;

• For all analyzed methods of selection of input data, the PV module temperatures in
period t−1 are more important input data than the air temperature in period t−1;

• The results of the input-data-selection method with the C&RT decision tree algorithm
(values of the coefficient of determination) are very similar to the values of Pearson’s
linear correlation (Table 2), both in relation to the order of input data in the ranking as
well as the values of the coefficients.

Table 3 shows the input datasets that will be applied to forecasts using various meth-
ods, including hybrid methods and team methods. The input datasets proposed for the
forecast quality tests assume the use of all data nominated on the basis of the selection
made using four methods, as well as the use of a limited number of inputs for a given
method (e.g., maximum of four sets of input data—this is the limitation of the Interval
Type-2 Fuzzy Logic System method due to the computational time consumption). Thanks
to the construction of many sets with a different number of input data, it will be possible
to verify whether it is reasonable to limit data to those that selection methods indicate as
the most important input data or whether it is better to use all available input data that
are statistically significant. The persistence model only uses the last known value of the
forecast time series for the prediction (set 0 (1 input)). This model is a reference point for
other more advanced methods, the forecasts of which should have lower error measures.

Table 3. Sets of input data selected for forecasting methods.

Name of Set Codes of Input Data and Additional Comments
Set 0 (1 input) PG(T-1)

SET I (3 inputs) PG(T-1), PG(T-2), PG(T-3)
SET II A (4 inputs) PG(T-1), SI(T-1), PV_MT(T-1), AT(T-1)
SET II B (4 inputs) SPG(T-1), SI(T-1), PV_MT(T-1), AT(T-1)

SET II C (3, 3, 4 inputs)
PG(T-1), PG(T-2), PG(T-3)—inputs for predicting PG forecast(T)

SI(T-1), SI(T-2), SI(T-3)—inputs for predicting SI forecast(T)
PG forecast(T), SI forecast(T), PV_MT(T-1), AT(T-1)—inputs for predicting PG(T)

SET III (11 inputs) SPG(T-1), PG(T-1), PG(T-2), PG(T-3), SI(T-1), SI(T-2), SI(T-3), AT(T-1), PV_MT(T-1),
WD(T-1), WS(T-1)

SET IV (3, 3, 13 inputs)

PG(T-1), PG(T-2), PG(T-3)—inputs for predicting PG forecast(T)
SI(T-1), SI(T-2), SI(T-3)—inputs for predicting SI forecast(T)

SPG(T-1), PG(T-1), PG(T-2), PG(T-3), SI(T-1), SI(T-2), SI(T-3), AT(T-1), PV_MT(T-1), WD(T-1),
WS(T-1), PG forecast(T), SI forecast(T)—inputs for predicting PG(T)

SET V (15 inputs) SPG(T-1), PG(T-1), PG(T-2), PG(T-3), SI(T-1), SI(T-2), SI(T-3), AT(T-1), AT(T-2), AT(T-3),
PV_MT(T-1), PV_MT(T-2), PV_MT(T-3), WD(T-1), WS(T-1)

One of the sets (set I (three inputs)) assumes the use of only three retracted values of
the forecast time series. This is to compare the quality of forecasts based only on the time
series without the use of exogenous input variables with the forecasts using additional
exogenous input variables.
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Set II C (three, three, and four inputs) and set IV (three, three, and thirteen inputs) are
sets for the hybrid method. The first model forecasts power generation in period t using the
last three values of the time series. The second model forecasts solar irradiance in period t
using the last three values of the time series. The third model that generates the correct
final forecast of power generation in period t uses the forecasts from the first model and
the second model as input data.

Set V uses all available statistically significant data, including the last three sets’
previous values of the following variables: power generation, solar irradiance, PV module
temperature, and air temperature.

4. Forecasting Methods

This section describes the methods employed in this paper. Forecasts are made using
single methods, ensemble methods, and hybrid methods. In total, ten prognostic methods
were used. Figure 8 presents a general diagram of subsequent activities related to the
forecasting process.
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In the first step, data were preprocessed. In the beginning, before the process of data
scaling (normalization) and data processing into the appropriate sets (input data and output
data, the process of data “cleaning” was performed. Next, the data from the time series
of the PV system’s power generation were normalized to relative units (one relative unit
is equal to the installed power). The other time series of data (exogenous input variables)
were normalized using min–max scaling. The data, including 1152 periods of 5 min, were
divided into three subsets: training, validation, and test subsets, respectively. Training
and validation subsets consisted of 80% of the time series chosen randomly (division into
training and validation parts, which are different depending on the forecasting method
used). The test subset comprised the remaining 20% of the time series via random selection.
Estimation of model parameters was performed with the training subset. The validation
subset was used for tuning the hyperparameters of the selected methods. The last one—test
subset—was applied to find the final results of errors in the forecast methods used. The
choice of the training and validation subsets from 80% of the data of the time series was
made with the usage of gradient-boosted trees (GBT) along with the bootstrap technique.
The multiple linear regression model (LR) only used the training subset (80% of the data
of the time series) without a validation subset—this model had no hyperparameters, only
parameters determined during a one-time parameter-optimization process.

Next, multivariate analysis was performed—using the predictive methods on eight dif-
ferent input datasets in the training subset and the selection of appropriate hyperparameters
of the methods in the validation subset. An example of the selected hyperparameters and
the scope of their searches for the selected methods is included in Appendix A—Table A1.

Then, the final predictions for the subset test were made for all methods with the
selected hyperparameters.
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Postprocessing was performed in the last step. The values of the generated forecasts
were scaled (de-normalized) to natural values (watts). An expert forecast correction was
performed—non-zero power-generation values from the periods between sunset and
sunrise were reset (power generation is impossible) in these time periods.

Following is a brief description of the proposed predictive methods. The persistence
model was a benchmark for the quality of other, more advanced forecasting methods.

Persistence model. The naive model was the simplest to implement. It assumes that
the forecast generation value is equal to the actual power-generation value obtained from
the period 5 min before. Forecasts were calculated by Equation (2):

ŷt = yt−1 (2)

where ŷt—forecast power generated by the PV system in a 5 min period t and yt−1—power
generation in a period lagged by t−1 from forecast period t.

Multiple linear regression model. This is a linear model that adopts a linear associa-
tion among the input variables and the single output variable [41,42]. The input data are
particular lags of the forecasted output variable. The other input explanatory variables
(including their particular lags) are correlated to the output variable. The least-squares
approach was used to fit the model.

K-Nearest Neighbors Regression. This technique is a non-parametric method used
for regression and classification tasks [42,43]. The input consists of the k nearby training
examples from the feature space. When using the KNN regression, the output is the
property value for the object. This value represents the average of the values of the k
nearest neighbors. The number of nearest neighbors is treated as the main hyperparameter
for the tuning process. Models with a very low k value of 1 or 2 are most likely to suffer
from overfitting. Along with increasing the value of k, this model should work more
efficiently, but it may also lead to an increase in the load on the model and the occurrence
of underfitting. The distance metric is the second hyperparameter.

MLP-type artificial neural network. This is a group of feedforward artificial neural
networks (ANNs). MLP is an effective and popular linear or non-linear (depending
on the kind of activation function in hidden layer/layers and output layer) universal
approximator [44,45]. It consists of one input layer, which typically has one or two hidden
layers, and one output layer. It often uses the backpropagation algorithm for the supervised
learning process. The number of neurons in the hidden layer(s) is usually the main
hyperparameter in the tuning task. Another selectable hyperparameter is the activation
function in the hidden layer(s) and in the output layer. The Broyden–Fletcher–Goldfarb–
Shanno (BFGS) method used for solving unconstrained non-linear optimization problems
was chosen as a learning algorithm for the neural network.

Support Vector Regression. SVM for regression of the Gaussian kernel converts the
classification process into regression by specifying the width ε tolerance region around the
destination [46]. The learning process for SVR is diminished to the quadratic optimization
problem and depends on several hyperparameters, such as tolerance ε, regularization
constant C, and width parameter s of the Gaussian kernel.

Interval Type-2 Fuzzy Logic System. Type-2 fuzzy sets (T2 FSs) are used in type-
2 fuzzy logic systems (T2 FLSs). Type-2 fuzzy sets are an expansion of type-1 fuzzy
sets (T1 FSs). Investigations on T2 FSs were performed by Zadeh, Karnik, Mendel, and
Liang [47–49]. Membership functions with three dimensions (MFs), including a footprint of
uncertainty (FOU), are features of T2 FSs [50]. The structure of T2 FLSs was presented, e.g.,
in [4]. Typical blocks include the fuzzification block, the fuzzy inference block, the base of
fuzzy rules, the type reduction block, and the defuzzification block as components of T2
FLSs. In the type reduction block, the transformation of T2 FS to T1 FS occurs. Usually, for
type reduction, the Karnik–Mendel (KM) algorithm is employed [48].

Interval type-2 fuzzy logic systems (IT2 FLSs) (see, e.g., [50]) are often used in practice
because of the computational complexity of T2 FLSs [51]. Among the different IT2 FLSs,
the IT2 TSK FLS (the IT2 FLS with the inference model of Takagi–Sugeno–Kang [50]), or
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the IT2 S FLS (the IT2 FLS with the Sugeno inference model), can be distinguished. IT2 TSK
FLS and IT2 S FLS require a lower number of model parameters than the standard IT2 FLS.
Genetic algorithms (GAs) or PSO algorithms are often used in the training process of the
IT2 FLSs (in the determination of their parameters’ values).

Random Forest Regression. RF is a collaborative method based on numerous single
decision trees (the same type of models). In the regression process, the prediction in
a single decision tree consists of the average target value of all instances related to the
single leaf node [4]. The final prediction is the average value of all n single decision trees.
Random forests are created on the basis of quite deep trees—forecasts using this method
are characterized by a low load along with quite a large variance. The regularization
hyperparameters depend on the algorithm used but generally restricted, are among others,
are factors such as the minimum number of data points placed in a node before the node
is split, the maximum number of levels in each decision tree, the maximum depth of a
single decision tree, the minimum number of data points allowed in a leaf node, and the
maximum number of nodes. The number of predictors for each of the n single decision
trees is made by the random choice of k predictors from all available n predictors [4,41].
The overfitting problem, in this case, is usually related to redundant decision trees in the
random forest.

Gradient-Boosted Trees for Regression. Gradient boosting refers to an ensemble
method that can combine several weak learners into a strong learner [4]. GBT ensures the
minimization of variance and bias in relation to single prognostic models. On the other
hand, the algorithm is more susceptible to outliers than, for example, simple decision tree
models. The GBT algorithm sequentially adds predictors (the same type of models) to
the ensemble, each one correcting its own predecessor. This technique tries to fit the new
predictor into the residual errors made by the previous predictor. The final prediction
consists of the average value from all n single decision trees. In comparison with random
forest, GBT has one additional hyperparameter—the learning rate, which is used for scaling
the contribution of each tree [41,52]. The problem of overfitting is most often associated
with too many trees in the ensemble.

Weighted Averaging Ensemble. This is an integration of the results of selected predic-
tors into the final verdict of the ensemble. The final forecast is defined as the average of the
results produced by all n predictors organized in an ensemble [42,46]. The final prediction
result is calculated by Equation (3).

ŷi =
1
n

n

∑
j=1

ŷj
i (3)

where i is the prediction point, ŷi is the final predicted value, ŷj
i is the value predicted by

predictor number j, and n is the number of predictors in the ensemble. Note: all weights
are equal to 1/n in this case.

This formula makes use of the stochastic distribution of the predictive errors. The
process of averaging reduces the final error of forecasting. The averaging of the forecast
results is an established method of reducing the variance of forecast errors. An important
condition for including the predictor in the ensemble is independent operation from the
others and a similar level of prediction error [42,46]. The choice of predictors (forecasting
methods) is based on the smallest RMSE error on the validation subset, and only predictors
of different types are selected for the ensemble.

Hybrid method—connection of three MLP models. As an element of the prognostic
problem decomposition, separate forecasts of selected exogenous variables for the forecast
of the power-generation period can be made. This procedure creates new input explanatory
exogenous variables (forecasts) that may be valuable for power generation in PV system
forecasting methods. In the first step, MLP no. 1 forecasts power generation in period t.
On the other hand, MLP no. 2 forecasts solar irradiance in period t. In the second step,
neural network MLP no. 3 forecasts the final value of power generation in period t based
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on forecasts from the neural network of MLP no. 1 and no. 2 and other endogenous and
exogenous variables (4 or 13 depending on the variant). For each of the three MLP neural
networks, their appropriate hyperparameters are selected (the number of neurons in the
hidden layer and activation functions in the hidden layer as well as in the output layer).
Figure 9 shows a general diagram of the developed, proprietary hybrid method.
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Table 4 shows tested input datasets for each method and the codes of the methods.
One reason for organizing data into such sets was to verify the influence of the type and
number of variables on the forecast accuracy.

Table 4. Tested input datasets for each method and the codes of the methods.

The Name of Method The Method Code Complexity of Method/Type Tested Sets of Input Data

Persistence model NAIVE Single/linear Set 0
Multiple linear regression

model LR Single/linear SET I, SET II A, SET II B, SET
III, SET V

K-Nearest Neighbors
Regression KNNR Single/non-linear SET I, SET II A, SET II B, SET

III, SET V
MLP-type artificial neural

network MLP Single/non-linear SET I, SET II A, SET II B, SET
III, SET V

Support Vector Regression SVR Single/non-linear SET I, SET II A, SET II B, SET
III, SET V

Interval Type-2 Fuzzy Logic
System IT2FLS Single/non-linear SET I, SET II A, SET II B

Random forest regression RF Ensemble/non-linear SET I, SET II A, SET II B, SET
III, SET V

Gradient-Boosted Trees for
regression GBT Ensemble/non-linear SET I, SET II A, SET II B, SET

III, SET V
Weighted Averaging

Ensemble WAE (p1 *, . . . , pm) Ensemble/non-linear SET I, SET IIB, SET III

Hybrid method—connection
of three MLP models MLP&MLP→MLP Hybrid/non-linear SET II C, SET IV

Remark: * denotes first predictor in ensemble of m predictors.
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5. Evaluation Criteria

In order to have a broader view of the quality of individual forecasting models, four
evaluation criteria were used, including RMSE, nMAPE, nAPEmax, and MBE. The RMSE
error was adopted as the most important measure due to the greater sensitivity to large
partial errors. In all three tables (presented later) with performance measures of proposed
methods, the results are sorted by this error measure. On the other hand, the second
measure in the order of importance is the nMAPE error. The nAPEmax and MBE measures,
in turn, are only auxiliary.

The Root Mean Square Error is calculated by Equation (4). The RMSE measure is
typically used for power-generation forecasts from RES, including PV systems.

RMSE =

√
1
n ∑n

i=1 (yi − ŷi)
2 (4)

where ŷi is the predicted value, yi is the actual value, and n is the number of prediction
points.

The Normalized Mean Absolute Percentage Error is determined by Equation (5). Due
to the zero values occurring in the power-generation time series, it is impossible to use the
popular and recommended measure of the MAPE error. Therefore, the nMAPE measure
was used, in which the real power-generation value presented in the denominator of
the MAPE formula was replaced with the value representing the normalizing factor (the
installed power of PV system).

nMAPE =
1
n

n

∑
i=1

1
cnorm

|yi − ŷi|·100% (5)

where cnorm is the normalizing factor (installed power).
The Normalized Maximum Absolute Percentage Error is calculated by Equation (6).

The nAPEmax error is the largest partial error of all individual n nAPE errors.

nAPEmax = max
i=1,...,n

1
cnorm

|yi − ŷi|·100% (6)

The Mean Bias Error (MBE) captures the average bias in the prediction and is defined
by Equation (7). The forecasting method underestimates values if the nMBE < 0 or overesti-
mates values if the nMBE > 0. The MBE error of a properly functioning prognostic method
should be equal to or very close to zero.

MBE =
1
n ∑n

i=1(yi − ŷi) (7)

6. Results and Discussion

This section presents a wide comparative analysis of very-short-term forecasting
methods for power generation in PV systems.

Table 5 shows performance measures of the proposed methods (on test subset) using
three sets of input data—SET I (three inputs). This is the most basic set of input data using
only the last three retracted values of the forecast time series of power generation. The study
was completed to verify the quality of the forecasts; in this case, it was worse compared
to forecasting methods that also use exogenous input variables with a similar amount
of input data. Furthermore, the Table 5 shows forecast errors for the simplest reference
method—persistence methods (NAIVE), using only one set of input data. Tabular results
are ordered by ascending RMSE error values. Table A1 in Appendix A shows the results of
hyperparameter tuning for the proposed methods using only three sets of input data.
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Table 5. Performance measures of proposed methods (on test subset) using three input data.

Method Code Input Data Set RMSE
(W)

nMAPE
(%)

nAPEmax
(%)

MBE
(W)

MLP SET I (3 inputs) 122.558 1.474 32.781 −4.539
WAE [MLP,RF] SET I (3 inputs) 129.491 1.527 30.847 −2.623

RF SET I (3 inputs) 133.931 1.674 28.439 −6.832
IT2FLS SET I (3 inputs) 135.965 1.773 29.808 −6.536
KNNR SET I (3 inputs) 137.828 1.533 33.802 −5.291

LR SET I (3 inputs) 140.989 1.617 34.214 9.711
SVR SET I (3 inputs) 142.441 1.481 34.426 −3.364
GBT SET I (3 inputs) 154.257 1.948 29.019 6.427

NAIVE * SET 0 (1 input) 165.783 1.975 40.199 −9.030
Remarks: The best fitting result for each fitting measure is printed in bold in blue. The worst fitting result is
printed in red. * Reference model.

Based on the results from Table 5, the following preliminary conclusions can be drawn
regarding the proposed methods using only three sets of input data:

• The smallest RMSE and nMAPE errors were obtained by the MLP method among
the seven tested methods (including two group methods), and this method can be
considered the preferred one. The RF and IT2FLS methods obtained a slightly higher
RMSE error;

• The difference in the quality of forecasts between the best MLP method and the worst
NAIVE is quite large;

• The SVR method obtained an RMSE error significantly higher than the best MLP
method (according to the RMSE measure), while the nMAPE error was almost identical
to the MLP method.

Table 6 shows performance measures of the proposed methods (on test subsets) using
four sets of input data (SET II A (four inputs), SET II B (four inputs), and SET II C (three,
three, and four inputs)). In this case, the amount of input data is limited to only the most
relevant input data, both endogenous and exogenous. The study was completed to verify
the quality of the forecasts; in this case, it was worse compared to the prognostic methods
using all available statistically significant endogenous and exogenous input variables.
Another goal of this research was to verify which of the two sets of input data (SET
IIA, SET IIB) obtains smaller forecasting errors using different forecasting methods. In
addition, the quality of the proprietary hybrid model was verified in relation to other
forecasting methods. Furthermore, the table shows forecast errors for the simplest reference
method—the persistence method (NAIVE), using only one set of input data. Tabular results
are ordered by ascending RMSE error values.

Based on the results from Table 6, the following preliminary conclusions can be drawn
regarding the proposed methods using only four different sets of input data (including
exogenous variables):

• The use of exogenous variables for forecasts made it possible to reduce the RMSE error
of all the methods used;

• The use of smoothed power generation in period t−1 (in SET 2B) as an input variable
instead of power generation in period t−1 (in SET 2A) turned out to be beneficial—all
tested methods obtained a lower RMSE error;

• The smallest RMSE error and nMAPE error were obtained by the original, proprietary
hybrid method (MLP&MLP->MLP). On the other hand, the MLP method obtained
RMSE and nMAPE errors that were slightly higher;

• The largest RSME error, significantly greater than other methods, was obtained by the
reference method—the NAIVE method, while the GBT method was the method with
the second-greatest RSME error;
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• The SVR method using four sets of input data (including exogenous variables) signif-
icantly reduced the RMSE error compared to the forecasts using three sets of input
data (only the last two withdrawn values of the forecast process)—see Table 5.

Table 6. Performance measures of proposed methods (on test subset) using four input data.

Method Code Input Data Set RMSE
(W)

nMAPE
(%)

nAPEmax
(%)

MBE
(W)

MLP&MLP→MLP SET II C (3, 3, 4 inputs) 98.113 1.336 19.110 −0.192
MLP SET 2B (4 inputs) 99.761 1.393 18.100 −6.335

WAE[SVR,MLP] SET 2B (4 inputs) 101.825 1.423 17.743 −0.098
SVR SET 2B (4 inputs) 104.942 1.506 16.329 −0.638

WAE[IT2FLS,MLP] SET 2B (4 inputs) 105.274 1.535 18.784 −0.116
IT2FLS SET 2B (4 inputs) 110.461 1.540 19.223 4.956
KNNR SET 2B (4 inputs) 116.924 1.837 19.328 6.615
MLP SET 2A (4 inputs) 116.949 1.715 26.040 −2.637
RF SET 2B (4 inputs) 117.383 1.632 23.882 −0.142

KNNR SET 2A (4 inputs) 118.985 1.506 27.016 4.145
IT2FLS SET 2A (4 inputs) 121.590 1.661 27.173 7.511

LR SET 2B (4 inputs) 123.803 1.961 19.513 −8.993
SVR SET 2A (4 inputs) 124.312 1.695 30.977 6.775
GBT SET 2B (4 inputs) 124.747 1.914 17.422 −9.287
RF SET 2A (4 inputs) 129.469 1.676 28.658 11.728
LR SET 2A (4 inputs) 132.943 2.076 27.148 −2.051

GBT SET 2A (4 inputs) 134.457 1.914 28.318 −4.637
NAIVE * SET 0 (1 input) 165.783 1.975 40.199 −9.030

Remarks: The best fitting result for each fitting measure is printed in bold in blue. The worst fitting result is
printed in red. * Reference model.

Table 7 shows, in turn, performance measures of the proposed methods (on test
subsets) using 11, 13, and 15 sets of input data. This study aimed to verify whether the use
of as many available and statistically significant endogenous and exogenous input variables
would improve the quality of forecasts compared to a limited number of input data (three
or four sets). In addition, the quality of the proposed proprietary hybrid model and the
original “Weighted Averaging Ensemble” models compared to other forecast methods
was verified. Furthermore, the Table 7 shows forecast errors for the simplest reference
method—the persistence method (NAIVE), using only one set of input data. Tabular results
are ordered by ascending RMSE error values.

Table 7. Performance measures of proposed methods (on test subset) using 1, 11, 13, and 15 sets of
input data.

Method Code Input Data Set RMSE
(W)

nMAPE
(%)

nAPEmax
(%)

MBE
(W)

MLP&MLP→MLP SET IV (3,3,13 inputs) 61.633 0.805 13.918 1.196
MLP SET V (15 inputs) 63.092 0.848 12.375 −3.498
MLP SET III (11 inputs) 64.794 0.809 16.173 3.664

WAE (SVR,MLP) SET V (15 inputs) 65.391 0.832 12.397 −0.053
SVR SET V (15 inputs) 71.618 0.824 12.629 −6.088

WAE (LR,MLP) SET III (11 inputs) 71.884 0.826 15.038 −0.048
SVR SET III (11 inputs) 90.379 1.416 16.065 3.570
LR SET V (15 inputs) 90.491 1.015 14.982 −0.049
LR SET III (11 inputs) 91.674 1.030 21.215 −3.760

KNNR SET V (15 inputs) 104.505 1.360 18.228 −4.819
RF SET V (15 inputs) 111.269 1.577 22.362 −2.483
RF SET III (11 inputs) 116.497 1.619 23.848 3.406

KNNR SET III (11 inputs) 118.490 1.565 23.348 7.507
GBT SET V (15 inputs) 118.547 1.523 20.386 −0.179
GBT SET III (11 inputs) 122.569 1.587 25.624 −2.750

NAIVE * SET 0 (1 input) 165.783 1.975 40.199 −9.030
Remarks: The best fitting result for each fitting measure is printed in bold in blue. The worst fitting result is
printed in red. * Reference model.
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Based on the results from Table 7, the following preliminary conclusions can be drawn
regarding the proposed methods using different numbers of sets of input data ranging
from 11 to 15 (including exogenous variables):

• The use of a larger number of input data, from 11 to 15 for forecasts (including
exogenous variables), allowed for a significant reduction in the RMSE error of all
methods used compared to the use of only four sets of input data;

• The smallest RMSE error and nMAPE error were obtained by the original, proprietary
hybrid method (MLP&MLP->MLP), and it is the recommended method. On the other
hand, the MLP method obtained RMSE and nMAPE errors that were slightly higher;

• The largest RSME error, significantly greater than other methods, was obtained by the
reference method—the NAIVE method, while the GBT method was the method with
the second-greatest RSME error;

• The SVR method using 15 sets of input data (including exogenous variables) was one
of the best methods, but the use of 11 sets of input data proved to be less favorable;

• Team methods with different types of predictors in the team (WAE (SVR,MLP) and
WAE (LR,MLP)) were also among the best methods—the RMSE error of these methods
was slightly greater than the second MLP method in the list;

• For all tested methods, it was more advantageous to use 15 sets of input data than
11 sets of input data.

Figure 10 shows the RMSE error, for each of the eight tested datasets, obtained by the
best prognostic method for the test range. The MLP neural network method (yellow) is
definitely the most common method for various input datasets. On the other hand, the
smallest RMSE error (green) was obtained by the proprietary developed hybrid model
(MLP&MLP->MLP). The highest RMSE error (gray) was achieved by the persistence (naïve)
model as the simplest one, using only one set of input data. It should be noted that the
quality of forecasts increases significantly with the increasing number of input data used.
Thus, it can be concluded that by providing the predictive model at the input with more
information related to the predicted process, in particular, with more than just one retracted
value of a given explanatory variable (both exogenous and endogenous), smaller forecast
errors can be expected.
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Figure 11 shows a scatter plot between the actual power-generation values and the
values obtained from the forecast using the best method—a proprietary hybrid model
(MLP&MLP->MLP) for the test range. From the graph, it can be observed that the accuracy
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of forecasts was the highest for small power-generation values below 750 W (where the
installed power of a PV system is equal to 3200 W).
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7. Conclusions

The analysis of the available input variables with the use of four different methods of
selecting input variables for forecasting models allowed us to identify the most important
input variables. The most important input data include smoothed power generation in
period t−1, power generation in period t−1, and solar irradiance in period t−1. The
significantly least-important input data are wind direction in period t−1 and wind speed
in period t−1.

The influence of the type and number of input variables on the quality of forecasts was
investigated. The use of only three withdrawn values of power generation showed that this
is the least-effective solution. Additionally, the use of other available exogenous variables
(the selected historical values of solar irradiance, PV module temperature, wind direction,
and wind speed) allowed us to reduce the RSME error of forecasts. An additionally
valuable input variable is the smoothed value of power generation (see Equation (1)), a
value calculated on the basis of the reverted values of the forecast process. The smallest
forecast errors (RMSE) were obtained using a set of SET IV and SET V input variables, i.e.,
sets with the largest number of input variables.

The effectiveness of many prognostic methods, both single as well as team and hybrid,
was verified. The smallest RMSE and nMAPE errors were obtained for the original, devel-
oped hybrid method using three MLP neural networks (method code MLP & MLP-MLP)
using a set of SET IV input variables. Compared to the reference method (method code
NAIVE), the hybrid method obtained an RMSE error 62.8% lower. However, compared
to the best single method (the MLP method code) using the SET V input variable set, the
RMSE error of the hybrid method was 2.3% lower. In the case of the number of input
variables limited to four, the proprietary hybrid method also obtained the smallest RMSE
error. Compared to the method code MLP, the RMSE error for the hybrid method was
1.7% lower. Among the single prognostic methods, the MLP neural network was the best
method. Other machine learning techniques (RF, SVR, KNNR, and GBT) obtained slightly
larger RMSE errors. The most advantageous of these four machine learning techniques was
the SVR method with the SET V set of input variables. It is also advantageous to use the
collective method (method code WAE (SVR, MLP)), which obtained an RMSE error slightly
greater than the best method single (MLP).
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In the authors’ opinion, some of the forecasting methods investigated are effective and
promising tools for practical applications, e.g., for very-short-term PV generation power
forecasting. In turn, forecasts of this type are very useful for the needs of low-voltage
microgrid operation control.

Research may be continued and expanded in the future. The proposed research
directions include:

• Increasing the forecast horizon to 1 h (4 forecasts for consecutive 15 min periods);
• Using various techniques for decomposing the prognostic problem and examining

their impact on the quality of forecasts (in the case of obtaining data from a period of
several years);

• Examining the distribution of forecast errors during the day—verifying whether there
is a relationship between the RMSE error rate and the time of day;

• Quality-testing forecasting models using additional solar irradiance, wind speed, and
wind direction forecasts (in the case of obtaining such meteorological forecasts).
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Abbreviations
The following abbreviations are used in this manuscript:

ACF Autocorrelation Function
ANFIS Adaptive Neuro-Fuzzy Inference System
ANN Artificial Neural Network
BFGS Broyden–Fletcher–Goldfarb–Shanno algorithm
C&RT Classification and Regression Trees algorithm
DCs Decision Trees
EIASC Enhanced iterative algorithm with stop condition
GA Genetic algorithm
GBT Gradient-Boosted Trees
GSA Global sensitivity analysis
IASC Iterative algorithm with stop condition
IT2FLS Interval Type-2 Fuzzy Logic System
KM Karnik–Mendel
KNNR K-Nearest Neighbors Regression
LR Linear Regression
MBE Mean Bias Error
MLP Multi-Layer Perceptron
nAPEmax Normalized Maximum Absolute Percentage Error
nMAPE Normalized Mean Absolute Percentage Error
PR Performance ratio
PSO Particle Swarm Optimization
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PV Photovoltaic
R Pearson linear correlation coefficient
RES Renewable Energy Sources
R2 Determination coefficient
RF Random forest
RMSE Root Mean Square Error
SVM Support Vector Machine
SVR Support Vector Regression

Appendix A

Table A1 shows the results of hyperparameter tuning for the proposed methods using
three sets of input data.

Table A1. Results of hyperparameter tuning for proposed methods using three sets of input data.

Method Code Description of Method, Name, and Range of Values of Hyperparameters’ Tuning and
Selected Values

SVR
Regression SVM: Type-1, Type 2, selected: Type-1; kernel type: Gaussian (RBF); width

parameter σ: 0.333; regularization constant C, range: 1–50 (step 1), selected: 2; tolerance ε,
range: 0.01–0.2 (step 0.01), selected: 0.02.

KNNR Number of nearest neighbours k, Distance metrics: Euclidean, Manhattan, Minkowski, selected:
Euclidean; range: 1–50, selected: 13.

MLP
Learning algorithm: BFGS; the number of neurons in hidden layer: 2–10, selected: 3; activation

function in hidden layer: linear, hyperbolic tangent, selected: hyperbolic tangent; activation
function in output layer: linear.

IT2FLS

Interval Type-2: Sugeno FLS, Mamdani FLS, selected: Sugeno FLS; learning and tuning
algorithm: GA, PSO, selected: PSO; initial swarm span: 1500–2500, selected: 2000; minimum

neighborhood size: 0.20–0.30, selected: 0.25; inertia range: from [0.10–1.10] to [0.20–2.20],
selected: [0.50–0.50]; number of iterations in the learning and tuning process: 5–20, selected: 20;

type of the membership functions: triangular, Gauss, selected: Gauss; the number of output
membership functions: 3–81, selected: 81; defuzzification method: Centroid, Weighted average

of all rule outputs, selected: Weighted average of all rule outputs; AND operator type: min,
prod, selected: min; OR operator type: max, probor, selected: probor; implication type: prod,
min, selected: min; aggregation type: sum, max, selected: sum; the k-Fold Cross-Validation
value: 1–4, selected: 4; window size for computing average validation cost: 5–10, selected: 7;

maximum allowable increase in validation cost: 0.0–1.0, selected: 0.1; the type-reduction
methods: KM, IASC, EIASC, selected: KM.

RF

The number of decision trees: 2–50, selected: 5; the number of predictors chosen at random: 1, 2,
selected 2. Stop parameters: maximum number of levels in each decision tree: 5, 10, 20, selected
10; minimum number of data points placed in a node before the node is split: 10, 20, 30, 40, 50,
selected 20; minimum number of data points allowed in a leaf node: 10; maximum number of

nodes: 100.

GBT Considered max depth: 2/4, selected depth: 2; trees number: 50/100/150/200/250, selected
number: 100; learning rate: 0.1/0.01/0.001, selected: 0.1.
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