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Abstract: The paper recommends polar voltage space vectors of the six-phase and two-level inverter
as a useful mathematical tool for vector control of the inverter. The inverter model is described
using three mathematical tools: analytic expressions, voltage state, and space vectors. The analytic
formulas allow for the determination of elementary physical inverter quantities: current and voltage.
The state voltage vectors make it easy to define phase voltage distribution in every possible state
of the inverter and voltage space vectors are the most important tool used for inverters’ control.
The space vectors are defined using the standard voltage space vector transformation, while the state
vectors are denoted by binary numbers and determine all voltage states of the inverter. The proposed
notation system and vectors’ marking seem to be extremely useful in specifying the inverter states.
This system certifies a deep correlation between the space and state vectors as they are described
using the same digits. The properties of the system were confirmed during the simulation tests.
Some examples of the inverter vector control based on polar voltage space vectors prove that the
proposed solution is a useful mathematical tool and may be in fact suitable in designing inverter
control algorithms. The simulation experiment described in this paper shows that the assumed
control strategy allows for a significant reduction in the amount of switching compared to PWM.
At the same time, the adopted vector strategy allows for the obtaining of a very favorable value of
the current THD coefficient while maintaining the RMS values of the currents.

Keywords: six-phase and two-lever inverter; state and space vector; algorithm of inverter control;
polar voltage space vector

1. Introduction

The increasing range of novel requirements and expectations in electric energy conver-
sion has a great influence on the dependence of electric machines and converters, as well
as the performance and level of power. Due to this continuous process and technology of
innovative elements, there has been an expansion of new solutions in power electronics,
drive control systems, and particularly in electric machines. Although conventional three-
phase machines, such as squirrel-cage motors, are still widely used in variable-speed AC
drives, they have numerous drawbacks and limits. Among them, one can distinguish their
relatively poor operation reliability, as the lack of power even in only one-phase makes their
further operation impossible. Moreover, there are high pulsations of the electromagnetic
torque during the frequency control and DC link ripple in AC–AC indirect converters [1].

The need to address these issues has caused researchers to take a deep interest in multi-
phase machines in recent years [2–10]. Not only are they characterized by potentially higher
efficiency, improved fault tolerance ability, reduced torque ripple, and lower per phase
power handling requirements, but they have also improved the system reliability because of
their redundant structure. Another property is their ability to continue the operation under
the faulted phase(s) conditions without any problems. In addition, dividing the system
power into more than three phases results in diminishing the rating of semiconductor
devices of the power electronics converter, which is an important feature. Generally, it is
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evident that a good way to improve and develop electric drives lies in a higher number of
machine phases.

The implementation of these kind of machines in industry has been ensured by
the comparable evolution of multi-pulse and multi-phase power electronics convert-
ers. Their varied topologies, as well as control strategies, are the subjects of many re-
search papers, for example [11–18]. Multi-phase inverters provide higher voltage capa-
bility with voltage-limited devices, lower harmonic distortion, reduced switching losses,
limited DC link ripple, higher reliability, and increased efficiency in comparison with
the standard two-level inverters. The multi-phase inverter input current contains rip-
ples though, which can be reduced by increasing the number of phases, which is no-
ticed significantly when the number of phases is bigger than five but not more than
nine [12]. A wide variety of innovative proposals for converter topologies can be found
in the literature, for instance: hybrid novel multi-level and multi-phase inverters [11],
a six leg buck-boost interleaved converter [13], or the bidirectional non-isolated multi-
input DC–DC converter [14]. An alternative lies in direct conversion of electric energy.
Two-channel conversion seems to be an interesting suggestion [18]. There are also pro-
posals based on cascaded structures of multi-level converters [19,20] and multi-pulse
rectifiers [21] used to supply multi-level inverters.

The numerous merits of multi-phase machines and multi-phase power electronic
converters complement each other and therefore combining them together leads to better
overall performance of any AC drive systems. Efficiency and functionality of the existing
three-phase systems can be improved by replacing them with multi-phase ones. This results
also in saving energy in the system, which is a real advantage regarding the fact that energy
consuming is a matter of great concern in today’s world. Another point is that making
use of multi-phase AC drive systems is crucial in applications where fault tolerance is
critical, as for instance in aerospace systems. Apart from that, they are widely used in
traction systems due to the need for redundancy, which cannot be achieved using three-
phase systems due to space constraints [6]. Other important domains such as electric ship
propulsions and electro-mobility are also the subject of multi-phase variable-speed drive
applications [3,22–26]. Especially, electro-mobility has become another and really important
area of power electronics’ development and currently a number of two as well as multi-level
inverters are used in both AC and DC drives in mobile transport and traction. The great
technology progress in batteries and supercapacitors allows for the belief in the possibility
of overcoming existing limitations. This fact also implies using multi-level inverters in
place of the main energy converters in vehicle drives. What is more, the ongoing trend of
electrifying transportation has been making these systems more and more popular, which
can be observed also in other fields of transport industry. The multi-phase evolution did not
ignore the renewable energy domain. The multi-phase systems of wind energy generation
are distinguished by good characteristics. What is more, there are applications in which
simplified direct matrix converters are utilized to perform electrical energy.

The accumulative phase number means a new impact on research related to the circuits
of the inverter as well as control algorithms. The more phases, the more semiconductor de-
vices used in the inverter’s structure, which makes it more complex. As far as the applicable
vectors are concerned, their quantity increases in power scale in relation to the phase num-
ber. The number of such vectors is equal to 64 for a six-phase two-level converter, which
requires more evolved control methods in comparison to the common algorithms utilized
in three-phase converters. This issue constitutes a reason for seeking appropriate mathe-
matical tools and considering new models of the converter. Those should be profitable for
the purpose of facilitating the development of control algorithms whose implementation is
easy and ensures a fast performance of an inverter as well as its high operation efficiency.
In the literature of the subject, there is a great differentiation of suggestions regarding
converter models, their description, and control methods [26–36]. A lot of works concern
different PWM-based modulation techniques used in multi-phase VSI [31,32] and even
more contributions destined for the vector control method [28–30,33–36].
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The paper concerns the effectiveness of polar voltage space vectors used to control
six-phase two-level inverters. Simulation research results prove the utility of such a math-
ematical tool. The paper also includes analytic expressions that allow for describing the
inverter model and calculating phase and phase-to-phase voltage and current waveforms.
The mathematical apparatus delivers a universal and simplified vectors’ notation system
and makes it easy to identify and define the converter states. The paper presents the
development and significant extension of the vector control method based on the state and
space vector relationship [36]. The acquired results allow for the conclusion that the main
idea of the proposed system can be expanded and adopted to n-phase and n-level inverters
in an easy way.

2. State and Space Vectors of a Six-Phase Two-Level Voltage Source Inverter
2.1. Model of Six-Phase Two-Level Inverter

Figure 1 depicts a simplified diagram of the six-phase two-level converter. The pro-
posed model consists of six two-state switches denoted as Ka, Kb, Kc, Kd, Ke, Kf that
are connected to the UD voltage source and associated with the corresponding phases.
The voltage source’s positive pole is denoted as 1, whereas the negative is 0. Each switch
has the ability to connect one source’s pole to the output of a particular phase, and hence
the switching states are denoted by the 0 or 1 digit. The state of an inverter can be therefore
expressed by the set of six digits including the switches’ states, which are denoted as a, b,
c, d, e, f = 0, 1. That set can be represented by 64 variations, for instance 000000, 000001,
. . . 111111. A common method that is very useful is the assumption that such sets of
digits form binary numbers, and hence a particular inverter’s state is determined by one
binary number consisting of six digits. The most important issue is the precise consistency
between the digits’ order and phases’ order. There is a possibility to express all 64 states
of the inverter by decimals 0, 110, . . . 6410 with the usage of the conversion of the binary
numbers to the decimal (base-10) system. In this way, the 1610 (010000)2 state signifies that
phases a, c, d, e are connected to the voltage source’s negative pole, whilst phase b to the
positive. Such a method, with the exclusion of decimal numbers, can be utilized in the
other notation systems.
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The base-2 and base-10 number systems have been applied to describe two-level
inverter states from the very beginning of the power electronics development. However, the
principle of a precisely controlled “number–phase” relationship was not always maintained.
The above discussion is cited here because the description concept presented can be applied
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to other converters. A way to describe multi-phase (n-phase) or even multi-level (n-level)
converters may arise with further development of this concept.

In order to provide the reader with a cohesive and precise description of obtained ex-
perimental results, this section is divided into subsections. They include the interpretation
of achieved results, as well as the drawn conclusions.

2.2. State Vectors of the Six-Phase Two-Level Inverter

According to the model in Figure 1, the six-phase two-level voltage source inverter
(VSI) has 64 diverse switching states, denoted by decimal index k = 0, 1, . . . , 63, respectively.
Particular k-states determine the six phase-to-phase voltages that appear at the output
of the inverter. The six-phase VSI state vector is defined as a matrix row composed of
six elements:

Vk =
[
Uabk Ubck Ucdk Udek Ue f k U f ak

]
k = 0, 1, 2, . . . , 63 (1)

Assuming Uabk + Ubck + Ucdk + Udek + Ue f k + U f ak = 0, the state vector Vk s deter-
mined by a set of five Uxy phase-to-phase voltages under the condition that x and y denote
the neighboring phases: x 6= y and x, y = a, b, c, d, e, f.

The phase-to-phase voltage is formed by a difference between the particular phase
outputs’ potentials. The switch Ka,b,c,d,e,f attaches the related phase output to one pole of
the voltage source Ud. The state of the Ka,b,c,d,e,f is determined by the selected vector Vk.

The decimal vector index k can be reconverted to the binary number system and
written as a binary number:

k = (ak, bk, ck, dk, ek, fk)2 (2)

where ak, bk, ck, dk, ek, fk = 0, 1 and k = 0, 1, 2, . . . , 63.
The phase output potentials related to the negative pole of the voltage source Ud are

defined using the relevant binary symbol. Thus, the phase output polar voltages are

ua0k = akUD
ub0k

= bkUD
uc0k = ckUD
ud0k

= dkUD
ue0k = ekUD
u f 0k

= fkUD

 (3)

It allows for the definition of a six-phase two-level VSI state vector using the binary
symbols of the decimal index k. The transpose of the matrixVk llows for the presentation in
one column of all six phase-to-phase voltages:

Vk =



uabk
ubck
ucdk
udek
ue fk
u f ak

 =



ua0k − ub0k
ub0k

− uc0k
uc0k − ud0k
ud0k

− ue0k
ue0k − u f 0k
u f 0k

− ua0k

 = UD



(ak − bk)2
(bk − ck)2
(ck − dk)2
(dk − ek)2
(ek − fk)2
( fk − ak)2

 (4)

The symbols ak, bk, ck, dk, ek, fk may be equal only to 0 or 1, so any phase-to-phase
voltage may assume one of these voltages: 0, +Ud, −Ud.

The inverter state vector Vk operates on physical quantities. Therefore, in order to
calculate the load currents, there is no need to use a mathematical transform. A diagram of
the six-phase two-level inverter with a load connected in a hexagon is shown in Figure 2.
It assumes the symmetry of the load as well as the equality between each phase-to-phase
load and two-terminal networks: <resistor R—inductance L—counter RMF>—connected
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in series. The inverter state is determined by the vector Vk, which means that the six corre-
sponding phase-to-phase voltages are connected to the load. Figure 3 depicts the operation
point in which phases a, c, d, f are connected to the pole 1 (+UD), whereas remaining phases
are connected to the pole 0 (−UD). Therefore, the state vector is determined as V45(101101).
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The adequate phase-to-phase voltages are given in (4). For any vector Vk switched
on at a time equal to t = tn, the inverter model can be transformed to an equivalent circuit
described by the set of six equations. Each equation can be expressed by

uxyk = Rxy · ixy(t) + Lxy
dixy(t)

dt
+ Exy(t), (5)
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where x and y denote the adjacent phases: x 6= y and x, y = a, b, c, d, e, f. The voltage uxyk is
defined based on (4) as

uxyk =
[
ux0k − uy0k

]
= UD[xk − yk] (6)

Assuming that the EMFxy counter is constant in a time interval t<tn, tn+1> and equal
to Exy respectively, it is possible to solve the equations and write expressions describing
load currents (7). The symbol τ denotes the time constant of one load leg and I0xy—the
current value in the time instant tn. The expressions (7) are valid in the definite time interval
between the successive switching of the inverter states Vk(n) and Vk(n+1). The time interval
is assumed to be exceptionally short in comparison with the time constant of the load
circuit and the expected period of the counter electromotive force (EMF).

ixyk =
[
uxyk − Exy

]1− e−
t
τ

R
+ I0xye−

t
τ k = 0, 1, 2, . . . , 63 (7)

where the time constant of the two-terminal network is τ =
Lxy
Rxy

.
The expressions (6) and (7) define the dependence between phase-to-phase voltage

and load current using the appropriate symbols of the vector index k binary expansion.

2.3. Star Connected Load of the Six-Phase Two-Level Inverter

The six-phase two-level inverter model with a star connected load is presented in
Figure 3.

For any selected vector Vk in the time instant t = tn, the load-inverter model can be
reduced to the equivalent five-closed-loop circuits shown in Figure 4.
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Considering the time point t = tn when the state vector Vk is switched on, as well as
assuming it is acting in a very short time interval t<tn, tn+1>, the following assumptions
can be made:

uxyk = Uxyk, ex = Ex (8)

where x and y denote the adjacent phases: x 6= y, x, y = ak, bk, ck, dk, ek, fk.
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The phase-to-phase voltages are constant, and the phase counter EMFs are as well.
In the considered system, the following dependences are obligatory:

ea + eb + ec + ed + ee + e f = 0
ia + ib + ic + id + ie + i f = 0

I0a + I0b + I0c + I0d + I0e + I0 f = 0
(9)

Assuming the phase load is fully symmetrical, the circuit’s mathematical model is
described by the system of five equations:

Uabk(t) = R·i1(t) + L di1(t)
dt + Ea − Eb + L d[i1(t)−i2(t)]

dt + R[i1(t)− i2(t)]

Ubck(t) = R[i2(t)− i1(t)] + L d[i2(t)−i1(t)]
dt + Eb − Ec + L d[i2(t)−i3(t)]

dt + R[i2(t)− i3(t)]

Ucdk(t) = R[i3(t)− i2(t)] + L d[i3(t)−i2(t)]
dt + Ec − Ed + L d[i3(t)−i4(t)]

dt + R[i3(t)− i4(t)]

Udek(t) = R[i4(t)− i3(t)] + L d[i4(t)−i3(t)]
dt + Ed − Ee + L d[i4(t)−i5(t)]

dt + R[i4(t)− i5(t)]

Ue f k(t) = R[i5(t)− i4(t)] + L d[i5(t)−i4(t)]
dt + Ee − E f + L di5(t)

dt + R·i5(t)


(10)

The phase and loop currents relations are the following:

iak(t) = i1(t), ibk(t) = i2(t)− i1(t), ick(t) = i3(t)− i2(t) (11)

idk(t) = i4(t)− i3(t), iek(t) = i5(t)− i4(t), i f k(t) = −i5(t) (12)

The relations between phase and phase-to-phase voltages remain, as follows (13):

Ua =
5
6 Uab +

2
3 Ubc +

1
2 Ucd +

1
3 Ude +

1
6 Ue f

Ub = − 1
6 Uab +

2
3 Ubc +

1
2 Ucd +

1
3 Ude +

1
6 Ue f

Uc = − 1
6 Uab − 1

3 Ubc +
1
2 Ucd +

1
3 Ude +

1
6 Ue f

Ud = − 1
6 Uab − 1

3 Ubc − 1
2 Ucd +

1
3 Ude +

1
6 Ue f

Ue = − 1
6 Uab − 1

3 Ubc − 1
2 Ucd − 2

3 Ude +
1
6 Ue f

U f = − 1
6 Uab − 1

3 Ubc − 1
2 Ucd − 2

3 Ude − 5
6 Ue f

(13)

Two examples of this relation are presented below in Figure 5. They demonstrate the
phase voltage vectors Ua, Uf as a sum of all phase-to-phase voltage vectors.

The phase voltages Uxk depend on selected vectors Vk. Knowledge of these voltages
is indispensable if the system of equations is to be solved. In order to receive the final
solution of the system (10), the Laplace transform has been used as the most convenient
mathematical tool. Using this instrument, it was possible to solve the system and find the
analytical expressions describing the phase voltage and current. The Laplace transform of
successive phase currents is given as

Ixk(s) =
Uxk − Ex

L
(

s + 1
τ

) +
I0x

s + 1
τ

(14)

while the inverse Laplace transform leads to the analytical expressions of phase currents.
They are expressed by

ixk(t) =
Uxk − Ex

R

(
1− e−

t
τ

)
+ I0xe−

t
τ (15)

where the index x denotes the successive phases x = a, b, c, d, e, f, and Ex = Emax sin(ωtn + ϕx)
Emax and ϕx are EMF parameters at the time instant t = tn.
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The phase voltage Uxk depends on the selected vector and does not depend on the
counter EMF.

In the considered wye load circuit, the phase voltage can be evaluated by the binary
symbols of the decimal vector index k—ak, bk, ck, dk, ek, fk as in the way presented in [35].
The phase voltages uak, ubk, uck, udk, uek, u f k of the two-level six-phase VSI are:

uak

ubk
uck

udk
uek

u fk

 =
UD
6



5ak − bk − ck − dk − ek − fk
5bk − ak − ck − dk − ek − fk
5ck − ak − bk − dk − ek − fk
5dk − ak − bk − ck − ek − fk
5ek − ak − bk − ck − dk − fk
5 fk − ak − bk − ck − dk − ek

 (16)
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The considered six-phase VSI has 64 state vectors determining all possible voltage
states of the inverter. Each vector represents its own phase connection to the supply voltage
UD. A few examples of potential circuits are presented in Figure 5.

Figure 6 presents selected load configurations. The arrangement presented in 6a
conforms to the vector V56(111000), which means that three phases (a, b, c) are connected to
the pole 1 of the voltage source (+UD), while the remaining phases are connected to the
pole 0. Assuming all phase impedances Z equal the supply voltage, UD is divided into
two values, 0.5UD and −0.5UD, referenced to the neutral point N. This result determines
the phase voltages ua56, ub56, uc56 equal to +0.5UD and ud56, ue56, uf56 equal to −0.5UD,
respectively. The other few proposed load configurations are presented in Figure 6b–d.
They present three diversified states: V44(101100), V21(010101), V8(001000), respectively. For the
two first vectors, the UD division is the same as in case 6a, but different phases have
positive or negative phase voltages, while the case 6d presents the situation when only
one phase c is connected to the pole 1 (+UD). Thus, the result in the phase c voltage
equals +0.8UD while the remaining phases, connected to the pole 0, are supplied by voltage
−0.2UD. Among 64 vectors, there are six thinkable combinations of load configuration
when only one phase is connected to the pole 1 (+UD) and the next six when the one phase

is connected to the pole 0 (−UD) because mathematically
(

6
1

)
=

(
6
5

)
= 6. All the

remaining combinations
(

6
2

)
=

(
6
4

)
= 15,

(
6
3

)
= 20,

(
6
6

)
=

(
6
0

)
= 1 are

implicated in the consequent 52 states. The last two states demonstrate the situation when
all phase-to-phase voltages uxy(0 or 63) are equal to zero, so they do not influence the phase
currents. They are usually called “zero vectors”.

2.4. Polar Voltage Space Vectors of the Six-Phase Two-Level Voltage Source Inverter

The polar voltage space vector of the two-level six-phase VSI is determined analogi-
cally to the way presented in the previous sections. The definition was established as

−
Vk =

5
6

(
ua0k + qub0k + q2uc0k + q3ud0k + q4ue0k + q5u f 0k

)
(17)

where q = ej2π/6 = cos 60◦ + jsin60◦ = 1
2 + j

√
3

2 .

−
Vk =

5
6

UD

(
ak + bkej π

3 + ckej 2π
3 + dkejπ + ekej 4π

3 + ekej 5π
3

)
(18)

Equation (18) expresses the space vector which is defined in symbols of the index
k binary expansion. The index k is a decimal number discriminating the state vector
k = (akbkckdkek fk)2, where {ak, bk, ck, dk, ek, fk} = {0, 1}.

Applying Euler’s formula and introducing interdependences among the angles, as
well as symbols ak, bk, ck, dk, ek, fk, the space vector is given as follows:

−
Vk =

5
6

UD

[
ak − dk +

1
2 (bk − ck − ek + fk)

+j
√

3
2 (bk + ck − ek − fk)

]
(19)

After the transformation, the space vector is a complex number which may be rep-
resented by the modulus Mk and the argument ϕk. However, in the case of the six-phase
inverter, the situation is more demanding in comparison with three-phase inverters due
to a greater number of variables. The expression allowing calculation of the space vector
modulus is the following:

Mk = K
√

γ0 + γ1 + γ2 + γ3 + γ4 + γ5 (20)
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where K is a constant of proportionality and a coefficient which depends on UD. The coeffi-
cients γ0, γ1, γ2, γ3, γ4, γ5 are as follows:

γ0 = a2
k + b2

k + c2
k + d2

k + e2
k + f 2

k

γ1 = ak(bk − ck − 2dk − ek + fk)

γ2 = bk(ck − dk − 2ek − fk)

γ3 = ck(dk − ek − 2 fk)

γ4 = dk(ek − fk)

γ5 = ek fk

(21)
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If the constant K equals 5
6 UD, then, according to (20), the modulus Mk may reach four

diverse values: 0, 5
6 UD, 5

3 UD, 5
6

√
3UD. The value of the constant K may differ depending

on the assumed canon.
The vectorial angle ϕk is determined using trigonometrical functions. In some cases,

it might be necessary to use both functions, arctg and arcsin, due to diverse periodicity of
sine and tangent. Then, the angle of the vector is determined if φk(arcsin) = φk(arctg).
Formula (22) allows for the calculation of the φk value:

φk = arcsin
√

3(bk + ck − ek − fk)

2Mk
, φk = arctg

√
3(bk + ck − ek − fk)

2(ak − dk) + bk − ck − ek + fk
(22)

The denominator of the expressions (22) cannot equal zero. Thus, the results of φk
are indeterminate for ak = bk = ck = dk = ek = 0 or ak = bk = ck = dk = ek = 1.
The corresponding two vectors V0(000000) and V63(111111) are habitually named zero vectors
because they do not have any impact on the phase currents. The parameters moduli Mk
and shift angles ϕk of all 62 active vectors are collected in Table 1. The constant K of the
vectors used in the consideration was assumed K = 5

6 UD.

Table 1. The vectors’ parameters of the two-level six-phase inverter.

Vk a b c d e f Mk ϕk Vk a b c d e f Mk ϕk

V0 0 0 0 0 0 0 0 * V32 1 0 0 0 0 0 1 0

V1 0 0 0 0 0 1 1 300 V33 1 0 0 0 0 1
√

3 330

V2 0 0 0 0 1 0 1 240 V34 1 0 0 0 1 0 1 300

V3 0 0 0 0 1 1
√

3 270 V35 1 0 0 0 1 1 2 300

V4 0 0 0 1 0 0 1 180 V36 1 0 0 1 0 0 0 *

V5 0 0 0 1 0 1 1 240 V37 1 0 0 1 0 1 1 300

V6 0 0 0 1 1 0
√

3 210 V38 1 0 0 1 1 0 1 240

V7 0 0 0 1 1 1 2 240 V39 1 0 0 1 1 1
√

3 270

V8 0 0 1 0 0 0 1 120 V40 1 0 1 0 0 0 1 60

V9 0 0 1 0 0 1 0 * V41 1 0 1 0 0 1 1 0

V10 0 0 1 0 1 0 1 180 V42 1 0 1 0 1 0 0 *

V11 0 0 1 0 1 1 1 240 V43 1 0 1 0 1 1 1 300

V12 0 0 1 1 0 0
√

3 150 V44 1 0 1 1 0 0 1 120

V13 0 0 1 1 0 1 1 180 V45 1 0 1 1 0 1 0 *

V14 0 0 1 1 1 0 2 180 V46 1 0 1 1 1 0 1 180

V15 0 0 1 1 1 1
√

3 210 V47 1 0 1 1 1 1 1 240

V16 0 1 0 0 0 0 1 60 V48 1 1 0 0 0 0
√

3 30

V17 0 1 0 0 0 1 1 0 V49 1 1 0 0 0 1 2 0

V18 0 1 0 0 1 0 0 * V50 1 1 0 0 1 0 1 0

V19 0 1 0 0 1 1 1 300 V51 1 1 0 0 1 1
√

3 330

V20 0 1 0 1 0 0 1 120 V52 1 1 0 1 0 0 1 60

V21 0 1 0 1 0 1 0 * V53 1 1 0 1 0 1 1 0

V22 0 1 0 1 1 0 1 180 V54 1 1 0 1 1 0 0 *

V23 0 1 0 1 1 1 1 240 V55 1 1 0 1 1 1 1 300
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Table 1. Cont.

Vk a b c d e f Mk ϕk Vk a b c d e f Mk ϕk

V24 0 1 1 0 0 0
√

3 90 V56 1 1 1 0 0 0 2 60

V25 0 1 1 0 0 1 1 60 V57 1 1 1 0 0 1
√

3 30

V26 0 1 1 0 1 0 1 120 V58 1 1 1 0 1 0 1 60

V27 0 1 1 0 1 1 0 * V59 1 1 1 0 1 1 1 0

V28 0 1 1 1 0 0 2 120 V60 1 1 1 1 0 0
√

3 90

V29 0 1 1 1 0 1 1 120 V61 1 1 1 1 0 1 1 60

V30 0 1 1 1 1 0
√

3 150 V62 1 1 1 1 1 0 1 120

V31 0 1 1 1 1 1 1 180 V63 1 1 1 1 1 1 0 *

* The sign denotes the vector angle is indeterminate.

Figures 7 and 8 present the polar voltage space vectors of the six-phase inverter.
They are presented on the complex plane (α − jβ) where α denotes the real axis and β—the
imaginary one. The diagram presents their position. Each marked point denotes at least
one sense of a vector. The smallest points denote one vector, while the bigger ones—two,
six, and ten. The next further down diagram indicates the binary expansions of all the
numbers defining the relevant vectors. According to the assumption K = 5

6 UD, the vector
moduli reach only four values: 0, 1,

√
3, 2.
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Apart from two zero vectors in the middle of 62 vectors, there are four groups of
active vectors: six vectors with moduli 2, twelve with moduli

√
3, thirty-six with 1, and

also eight active vectors which formally have zero-dimensional moduli and indeterminate
angles. Among these eight vectors, two of them, V21 as well as V42, can be considered as
representing two three-phase voltage systems (Table 2). The first one could be determined
by three voltages: Vb, Vd, Vf and the other, by voltages: Va, Vc, Ve.

Table 2. The two vectors representing the three-phase voltage system.

Vk a b c d e f

V21 0 1 0 1 0 1

V42 1 0 1 0 1 0

Another possibility to reach two three-phase voltage systems is accessible using the
next six active vectors which formally have zero-dimensional moduli, that is: V9, V18, V27,
V36, V45, V54. These ones present the symmetry ak, bk, ck = dk, ek, fk in the binary expansion
of the vector number. The vectors are collected below in different sequences. The sequences
ak, bk, ck and dk, ek, fk are suitable to control the three-phase system. Thus, following
the order indicated in Table 2, it is possible to control two twin three-phase AC drives.
Formally, the vectors’ angle ϕk is indeterminate, but in Table 3 the angle ϕk was assumed in
theory for application in standard α-β transform and used routinely in three-phase systems
to control AC drives.

The control process of twin AC drives consists of switching of the successive vectors
starting from vector V36. The sequence of vectors is evident according to the angle ϕk.
The pairs of vectors V36 − V54, V54 − V18, V18 − V27, V27 − V9, V9 − V45, V45 − V36 relate
to the consecutive sectors of the stationary coordinate system on the complex plane α-jβ.
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Table 3. The active vectors guaranteeing the symmetry ak, bk, ck = dk, ek, fk.

Three-Phase
AC Drive

Three-Phase
AC Drive

Vk a b c d e f ϕk

V36 1 0 0 1 0 0 0

V54 1 1 0 1 1 0 60◦

V18 0 1 0 0 1 0 120◦

V27 0 1 1 0 1 1 180◦

V9 0 0 1 0 0 1 240◦

V45 1 0 1 1 0 1 300◦

3. Simulation Experiment

The described methodology of using polar voltage space vectors intended to control
six-phase VSIs was tested during simulation tests. The tests included two scenarios. In the
first scenario, the computed PWM modulation vectors at RL load were performed, while
in the other scenario, the applied load simulated an induction motor. For illustration
purposes, in the course of the simulation tests, the applied control method consisted of
simple concatenation of the consecutive vectors. Each next vector activated switching in
only one phase of the inverter.

Figure 8 shows the vector map for the first control strategy in a graphical form,
while Figure 9 presents the modified sequence of the calculated vectors, which consisted
of repeating the sequence in each sector. This treatment produced interesting results.
It should also be noted that the graphical representations of the vectors in each sector
shown in Figures 8 and 9 were achieved by mirroring. The vectors’ sequences shown in
Figures 9 and 10 were selected according to the above mentioned rule of one switching in
one phase.
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Figure 9. The polar voltage space vectors of the two-level six-phase VSI and their binary expansions.

Figure 11 shows the diagram of the simulation model, in which the control tests were
carried out. The PWM method and two control strategies presented in Figures 9 and 10
were compared.

Figure 12 shows the waveforms of the control signals corresponding to the individual
control systems. The figures show the signals for phases a and b.

Figure 13 shows the phase-to-phase voltage waveforms: Uba and Ucb.
Figure 14 shows the phase currents ia and ib obtained for different control strategies.
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Table 3 presents a summary of the most important parameters obtained during the sim-
ulation tests. The PWM method was compared with the vector control strategy. The mark 1
denotes a single sequence of vectors and the mark 2—a sequence of vectors repeated in
every sector. The load parameter RL was assumed as R = 2 Ω and L = 40 mH, which means
the time constant was τ = 20 ms. Table 4 presents the RMS and THD current values for
different frequencies in the range 40–60 Hz.

Table 4. The vectors’ parameters of the six-phase VSI inverter.

Load R = 2 Ω, L = 40 mH

Control
Strategy: F 40 45 50 55 60

PWM
RMS 23.9 24.3 24.0 23.5 22.8

THDI 1.4 1.3 1.3 1.4 1.5

1
RMS 23.8 23.0 21.9 20.9 19.8

THDI 9.6 9.7 9.6 9.6 9.5

2
RMS 24.1 23.2 22.2 21.0 19.9

THDI 5.5 5.5 5.4 5.4 5.4

The control strategy number 1 has been chosen so that the switching of the keys in a
given clock takes place only once. The control strategy 2 is a double repetition in a cycle of
the control strategy 1. Using such a simple control method, very good results have been
obtained for the content of higher harmonics, which can be seen from the THD values.
At the same time, the adopted control also allows for maintaining a high rms value of
the currents. Subsequent repetition of the adopted vector sequence would lead to results
comparable to PWM control. However, the main advantage of the control method described
in the experiment over PWM is that it requires a much smaller amount of switching.

In the referenced works [36,37], the described control algorithm was used for inverters
with an odd number of phases. Three-phase [37] and five-phase [36] inverters were con-
sidered. On the other hand, Table 5 shows the results of simulation tests for a five-phase
inverter, which are to be used to compare both cases. These tests were carried out for the
same scenario, i.e., the control of PWM modulation and vector control for single and double
repetitions of vector sequences were compared.

Table 5. The vectors’ parameters of the five-phase VSI inverter.

Load R = 2 Ω, L = 40 mH

Control
Strategy: F 40 45 50 55 60

PWM
RMS 27.7 26.7 25.5 24.3 23.1

THDI 2.1 2.3 2.6 2.8 3.1

1
RMS 28.8 26.7 23.3 21.4 20.7

THDI 11.5 11.5 11.6 11.7 11.8

2
RMS 29.2 26.6 24.3 23.1 21.9

THDI 7.4 7.4 7.5 7.5 7.4

Summarizing the results presented in Table 5, it can be concluded that they are
generally similar. In the case of a five-phase inverter, a higher RMS value can be observed,
but its performance has deteriorated due to an increase in the current THD value. One can
risk a statement that an increase in the number of inverter phases reduces the THD value.
This can be explained by the fact that with a greater number of phases, their interaction
affects the reduction of higher harmonics.
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4. Conclusions

The aim of the paper was to prove that state and polar voltage space vectors are a useful
mathematical tool in the analysis and control of a six-phase inverter. Typically, the inverter
model can be described with the use of three mathematical tools: analytic expressions, the
voltage state, and space vectors. The analytic formulas determine the inverter phase current
and voltage, whereas the state voltage vectors define phase voltage distribution in all the
states of the inverter. Furthermore, polar voltage space vectors are a very valuable and well
recognized instrument in inverters’ control. They constitute a simple and basic tool that can
be applied in the space vector method, which is the most widespread contemporary control
method in AC drives. The whole control process is restricted to the simplest concatenation
of successive vectors. This way of control permits to limit to a minimum the number of
switching and zero vectors used, as well as avoiding problems resulting in parity of phases.
This control method seems to be especially suitable for inverters working in the range of
relatively higher frequencies 40–60 Hz, e.g., inverters interfacing a six-phase smart grid
and a solar power plant.

The described simulation examples of the inverter vector control based on the polar
voltage space vectors proved that the proposed solution might be indeed suitable in
designing inverter control algorithms. The presented space vector method assures a
significantly lower number of inverter switching in comparison with the PWM. It also
results in higher efficiency of the inverter.

Both the notation and computational method described in this paper have been
used in previous works related to multi-phase inverters. However, only the inverters
with an odd number of phases, i.e., three and five, have been considered there [36,37].
This paper presents the synthesis and analysis for an inverter with an even number of
phases. Although it seemed there should be no problematic issues at first, an even number
of phases greatly complicated the whole computational process since the choice of vectors
in such a case was further limited by the symmetry of phases, which was not present in the
case of an odd number of phases. This is also a justification for why various methods have
been used for six-phase inverters to avoid phase symmetry. Among them, there are shifting
the initial phase by 30 degrees or analyzing the six-phase inverter as two three-phase
inverters. Another encountered problem was that even though it was possible to find
vector sequences that were optimal in terms of the amount of switching, they were not
implementable in the inverter due to the asymmetry of the voltage and current waveforms
that were generated by the inverter. Based on the analysis in this paper as well as previous
papers on multiphase inverters, it is easier to obtain vector sequences that meet control
expectations for inverters with an odd number of phases than for inverters with an even
number of phases.

The simulation experiment described in this paper shows that the assumed vector
strategy allows for the obtaining of a favorable value of current THD with the simultaneous
preservation of the currents’ rms values in comparison to PWM modulation. The experi-
ment also presents that repetition of the proposed vector sequence influences the further
reduction of the harmonic content and increase in the rms value of the currents.
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