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Abstract: Circuit theory and nonlinear dynamics are instrumental to design efficient energy harvesters
for ambient mechanical vibrations. In this work, we show that an impedance matching networks can
be designed that maximizes the harvested power, and improves the power efficiency. The proposed
matching network achieves impedance matching at a single frequency, that can be chosen at will by
the designer, and does not need to coincide with the resonant frequency of the harvester. Moreover, the
matching network also increases the harvested power over a wide frequency bandwidth. According
to our numerical simulations, the matching network increases the maximum harvested power by a
factor greater than 3, and the power harvested over the whole frequency spectrum by a factor of 6.
The frequency bandwidth can be further extended considering nonlinear energy harvesters. Even
using the matching network designed for the linear case, performance is significantly nonetheless
improved for the nonlinear harvester.

Keywords: energy harvesting; piezoelectric energy harvester; nonlinear dynamical systems; equivalent
circuits; impedance matching; power efficiency; nonlinear resonance

1. Introduction

Powering networks of miniaturized, wireless-connected electronic and electro-mechanical
systems, sensors and actuators, namely the hardware substrate of the Internet of Things
paradigm, is a major challenge. Classical solutions, such as disposable batteries, are not
viable, because of their limited power density, lifespan, and the environmental hazards
related to their disposal.

A fascinating solution consists of designing systems able to scavenge energy from the
surrounding environment, where and when necessary, being the ultimate power source
electromagnetic radiation, solar light, temperature gradients, or mechanical vibrations [1–5].
In particular, kinetic energy, in the form of mechanical vibrations, regular or random
displacements and driving forces, is particularly attractive, because of its comparatively
large power density and its widespread availability [6–9].

Irrespective of the working principle, energy harvesting systems are limited by the
relatively small power density of the source, and by geometric constraints. For example,
a linear harvester must be carefully designed in such a way that the oscillator’s resonance
frequency matches the spectral range of environmental vibrations where most of the
energy is concentrated. Unfortunately, the general rule is that the smaller is the size of
an object, the larger its resonance frequency will be. Therefore, the realization of energy
harvesters that are both miniaturized, and that work efficiently at the typical frequencies
of ambient mechanical vibrations is problematic. Ingenious mechanical workarounds,
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including systems with a moving inertial mass capable of adapting their proper frequency
to that of the external forcing, have been recently proposed [10,11]. As an alternative,
nonlinear oscillators are widely believed to perform better than linear ones [12–17]. When
compared to their linear counterparts, nonlinear energy harvesters show a wider steady-
state frequency bandwidth and may exhibit multi-stability and even chaotic dynamics,
thus suggesting that they can be more efficient especially in random and non-stationary
vibratory environments [18–21].

Another limiting key factor is the impedance mismatch between the mechanical and
electrical domains of the harvester, and the load, often represented by an electrical or
electronic circuit. Several authors suggested that impedance matching can solve this prob-
lem [22–27]. To keep the analysis simple, these works either focus on linear systems [23,24],
or fix the load resistance at the exact value to obtain maximum power transfer, and impose
a resonance condition between the mechanical and electrical domains [22,25–27]. This sim-
plifying hypothesis allows obtaining impedance matching with a simple shunt reactance in
parallel with the load.

In practical applications however, the load resistance is a fixed parameter that cannot
be chosen at will, and the power of mechanical vibrations could be concentrated in a fre-
quency range well apart from the resonant peak of the harvester. This contribution extends
our previous works [22,27], with particular reference to the aforementioned limitations. We
show that interposing a matching network between the energy harvester and the resistive
load, the harvested power and the efficiency are significantly increased. The matching net-
work is a two port reactive network, designed to achieve impedance matching at a specific
frequency that can be chosen at will by the designer, and that does not necessarily need
to coincide with the resonant frequency of the harvester. Moreover, impedance matching
can be obtained for any a priori fixed value of the load resistance. The matching network
also increases the harvested power over a wide frequency bandwidth. According to our
findings, the maximum harvested power is increased by a factor larger than 3, and the
total harvested power over the whole frequency spectrum by a factor of 6. The matching
network offers a relatively high, 50% efficiency at the frequency where the maximum power
is absorbed, whereas the efficiency of the energy harvester with a purely resistive load
decreases as the frequency is increased. Although there is little theory concerning the
design of nonlinear systems, we show that the matching network designed for the linear
harvester can be applied with benefit also to a strongly nonlinear energy harvester.

The paper is structured as follows: in Section 2, we derive the governing equations for
the mechanical part of the harvester and the piezoelectric transducer. Using mechanical to
electrical analogies, we develop an equivalent circuit model for the harvester. In Section 3,
we apply circuit theory to study the linear circuit model, determining the power per-
formance, and we introduce the matching network and explain the design procedure.
Section 4 is devoted to the analysis of the nonlinear equivalent circuit, using a spectral
domain technique. We determine the input current and output voltage, the average input
and output power, and the power efficiency. Finally, Section 5 contains the conclusions.

2. Piezoelectric Energy Harvester Modeling

A cantilever piezoelectric energy harvester for ambient mechanical vibration scav-
enging is composed of three main parts: A mechanical structure designed to capture the
kinetic energy of parasitic mechanical vibrations; a piezoelectric transducer, responsible for
the mechanical-to-electrical energy conversion, and an electrical domain for electric energy
storage or electric power supply.

A schematic representation of a cantilever piezoelectric energy harvester is shown
in Figure 1. The mechanical structure is composed of a cantilever beam fixed at one end
to a moving support, with an inertial mass m placed at the opposite end, to increase the
oscillation amplitude. The piezoelectric transducer is represented by a layer of piezoelectric
material covering the beam. Vibrations of the support produce oscillations of the cantilever,
inducing mechanical stress and strain in the piezoelectric material that are, in turn, con-
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verted into electrical current by the transducer. Finally, the electrical current is used to
recharge, or supply power to an electrical load.

m

Motion

Inertial
mass

Clamped

end

L
oa
d

support

V ibrating

P iezoelectric
layers

Figure 1. Schematic representation of a piezoelectric energy harvester. From [22].

The piezoelectric transducer is considered, first. The constitutive equations for a linear
piezoelectric material are [28]: [

S
D

]
=

[
sE d

dt εT

][
T
E

]
, (1)

where the rank two tensors S and T are the mechanical strain and stress, respectively,
while the rank one tensors D and E are the dielectric charge displacement and electric field
strength, respectively. sE is the compliance tensor, under the condition of a constant electric
field defined as strain generated per unit stress. The rank one tensor d is the piezoelectric
charge constants; finally εT is the absolute permittivity, e.g., the dielectric displacement per
unit electric field for constant stress [29].

The linear Equation (1) describe the behavior of the piezoelectric material on a local
scale, in terms of mechanical stress and strain, electric charge displacement and electrical
field strength. A lumped parameter model can be derived in terms of global state variables,
e.g., forces, displacements, currents and voltages, through spatial integration of the local
variables. If the stiffness of the piezoelectric layer is neglected, the governing equations in
the quasi-static regime are:

Fpz = −α e, (2)

q = α x− Cpz e, (3)

where Fpz is the force applied on the mechanical part due to the electrical domain, x is the
displacement, q is the electrical charge and e is the voltage. Concerning parameters, α is the
electro-mechanical coupling (in N/V or As/m), and Cpz is the electrical capacitance of the
mechanical unconstrained system.

The governing equations in the mechanical domain can be derived from the mechanical
Lagrangian function:

Lm(x, ẋ) = Km(ẋ)−Um(x) =
1
2

mẋ2 −Um(x), (4)

where Km(ẋ) and Um(x) are the kinetic energy and the elastic potential, respectively,
and the dot represents the time derivative. Introducing the mechanical dissipation function
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Dm(ẋ) = 1
2 γẋ2, where γ is the damping coefficient, and denoting by fm(t) the resultant of

external forces acting on the mechanical domain, the Lagrange equation of motion is:

d
dt

∂Lm(x, ẋ)
∂ẋ

− ∂Lm(x, ẋ)
∂x

+
∂Dm(ẋ)

∂ẋ
= Fpz + fm. (5)

Taking into account (2) and (4), the equation of motion reads:

mẍ + U′(x) + γẋ = fm(t)− αe. (6)

According to electrical-mechanical analogies, e.g., the impedance analogy, masses
are replaced by inductances, elastic potentials by capacitors (for a linear elastic force with
stiffness constant k, the substitution k→ 1/C is made), damping by resistors, coordinates
by charges, and forces by voltages. Thus, the following substitutions are used: m → L,
x → q1, ẋ → q̇1 = i1, γ → R, fm(t) → vs(t). Finally, Equation (6) is rewritten as a system
of first order differential equations

dq1

dt
=i1 (7)

di1
dt

=− 1
L

U′(q1)−
R
L

i1 −
1

n L
v2 +

vs

L
(8)

where n = α−1 and v2(t) = e(t). Figure 2 shows the equivalent circuit correspond-
ing to Equations (7) and (8), feeding a generic load. The voltage across capacitor C is
vC(q1) = U′(q1).

R
C

L

vs(t)

Cpz

i1

L
oa
d

a1 : n

b

Ambient
vibrations

Mechanical
domain

Piezoelectric
transducer

vC(q1)+ −
i2

+

−
v2

+

−
v1

Figure 2. Equivalent circuit for a piezoelectric energy harvester. Notice that i1 = q̇1.

3. Linear Harvester, Impedance Matching and Maximum Power Transfer

Ambient mechanical vibrations are random in nature, thus they are better described
as stochastic processes. According to the Karhunen–Loéve theorem, a stochastic process
can be represented as an infinite linear combination of orthogonal functions, in full analogy,
for instance, to the Fourier series representation of a function on a bounded interval [30].
In many practical cases, the basis functions can be chosen to be sinusoidal, and the infinite
sum is truncated to a suitable number of terms. From a circuit standpoint, such an external
forcing can be represented as a series connection of sinusoidal voltage generators, and the
linear system can be described using frequency domain analysis.

A quadratic elastic potential U(x) = 1
2 kx2 yields a linear elastic force F = −kx

that, according to the mechanical-electrical analogy, is represented by a linear capacitor
according to k → 1/C, and by the voltage-charge characteristic vC = q1/C. If the load is
also composed by linear two-terminal elements, the energy harvester is linear.
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3.1. Resistive Load

Consider first the case when the load is a linear resistor with resistance RL, see
Figure 3a. At steady state, in the frequency domain, the governing equations for the
circuit in Figure 2 are: R + jX(ω)

1
n

− 1
n

jωCpz + GL

[ Î1
V̂o

]
=

[
V̂s
0

]
, (9)

where j =
√
−1, X(ω) = ωL− 1/(ωC) is the left loop reactance, symbol F̂ denotes the pha-

sor of the function f (t), i.e., f (t) = <[F̂ejωt], where <[·] denotes real part, and GL = 1/RL
is the load admittance. The relevant transfer functions are:

Yin(ω) =
Î1

V̂s
=

n2(jωCpz + GL
)

n2(R + jX(ω))(jωCpz + GL) + 1
, (10)

H(ω) =
V̂o

V̂s
=

n
n2(R + jX(ω))(jωCpz + GL) + 1

. (11)

LS

CP

RL

brs

RL

(a) (b)

Matching network

vo

+

−

v2

+

−
vo

+

−
v2

+

−

i
c

i

Figure 3. The two types of load considered. (a): Resistive load. (b): Resistive load with a low-pass
L-matching network. The two-terminal element brs is a reactive component (inductor or capacitor,
depending on the reactive part of the equivalent impedance seen on the left of v2) designed to
resonate with the harvester reactance.

The transfer functions allow to calculated the average power delivered by the source,
along with the average power absorbed by the load:

Pin(ω) =
1
2
<[V̂s Î?1 ] =

1
2
<[Yin(ω)] |V̂s|2, (12)

Pout(ω) =
1
2
<[V̂o Î?] =

1
2

GL |H(ω)|2| V̂s|2, (13)

where ? denotes complex conjugate. The power efficiency is the ratio of the average powers:

η(ω) =
Pout(ω)

Pin(ω)
=
|H(ω)|2
<[Yin(ω)]

GL. (14)

3.2. Matched Load

A fundamental problem in energy harvesting is designing systems capable of har-
vesting the maximum power available from the surrounding environment. The maximum
power transfer theorem states that, for a linear circuit, maximum power is transferred from
the source to a load, if the load is matched to the rest of the circuit, meaning that the load
impedance ZL must be the complex conjugate of the impedance seen at the load terminals.
In practical applications, the load is determined a priori, and cannot be chosen at will by
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the designer. Consequently, the mechanical part and the piezoelectric transducer must be
designed and realized with great care, to ensure that their impedance is matched to the
load, a condition that is very difficult to attain in practice.

As an alternative, impedance matching can be obtained by interposing a two port
matching network between the load and the rest of the circuit. Perfect matching can be
obtained only at one specific frequency, and the matching network must be composed
of lossless elements, in order not to dissipate power and, thus, to avoid reducing the
harvester performance.

There are different realizations of matching networks, which differ for the number
of components and for their topology. The simplest matching network is the L-network,
requiring two reactive components only (inductor and capacitor), arranged to form an
L structure. In general, depending on the problem under investigation, there are eight
different possible arrangements. Here, we shall consider only one of them, whose choice is
dictated by the problem under consideration.

Consider the equivalent circuit shown in Figure 2. The Thevenin equivalent circuit at
nodes a, b is composed by a voltage source:

V̂eq(ω) =
n

1 + jωCpzn2(R + jX(ω))
V̂s, (15)

and by the equivalent impedance:

Zeq(ω) =
n2(R + jX(ω))

1 + jωCpzn2(R + jX(ω))
. (16)

Let Req(ω) = <[Zeq(ω)] and Xeq(ω) = =[Zeq(ω)], where =[·] denotes the imaginary
part, and let ωm be the angular frequency at which matching is desired. We shall assume
Req(ωm) < RL, consequently the matching network requires a shunt reactance to be
placed in parallel with RL. Considering that the energy of random mechanical vibrations is
concentrated at low frequencies, it seems appropriate to chose a low-pass matching network,
as shown in Figure 3b (The remaining seven possible arrangements for a L-matching
network, including the case of high pass matching network, and the case Req(ωm) > RL
which requires a shunt reactance placed in parallel with the Thevenin equivalent circuit,
are not considered here).

The reactive part of Zeq(ω) can be matched introducing a reactance Xrs(ω) (the
reactance of the two-terminal element brs in Figure 3b), that resonates with Xeq(ω) at the
desired frequency ωm. If Xeq(ωm) ≤ 0, resonance is achieved by placing an inductor in
series with Zeq(ω) such that:

Lrs =
|Xeq(ωm)|

ωm
. (17)

Conversely, if Xeq(ωm) > 0, resonance is obtained with a capacitor such that:

Crs =
1

ωm|Xeq(ωm)|
. (18)

The quality factor of the matching network is:

Q(ωm) =

√
RL

Req(ωm)
− 1. (19)

The matching reactances are:

|XS| =Q(ωm) Req(ωm), (20)

|XP| =
RL

Q(ωm)
, (21)
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and the matching components’ values are:

LS =
|XS|
ωm

, CP =
1

ωm |XP|
. (22)

Denoting by Xpz(ω) = −1/(ωCpz), XS(ω) = ωLS and XP(ω) = −1/(ωCP), the state
equations are (explicit dependence on ω in the reactances is omitted for notation simplicity):

R + jX
j(Xrs + XS) + jXP||RL

n(jXP||RL)

− 1
n

j(Xrs + XS + Xpz) + jXP||RL

jXpz(jXP||RL)


[

Î1
V̂o

]
=

[
V̂s
0

]
, (23)

where:

jXP(ω)||RL =
jXP(ω) RL

jXP(ω) + RL
. (24)

Let ∆(ω) be the determinant of the matrix above, the relevant transfer functions read:

Yin(ω) =
1

∆(ω)

j(Xrs + XS + Xpz) + jXP||RL

jXpz(jXP||RL)
, (25)

H(ω) =
1

n∆(ω)
, (26)

which permit calculating the average injected and collected power, and the power efficiency
using Equations (12)–(14). The maximum average power collected by the harvester is given
by the well known formula:

Pmax =
|V̂eq(ωm)|2

8Req(ωm)
, (27)

with 50% efficiency. Higher efficiency can be obtained, but renouncing to collect the
maximum available average power.

As an example, we analyzed the equivalent circuit shown in Figure 2, comparing
the resistive load with the matched load. The values of the circuit components are those
given in [31], where they were determined through experimental results and finite element
analysis. They are summarized in Table 1.

Table 1. Values of circuit components, based on [31].

Parameter Value

R 6.9366 Ω

C 5.874 µF

L 1 H

Cpz 80.08 nF

RL 1 MΩ

n 37.4254

|Vs| 83.0 mV
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Figure 4 shows the root mean square values of the input current and of the output
voltage as functions of frequency f = ω/(2π), respectively, given by:

i1,rms =
1√
2
|Yin(ω)| |V̂s(ω)|, (28)

vo,rms =
1√
2
|H(ω)| |V̂s(ω)|. (29)

The linear harvester model with a resistive load shows a resonant peak approximately
at the frequency f0 = 68 Hz. It is worth mentioning that this resonant frequency is uniquely
determined by the mechanical part and by the piezoelectric transducer. Consequently,
because maximum power is scavenged at the resonance frequency, the two following points
are fundamental in practical applications: First, an a priori knowledge of the frequency at
which the maximum power of mechanical parasitic vibrations is concentrated is mandatory.
Second, the mechanical system and the piezoelectric transducer must be designed to match
this frequency. Combined together, these points make each energy harvesting solution
hardly flexible, and very oriented to a specific environment.

Figure 4. Root mean square values for the input current (left) and the output voltage (right) for a
linear harvester. Load matching is calculated at f0 = 68 Hz.

The matching network solution proposed in this work, not only improves the per-
formance of the energy harvester at the matching frequency, but can also be adapted to
different environments. In fact, the matching network can be designed to realize optimum
power transfer at a specific frequency, according to the procedure outlined in Section 3.
Table 2 shows the values for the components of the matching network at different frequen-
cies, evaluated according to (17) and (22).

Table 2. Values of the components of the matching network at different frequencies, calculated
using (17) and (22). The large values of the inductances are a consequence of the normalization used
for the electrical equivalent of the mechanical part, i.e., L1 = 1 H.

Matching Frequency Lrs LS CP

50 Hz 112.5157 H 34.7505 H 291.53 nF

68 Hz 170.3708 H 447.9216 H 11.764 nF

80 Hz 55.4050 H 23.7563 H 166.58e nF

100 Hz 32.9385 H 6.4850 H 390.59 nF

Figure 5 shows a comparison between the power scavenged by an harvester with a
resistive load and with a matched load. The linear energy harvester behaves as a passband
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filter. It can be seen that the matched load not only increases the harvested power at the
matching frequency fm, but it also gives a wider passband, an effect that can be exploited in
the case of multi-frequency inputs or when the forcing frequency does not coincide exactly
with the matching frequency.

Figure 5. Scavenged power vs. frequency for a linear harvester. Load matching calculated at
fm = 68 Hz.

The power scavenged by a linear harvester, with matched loads calculated at different
frequencies, is shown in Figure 6. Matching frequencies and matching network parameters
are those in Table 2. As discussed above, the matching frequency can be chosen at will,
giving the designer the possibility to adapt an energy harvester to different environments,
where the energy of mechanical vibrations is concentrated at different frequencies, which
may be significantly different from the harvester resonant peak. In this case, however,
a reminiscence of the mechanical system resonant frequency is present in the curves in the
form of secondary peaks close to 68 Hz (see the inset in Figure 6). Results also suggest
that while there is no difference in the maximum harvested power, working at a frequency
close to the resonant one offers a wider tolerance to frequency mismatch, represented by a
wider passband.

Figure 6. Scavenged power vs. frequency for a linear harvester with matched load, for different
matching frequencies. Values of the components of the matching networks at each matching frequency
are reported in Table 2.
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Finally, Figure 7 shows the comparison of the power efficiency, given by (14), for the
harvester with resistive load, compared with the matched load. The efficiency of the
resistive load monotonically decreases as the frequency increases, and is rather low at the
frequency corresponding to the maximum harvested power. Clearly, the matched load
offers higher efficiency over a wide frequency interval, and in particular at the matching
frequency. At low and high frequencies, the two curves are very close. At the matching
frequency fm = 68 Hz, the power efficiency for the matched load is 50%, as expected, and a
larger value can be attained at lower frequency, as usual giving up the maximum harvested
power condition.

Figure 7. Power efficiency vs. frequency for the resistive and the matched load. Load matching is
calculated at fm = 68 Hz.

4. Nonlinear Energy Harvester Analysis

It is believed that, under certain circumstances, nonlinear energy harvesters may
outperform linear ones, trading off the efficiency at the resonant frequency for a larger
bandwidth. An energy harvester is nonlinear when nonlinear stiffness effects are taken
into account, e.g., when the elastic potential of the beam takes the form U(x) = ax2 + bx4,
where a and b are real valued parameters. Consequently, the state Equations (7) and (8) for
the equivalent circuit of Figure 2 must include a nonlinear capacitor with the nonlinear
voltage-charge characteristic U′(q1) = vC = q1/C + q3

1/C̃.
The analysis of nonlinear circuits and systems is nontrivial, and requires ad hoc

techniques. Hereinafter, for the sake of simplicity we shall assume that the energy of
mechanical vibrations is concentrated at a single frequency f0, i.e., the voltage source
vs(t) will be considered a simple periodic function with period T0 and angular frequency
ω0 = 2π/T0. It is also worth mentioning that the theory for the design of nonlinear circuits
is very limited; therefore, we shall apply the same matching network designed for the
linear harvester also to the nonlinear system.

Concerning the analysis of the nonlinear circuit, the time domain state equations
for the electrical part are also needed. Including the resistive load of Figure 3 into the
equivalent circuit, and applying Kirchhoff current law to node a yields:

dv2

dt
=

1
n Cpz

i1 −
GL
Cpz

v2. (30)
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For the matched load, only the case where the two-terminal element brs is an inductor
with inductance Lrs is considered here for the sake of simplicity. Applying Kirchhoff current
and voltage laws yields:

dv2

dt
=

1
Cpz

(
i1
n
− i
)

, (31)

dvo

dt
=

1
CP

(i− GLvo), (32)

di
dt

=
1

Lrs + LS
(v2 − vo). (33)

Together with (7) and (8), Equation (30) (respectively, (31)–(33)) describe the dynamic
behavior of the nonlinear harvester with resistive (respectively, matched) load.

4.1. The Harmonic Balance Technique

Harmonic Balance (HB) is a powerful numerical technique commonly exploited in
many scientific areas, including electronic engineering, to efficiently implement the direct
determination of periodic or quasi-periodic solutions of dynamical systems, thus fully
avoiding the computation of the transient part of the solution. Essentially, HB transforms
the system differential equations into an algebraic system whose unknowns are the coeffi-
cients of the Fourier series representing the steady-state solution [32,33].

Let us initially consider a scalar, T-periodic real function x(t). We represent the
function in the frequency domain by means of a (truncated) exponential Fourier series:

x(t) =
NH

∑
h=−NH

x̂h e jhω0t , (34)

where x̂h is the h-th harmonic amplitude, associated to the h-th harmonic at the (angular)
frequency hω0 = h2π/T. As x(t) is real, x̂−h = x̂?h , and therefore the Fourier series is
completely defined by 2NH + 1 real coefficients. In terms of numerical implementation,
a more effective approach to HB requires replacing (34) with a trigonometric series repre-
sentation [34]. Nevertheless, we prefer to use the more compact exponential form for the
sake of theoretical developments.

After discretizing the ]0, T] fundamental period with a set of 2NH + 1 time samples
tk (k = 1, . . . , 2NH + 1), the samples of the time-dependent variable are collected into
vector x̆ = [x(t1), x(t2), . . . , x(t2NH+1)]

T (T denotes the transpose), which is related to the
collection of harmonic amplitudes x̂ = [x̂−NH , x̂−NH+1, . . . , x̂0, . . . , x̂NH ]

T by means of the
discrete Fourier transform (DFT) invertible linear operator Γ−1:

x̆ = Γ−1x̂⇐⇒ x̂ = Γx̆. (35)

Γ−1 is the approximate matrix representation of the operator defining the Fourier series
development of a T-periodic function.

In the frequency domain, for the exponential series a diagonal complex matrix Ω of
size (2NH + 1)× (2NH + 1) proportional to ω0, represents the time derivative [32]:

ˆ̇x = Γ ˘̇x = Ωx̂. (36)

Moving now to the vector case, considering that x(t) ∈ Rn (35) and (36) are eas-
ily generalized by expanding each time sample α(ti) into a vector x(ti) ∈ Rn, whose
collection becomes x̆ = [xT(t1), xT(t2), . . . , xT(t2NH+1)]

T ∈ Rn(2NH+1). Correspondingly,
the frequency domain representation is x̂ = [x̂T

−NH
, . . . , x̂T

0 , . . . , x̂T
NH

]T ∈ Cn(2NH+1). In this
way, Equations (35) and (36) can formally be extended by defining two block diagonal
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matrixes Γ−1
n and Ωn of size n(2NH + 1)× n(2NH + 1), where each diagonal block of size

(2NH + 1)× (2NH + 1) is defined by the fundamental operators Γ−1 and Ω, respectively:

x̆ = Γ−1
n x̂, ˆ̇x = Ωnx̂. (37)

Let us now apply these concepts to the case of a vector dynamical system of size n,
forced by a T-periodic source term s(t):

ẋ(t) = f(x(t)) + s(t). (38)

After time-sampling and DFT transformation, (38) becomes:

Ωnx̂ = f̂(Γ−1
n x̂) + ŝ, (39)

where f̂ represents the collection of harmonic amplitudes for the T-periodic function f(x(t)).
Algebraic Equation (39) can be solved numerically exploiting the Newton algorithm,

and specialized techniques have also been developed for specific analyses, such as the
stability assessment of the resulting solution [34]. To introduce the stability analysis of the
periodic solution xS(t), let us assume that such solution is slightly perturbed by a variation
xp(t). The resulting variable x(t) = xS(t) + xp(t) should satisfy (38). However, if the
perturbation is a small variation of the periodic solution, we can linearize (38) obtaining a
linear equation governing the evolution of xp(t):

ẋp = Jf(t)xp(t), (40)

where Jf(t) is a T-periodic matrix corresponding to the Jacobian of f evaluated in the peri-
odic solution xS(t). The general solution of the linear, periodically time-varying system (40)
is dictated by Floquet Theorem [34,35]:

xp(t) = uk(t) eµkt , (41)

where uk(t) are T-periodic functions called Floquet eigenvectors of the solution xS(t), while µk
are scalar constants dubbed Floquet exponents. There are n independent Floquet eigenvectors
(i.e., k = 1, . . . , n in (41)), while the value of <{µk} determines the asymptotic properties
of the perturbation: for the solution to be asymptotically stable, all Floquet exponents
must have a negative real part. According to (41), however, for each µk an infinite set of
equivalent exponents can be defined as a function of an integer parameter m [36]:

µ
(m)
k = µk + jmω0, m integer. (42)

To resolve this redundancy, stability is usually verified checking the n Floquet multipliers
λk = exp(µ(m)

k T). Three cases are possible: (1) if |λk| < 1 ∀k = 1, . . . , n, the solution xS(t)
is asymptotically stable (i.e., the perturbation converges to zero); (2) if ∃k : |λk| > 1 the
solution is unstable; (3) if ∃k : |λk| = 1, the solution undergoes a bifurcation. In particular,
λk = 1 corresponds to a fold bifurcation, λk = −1 to a period doubling, while a unitary |λk|
with phase different from 0 or π represents a Neimark-Sacker bifurcation with a spurious
frequency arising at the imaginary part of λk [36].

Substituting (41) into (40), the Floquet eigenvectors and eigenvalues are shown to satisfy:

u̇k(t)− Jf(t)uk(t) = µkuk(t). (43)

As the Floquet eigenvectors are T-periodic functions of time, the HB approach can
also be exploited for the determination of the Floquet quantities [34]. After time-sampling
and DFT transformation, (43) becomes an eigenvalue problem:(

Ωn − Ĵf
)
ûk = µkûk, (44)



Energies 2022, 15, 2764 13 of 17

where Ĵf = Γn J̆fΓ
−1
n , J̆f being the block diagonal matrix built expanding each element of Jf(t)

into the diagonal matrix of the corresponding time samples. The numerical determination
of the Floquet eigenvectors and eigenvalues is in some cases rather delicate, and special-
ized techniques have been specifically devised to overcome the main implementation
issues [37,38].

4.2. Nonlinear Piezoelectric Energy Harvester Analysis

The HB technique wasapplied to analyze the nonlinear energy harvester described by
the differential system (7) and (8), including the cubic approximation of the voltage-charge
relation in the equivalent representation of the mechanical system, and (30) (respectively
(31)–(33)). For our analysis, we considered C̃ = 0.005 pF to introduce a significant nonlinear-
ity. To speed up the numerical procedure, the HB technique was applied in conjunction with
a continuation method, where the solution for a certain value of a prescribed parameter and
of the forcing frequency is used as the initial condition for the Newton algorithm applied to
the following value of the parameter. Notice that a main advantage of the HB technique is
that it allows for the detection of both stable and unstable solutions, including limit cycles
of saddle type that cannot be detected through numerical time-integration, neither forward
nor backward in time. In the following results, we considered NH = 100 harmonics.

Figure 8 shows the root mean square values (rms) for the input current and the output
voltage, presented as a function of the forcing frequency. It can be seen that the system
with both load types exhibits the same qualitative behavior. For small value of f , there is
a unique, asymptotically stable periodic solution (blue crosses are for the resistive load,
and black squares are for the matched load, respectively). As the forcing frequency is
increased, the rms values increase, implying that the amplitude of the periodic solution
increases. At the critical value fSN1 ≈ 71 Hz, a saddle node bifurcation, identified by a
Floquet multiplier equal to one, occurs. Two new periodic solutions emerge: the smaller
is asymptotically stable (blue × symbols are for the resistive load, black circles are for the
matched load), whereas the larger is unstable of saddle type (red pentagrams are for the re-
sistive load, red diamonds are for the matched load). At the critical frequency fSN2 ≈ 81 Hz,
the unstable solution and the large, stable periodic solution collide, and disappear through
a second saddle-node bifurcation. The small, stable limit cycle remains as the unique
solution. With regard to the input current, there are no significant differences for the two
load types. Conversely, the output voltage is significantly greater for the matched load over
a wide frequency interval, but especially at the matching frequency f0 = 68 Hz.

Figure 8. Root mean square values for the input current (left) and the output voltage (right) for
a nonlinear harvester. Load matching is calculated at f0 = 68 Hz. Blue crosses, blue × and red
pentagrams are for the resistive load. Black squares, black circles and red diamonds are for the
matched load. Blue and black markers refer to stable limit cycles, red markers are for unstable
limit cycles.
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The rms values of i1 and vo allow for an easy calculation of the average injected and
extracted power. From Figure 3, the average power transferred to the load is:

Pout =
GL
T

∫ T

0
vo(t)2 dt = Gv2

o,rms. (45)

For the input power, using Tellegen’s theorem, we have:

Pin =
1
T

∫ T

0
vs(t)i1(t) dt = R i21,rms + GL v2

o,rms, (46)

where we used the fact that the transformer does not dissipate power, as it only transfers
power from the left loop to the right branches, and that reactive elements (inductors and
capacitors) do not absorb active power, being able to handle reactive power only.

Figure 9 shows the average power absorbed by the load for the resistive load (blue
crosses) and the matched load (black diamonds) as functions of the forcing frequency.
The matching network is calculated at fm = 68 Hz. It is evident that the matched load out-
performs the resistive load over a wide frequency band. It is also worth mentioning that the
introduction of even a comparatively small nonlinearity, results in a significant shift of the
frequency at which the harvester with resistive load provides the maximum average output
power. Therefore, if nonlinearity is not properly taken into account, the harvester average
output power will be significantly lower than expected. The frequency shift in the peak
power is also present for the harvester with matched load, although much less noticeable,
and the maximum average output power remains quite close to the matching frequency.

Figure 9. Average output power vs. forcing frequency. Blue crosses are for the resistive load; black
diamonds are for the matched load. Matching frequency is fm = 68 Hz.

Figure 10 shows the power efficiency as a function of the forcing frequency. The matched
load offers higher efficiency with respect to the resistive load over a wide frequency range.
More importantly, in close similarity to the linear case, for the resistive load the efficiency
is a monotonically decreasing function of frequency, and it becomes particularly low at
the resonant frequency f0. Conversely, for the matched load the efficiency is equal to
50% at the matching frequency of 68 Hz, as expected, and remains relatively high around
that frequency.
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Figure 10. Power efficiency vs. forcing frequency. Blue crosses are for the resistive load; black
diamonds are for the matched load. Matching frequency is f0 = 68 Hz.

Finally, Figure 11 shows the harvested power versus the forcing frequency for a non-
linear energy harvester with matching network, designed at the three different frequencies
68 Hz, 80 Hz and 100 Hz. The values of the components for each matching network are
listed in Table 2. It can be seen that also for the nonlinear harvester, the matching network
allows selecting the frequency at which maximum power is harvested.

Figure 11. Output average power vs. forcing frequency. The matched load is evaluated at three
different matching frequencies. Values of the components of the matching network at each frequencies
are reported in Table 2. Red circles refers to fm = 68 Hz, black diamonds to fm = 80 Hz, blue squares
to fm = 100 Hz.

5. Conclusions

Parasitic ambient mechanical vibrations are a viable energy source, which can be
converted into electrical energy exploiting a piezoelectric transducer, and thus they can be
used as a power source for electronic circuits, sensors and actuators. Limiting key factors
are the relatively low power density of mechanical vibrations, and the impedance mismatch
between mechanical and electrical domains.

In this work, a possible solution to the aforementioned limitations is proposed. We
analyzed a piezoelectric energy harvester for parasitic mechanical vibrations, subject to
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an external force. The differential equations for the mechanical part have been derived
from Lagrangian mechanics, and those for the piezoelectric transducer from the properties
of piezoelectric materials. Starting from these differential equations, an equivalent circuit
model was devised exploiting mechanical-to-electrical analogies.

The equivalent circuit is instrumental in designing a matching network that maxi-
mizes the power transfer from the harvester to the electrical load. The matching network
achieves impedance matching at a specific frequency, for any a priori fixed value of the
load resistance. The matching frequency can be chosen at will by the designer and does not
need to coincide with the resonant frequency of the harvester. Moreover with the matching
network, maximum power transfer and the well know 50% power efficiency are obtained
at the same frequency. By contrast, for a resistive load the power efficiency decreases as the
frequency increases.

The matching network also increases the harvested power over a wide frequency
bandwidth. According to our simulations, with respect to a simple resistive load, the maxi-
mum harvested power is increased more than three times, while the total harvested power
over the whole frequency spectrum is increased more than six times. These values can
be regarded as an upper bound, as a real matching network will of course be plagued by
losses that may slightly reduce the harvested power gain.

The frequency bandwidth can be further extended considering a nonlinear energy
harvester. It is shown that the nonlinear differential equations describing the harvester
dynamics can be efficiently analyzed applying a frequency domain technique, namely
harmonic balance. The occurrence of nonlinear resonance and bifurcation phenomena
are illustrated and analyzed. Although there is little theory for the design of nonlinear
circuits and systems, the matching network designed for the linear harvester improves the
maximum harvested power, power bandwidth and power efficiency also for the nonlinear case.
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