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Abstract: Policy-makers should focus on solar energy due to the increasing energy demand and
adverse consequences such as global warming. Conflicting criteria influence choosing the most
desirable place to construct a Solar Power Plant (SPP). Researchers have popularized multicriteria
decision-making (MCDM) methods because of the potential. Although the simultaneous use of
several methods increases the robustness and accuracy of the results, existing methods to integrate
MCDM methods mainly consider the same weight for all methods and utilize the alternatives ranking
for the final comparison. This paper presents a hybrid decision-making framework to determine
the best location for SPPs in Iran using a set of criteria extracted from the literature and expert
opinions. An initial list of decision-making alternatives is prepared and evaluated using GIS software
in terms of criteria. Decision-makers prioritized the identified alternatives using the MCDM methods,
including SWARA and different ranking methods (TOPSIS, TODIM, WASPAS, COPRAS, ARAS, and
MULTIMOORA). Finally, the CCSD method aggregates the results and identifies the best location.
Results highly correlate with the results of previous methods and demonstrate the robustness of the
proposed approach and its capability to overcome the limitations of previous methods.

Keywords: solar energy; power plant location; multicriteria decision-making; MCDM; aggregation
method

1. Introduction

Nowadays, accessing competitive and sustainable energy resources is a fundamental
and crucial factor for economic growth and social development [1]. Energy falls into three
main groups: fossil energy, nuclear energy, and renewable [2]. Among these, solar energy
(SE), with its benefits, such as lack of environmental pollution (e.g., CO2 mitigation, noise),
installation flexibility, and high reliability [3,4], is regarded as one of the most promising
and reliable energy sources [5]. These benefits have encouraged governments to promote
the SE share in their energy portfolios [6]. As a result, this has led to significant annual
growth in the construction of solar power plants.

According to the specific climate and geographic location, Iran is among the countries
with a great potential to use SE [7]. However, not all parts of the country have the same
potential for multiple criteria to choose the best place to establish a Solar Power Plant (SPP).
Besides, locating SPPs has become a critical issue for investors, owners, and the renewable
energy system industry [8] due to the numerous impacts of solar power generation on the
economy and development of the region [2]. Proper location selection maximizes the value
and productivity of the plant, reduces production costs, and minimizes environmental
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impacts [9]. However, choosing not right location increases environmental pollution and
wastes resources and energy [10].

Stakeholders must consider multiple criteria to choose the right place to build an
SPP. Area, capacity, type of production, design, and others determine the criteria set [11].
The decision is complicated, with some of the goals and objectives of decision-makers
contradicting each other. Therefore, SPP locating issues are multicriteria decision-making
(MCDM) problems. Many researchers investigated and addressed this problem using differ-
ent MCDM methods [12,13]. Recently, due to the high reliance on multiple geographic data,
decision-makers have considered the combination of MCDM and Geographic Information
Systems (GIS) as a practical approach to determining SPPs’ location [14,15].

The critical thing about utilizing MCDM methods is that each method has distinctive
features and qualities and may exhibit different results on the same problem [16]. Therefore,
one method cannot be considered better than the others [17]. Choosing the most appro-
priate method is an important challenge for decision-makers [18]. To solve this challenge
and increase the results’ robustness [19], many researchers have suggested using differ-
ent MCDM methods [20]. However, the techniques used so far to aggregate the results
of MCDM methods have some shortcomings that the authors of this paper attempted
to overcome.

The structure of the rest of this paper is as follows. In Section 2, the authors discuss
the necessity of utilizing renewable energy resources and review related studies regarding
locating SPP construction using MCDM methods. Section 3 presents the methodology and
implementation steps of the research. Section 4 presents the general introduction of the case
study and research findings. Finally, Section 5 provides the conclusion and suggestions for
future research.

2. Literature Review

Researchers have used various SPP site selection approaches in the last decade, in-
cluding mathematical programming, feasibility studies, and MCDM techniques [7]. On
the other hand, due to the dependence of the location problem on the climate [21], GIS
is used to access geographic information. Considering the diversity of location criteria,
different importance (weight) of decision criteria, and sometimes the inconsistency of these
criteria, in recent years, several researchers have proposed different MCDM methods and
their combination with GIS tools to address these difficulties [22].

Table 1 presents some essential research in the SPP site selection field using MCDM
methods done in recent years.

Table 1. Summary of solar power location research using MCDM methods.

Reference Country Case Study Method

[23] Iran Solar plants DEA/PCA

[24] Spain PV AHP

[25] US Wind and solar farms ANP

[26] Spain Solar farms AHP/TOPSIS

[21] Turkey Hybrid power plant (solar & wind) Fuzzy OWA

[14] Turkey Solar farms AHP

[27] China Solar thermal power plant Linguistic Choquet operator/fuzzy measure

[28] Iran Solar project SWARA-WASPAS

[29] Spain Solar-thermal power plant AHP-ANP
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Table 1. Cont.

Reference Country Case Study Method

[30] Spain PV ELECTRE-TRI/Decision support system

[31] UK Wind and solar farms AHP

[32] Spain Solar thermoelectric power plant AHP/fuzzy TOPSIS/ELECTRE-TRI

[2] Iran SPP AHP/fuzzy logic/WLC

[33] Spain PV AHP/TOPSIS/ELECTRE TRI

[34] Serbia PV AHP

[35] Afghanistan Wind farm/solar PV/CSP MCDA

[36] Turkey SPP AHP/ELECTRE/TOPSIS/VIKOR

[1] Iran Solar farm AHP

[8] China PV Grey cumulative/TOPSIS

[37] Turkey SPP AHP

[38] Saudi
Arabia PV AHP

[39] Morocco PV AHP

[40] Tanzania PV/CSP AHP

[3] Vietnam SPP DEA/fuzzy AHP/TOPSIS

[41] Turkey Solar PV power plant AHP

[42] Iran PV/CSP AHP

[43] India SPP Fuzzy logic/VIKOR

[7] Iran SPP BWM/GRA/VIKOR
Data Envelopment Analysis (DEA); Principal Component Analysis (PCA); Photovoltaic (PV); Analytic Hierarchy
Process (AHP); Analytic Network Process (ANP); Technique for Order Preference by Similarity to Ideal Solution
(TOPSIS); Ordered Weighted Averaging (OWA); Step-Wise Weight Assessment Ratio Analysis (SWARA); Weighted
Aggregated Sum Product Assessment (WASPAS); Elimination Et Choix Traduisant la REaite (ELECTRE); Solar
power plant (SPP); Weighted Linear Combination (WLC); Concentrating solar power (CSP); Multi-Criteria
Decision Analysis (MCDA); VIseKriterijumska Optimizacija i Kompromisno Resenje (VIKOR); Best Worst Method
(BWM); Grey Relational Analysis (GRA).

MCDM approaches are one of the most popular topics in decision-making theory [44,45].
Table 1 shows that some research studies have used several methods to rank the alterna-
tives [8,32,33,36]. A closer look at these studies shows that these methods helped solve
various problems, particularly weighting criteria (AHP and SWARA) and ranking alter-
natives (TOPSIS, ELECTRE, VIKOR, and WASPAS). Although using two or more parallel
methods in the ranking is purely for sensitivity analysis and validation of the results, as
pointed out in [16], each method has different qualities and features. When used to solve
the same problem, they may produce different results. As Table 1 shows, given the ability
of MCDM methods to deal with multiple and sometimes conflicting criteria, the use of
these methods in locating SPPs is of interest to researchers and decision-makers.

Therefore, one MCDM method cannot be considered better than others [17], and
selecting the appropriate one is essential in the decision-making process [18]. On the other
hand, using a single MCDM method for prioritization cannot ensure robust results [19].
Hence, some researchers have suggested using a combination of different MCDM methods.
Especially, using a robust aggregation method becomes more necessary when alternatives
are intrinsically close together or the number of alternatives increases [20].

Borda and Copeland’s law are two standard methods of aggregating results [46]. In
the Borda method, the most wins in pairwise comparisons are the base of alternatives
ranking. The Copeland method is complementary to the Borda method, in which decision-
makers prioritize alternatives based on the number of wins minus the number of defeats in
pairwise comparisons. These methods have some significant shortcomings [47], making
it essential to use a systematic and scientific model to reach the final ranking. Therefore,
researchers have proposed other methods for aggregating the results of MCDM methods.
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Varmazyar et al. (2016) introduced an integrated approach to combine the results of
Additive Ratio Assessment (ARAS), COmplex PRoportional ASsessment (COPRAS), Multi-
Objective Optimization on the Basis of Ratio Analysis (MOORA), and Technique for Order
Preference by Similarity to Ideal Solution (TOPSIS) methods to evaluate research and
technology organizations using the balanced scorecard [20]. Using linear programming,
the authors used the utility interval to combine the results when determining each option’s
utility upper and lower limits for each method. Next, the weight of each method is
determined based on the correlation between the rankings performed by the methods.
Finally, decision-makers consider the weighted average utility for ranking the alternatives.
Wang et al. (2016) also proposed a hybrid MCDM approach to integrating the results of
Simple Additive Weighting (SAW), TOPSIS, and Grey Relational Analysis (GRA) methods
following experimental design [48]. In this method, decision-makers calculate the criteria
weights using the design of the experiments. Then, they evaluate the alternatives using
the MCDM methods and prioritize based on the average score earned in each method.
In another study, Mousavi-Nasab et al. (2017) presented a comprehensive method for
combining the TOPSIS and COPRAS methods in a material selection problem using data
envelopment analysis as an auxiliary tool for the final choice [16]. Recently, Mohammadi
and Rezaei (2020) proposed a new approach based on assembling ranking, which uses the
half-quadratic theory to aggregate the ranking outputs of different MCDM methods [49].
They tested their method to the aggregate ranking produced by various MCDM methods
for five ontology alignment evaluation initiative (OAEL) competition tracks.

The authors of this paper identified the following limitations in the literature; at the
final stage of aggregation of results in the methods mentioned above, decision-makers
consider all methods equally important and assign them the same weight [49]. Nonetheless,
these two elementary assumptions in current aggregation approaches are not reasonable in
some cases and do not appropriately demonstrate the actual difference between alternatives
in the final aggregation results. Besides, the basis of ranking in the aggregation step is the
ranking of alternatives in each method, not their attained score [50]. On the other hand, the
rank cannot represent the distance between alternatives because decision-makers present
rankings on an ordinal scale that does not adequately reflect the difference between [50].

To take advantage of different MCDM tools, a set of methods, including TOPSIS,
TOmada de Decisao Interativa Multicriterio (TODIM), Weighted Aggregated Sum Product
Assessment (WASPAS), COPRAS, ARAS, and MULTIMOORA methods, were used to
locate the SPP. Besides, the Correlation Coefficient and Standard Deviation (CCSD) method,
an excellent objective method, is used to integrate the results of these MCDM methods
to solve the challenges mentioned above in the aggregation process. Wang and Luo [51]
described the advantages of the CCSD over other objective methods to choose it.

In the proposed approach, decision-makers calculate the weight of each MCDM tool
from the distribution of scores obtained by each method. Besides, to better differentiate the
alternatives, decision-makers calculate the final ranking using the scores by multiplying
the scores by the determined weights of methods and aggregating the results. This method
better illustrates the difference between alternatives.

3. Methodology

Following the government policies of Iran, the policy-making committee decided to
build an SPP in the southeastern region of Iran. For this reason, the policy-making committee
was tasked with selecting proper candidates from five provinces of the southeastern part of
Iran with high solar potential. This paper presents a hybrid GIS-MCDM aggregation method
for determining optimal SPP, addressing the shortcomings identified in previous research.

The method consists of four phases and several steps (see Figure 1), explained in
the following.
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Figure 1. Steps to choosing the SPP location.

3.1. Phase 1: Determining Final Criteria List

The first phase of this approach consists of two steps.

3.1.1. Step 1a: Extracting Location Criteria from the Literature

Policy-makers reviewed relevant literature to the study to identify the criteria set
needed to locate SPPs. For this purpose, using related keywords (in both MCDM and SPP),
the most relevant articles in WoS (Clarivate Analytics) and Scopus as a reputable database
were identified. Then, by examining the titles of the extracted articles, the articles that
were out-of-scope filed were identified. Then articles were filtered considering the abstract
and keywords. Finally, some of these publications were excluded from the synthesis and
criteria extracted after carefully reading.

3.1.2. Step 1b: Finalizing Criteria List Using Experts’ Opinion

This step presents the final criteria list of SPP locations. The team members, some
university professors, and experts in SE technologies localized this list with the studied
conditions (in Iran). Finally, policy-makers formed the list of criteria.
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3.2. Phase 2: Calculating Criteria Weights

The decision-making committee members prioritized and weighed the final criteria
set using the SWARA method at the next step.

Researchers proposed several methods of criteria weighting. However, many are
complex and not sufficiently accurate [52]. Keršulienė et al., in 2010, introduced the
SWARA method, which has less relative complexity. It is one of the newest weighing
methods [53]. In addition to user-friendliness, less complexity, and less implementation
time, this method allows decision-makers to select, evaluate, and weigh the criteria. It also
will enable experts to apply their knowledge and experience in the field. Experts play a
central role in assessing and weighing criteria [54]. Readers can read Keršulienė et al. work
to become acquainted with applying this method [53].

3.3. Phase 3: Calculating Each Candidate’s Score Using Different MCDM Methods

In the first step of the third phase, the decision-making team forms the decision table
to evaluate candidate locations in some criteria using the ArcGIS 10.3.1 software (Esri®,
Redlands, CA, USA).

In the next step, decision-makers should calculate the final score of each candidate
using MCDM methods and obtain the necessary data for ranking different options. As
discussed in the introduction and literature review, using different MCDM methods and
aggregating their results increases the decision-making process’s robustness.

For this purpose, decision-makers calculated the scores of each candidate using six dif-
ferent MCDM methods: TOPSIS, TODIM, WASPAS, COPRAS, ARAS, and MULTIMOORA.

3.3.1. Step 3a: Identifying the List of Candidate Locations and Creating the Decision
Matrix

Since selecting the preferable location for constructing the SPP in the desert area of
Iran is intended, we use MCDM techniques to rank candidate locations. The problem is
inherently a continuous location problem, and the construction can be potentially anywhere
in the desert area of Iran. The GIS helps to eliminate unsuitable locations. A list of criteria
has been extracted from the literature, and the performance of locations was assessed
concerning each criterion using ArcGIS tools.

To select the appropriate locations, we first obtain the scoring map of the studied
area for each indicator using ArcGIS 10.3.1 software. The software works so that first,
the Raster images of each index are converted to Shape-File. Rasters are maps containing
contour lines (discrete data) for each index converted to Shape-File (continuous data) with
an interpolation mechanism. Then the intersection of existing layers (indicators) with
AND logic is obtained by which the appropriate areas or locations with all the intended
indicators (Shared overlap) are determined. All digitization, conversion, and analysis of
maps were done by ArcGIS 10.3.1 software.

3.3.2. Step 3b: Calculating Candidate Scores Using the TOPSIS

Hwang and Yoon, in 1981, introduced the Technique for Order of Preference by
Similarity to Ideal Solution (TOPSIS). In this method, an ideal and an anti-ideal point are
determined. The desired option is the one with the minimum Euclidean distance to the
ideal point and the maximum Euclidean distance to the anti-ideal point. Readers should
refer to Hwang and Yoon’s book [55] for a detailed examination of this method.

3.3.3. Step 3c: Calculating Candidate Scores Using the TODIM

Gomes and Lima introduced the TODIM (an acronym in Portuguese for the interactive
and Multi-Criteria Decision-Making) method in 1991. This method first identifies the
difference between alternatives for each criterion. Then, the method calculates the relative
dominance of the alternatives. Finally, the method ranks the alternatives according to the
normalized global index. Readers could read Gomes and Lima’s [56] work to study this
method [56] further.
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3.3.4. Step 3d: Calculating Candidate Scores Using the WASPAS

Zavadskas et al. introduced the Weighted Aggregated Sum Product Assessment
(WASPAS) method in 2012. This method combines the Weighted Sum Model (WSM) and
Weighted Product Model (WPM) to rank alternatives. Readers can read Zavadskas et al. [57]
work for further details on the steps of this method.

3.3.5. Step 3e: Calculating Candidate Scores Using the COPRAS

Zavadskas et al., in 1994, presented the Complex Proportional Assessment (COPRAS)
method to help determine the best solution among investigated and rank choices. This
method essentially extends the AHP method, where alternatives have two criteria: benefits
and costs. Decision-maker divides these criteria into benefit type sub-criteria and cost
type sub-criteria. Alternatively, the COPRAS method presents the degree of utility of
each alternative compared with the score of the best alternative among investigated ones.
Readers can read Zavadskas et al. work to find a basis for the steps of this method [58].

3.3.6. Step 3f: Calculating Candidate Scores Using the ARAS

In essence, it is an extension of the additive form of the AHP method. Here the degree
of efficiency compares the relative values of the multi-attribute utility function with the
Pareto optimal solution (an alternative with optimal values for each criterion—there is no
single alternative with a better value for even one measure). Inclusion of such a utopia
alternative prevents the rank reversal phenomenon, and the multi-attribute utility degree of
each choice remains the same or slightly changes when decision-makers add or remove some
options. Readers can read details about this method in Zavadskas and Turskis’ article [59].

3.3.7. Step 3g: Calculating Candidate Scores Using the MULTIMOORA

Brauers and Zavadskas, in 2006, proposed the Multi-Objective Optimization based on
the Ratio Analysis method (MOORA) [60]. Brauers’ work [61] is the basis of this method. It
consists of the Ratio Analysis (RA) and Reference Point (RP) methods. Later, Brauers and
Zavadskas extended the MOORA, adding a Full Multiplicative (FM). The authors named
extension as the MULTIMOORA method. Readers can read Brauers and Zavadskas work
for further details on the steps of this method [62].

3.4. Phase 4: Aggregating Scores and Ranking Candidates

As mentioned in the previous sections, in the proposed aggregation method, the final
score of candidates in each technique is used instead of the rank obtained from different
MCDM methods. As different methods will not have the same weight in the aggregation
phase, the CCSD method has been used to calculate the importance of each method.

3.4.1. Step 4a: Formation of the Secondary Decision Matrix

The secondary decision matrix represented as
..
X =

( ..
x
)

n×8, is formed, where n is the
number of candidates. This matrix contains eight columns, the first to the third column
representing the final scores of the alternatives in the MULTIMOORA method (having
Ratio System (RS), Reference Point (RP), and Full Multiplicative Form (FM)). The rest of
the columns contain candidate scores in the other five MCDM methods.
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3.4.2. Step 4b: Normalize the Secondary Decision Matrix

In this step, it is necessary to normalize the secondary decision matrix. Decision-
makers normalize initial data using the following equations:

zij =
xij − xmin

j

xmax
j − xmin

j
, i = 1, . . . , n; j ∈ Ωb (1)

zij =
xmax

j − xij

xmax
j − xmin

j
, i = 1, . . . , n; j ∈ Ωc (2)

In this equation, xmin
j = min

1≤i≤n

{
xij

}
, xmax

j = max
1≤i≤n

{
xij

}
, and Ωb and Ωc are the set of

positive and negative criteria indices, respectively. Whenever an alternative (location) with
a lower final score takes a higher rank by the corresponding MCDM method (criterion), we
treat that method as a negative criterion.

3.4.3. Step 4c: Calculating the Weight of Each Method Using the CCSD Method

Wang and Lu [51] developed a new weighing method, CCSD. Combining the cor-
relation coefficient (CC) and the standard deviation (SD) of each criterion is the basis of
this method. Unlike the Entropy method, there is no need for a unique normalization
method. It is a more straightforward technique than the CRITIC method. Decision-makers
calculated each method’s weight using the CCSD method to determine the significance of
each way in the final aggregation. Readers should read Wang and Lu’s work [51] to study
this method further.

3.4.4. Step 4d: The Final Ranking of the SPP Locations

Decision-makers obtained the final score of each candidate by multiplying the normal-
ized values by the weight of each method (from Step 4c). Therefore, Equation (3) helps
decision-makers calculate the performance value and determine the final rank of options.

..
Si =

8

∑
j=1

(
..
zij ×

..
wj) (3)

There
..
wj represents the weight of jth method in the final aggregation, and

..
zij is the

normalized value in the secondary decision matrix.
..
Si is the basis for ranking the alternatives.

Accordingly, the higher the value of
..
Si, the greater the utility of ith alternative.

4. Case Study

Iran is in southwest Asia and the Middle East. Due to its geographical location, Iran
has rich natural energy resources that should maximize its use. Besides, Iran has a unique
climate. In winter, the temperature difference in the coldest and hottest parts of the country
reaches 50 degrees Celsius. In terms of rainfall, Iran is one of the arid and semi-arid
countries. Therefore, SE is one of the essential sources of energy for the country. According
to high-level documents and approved service descriptions, the southeastern region of Iran
is the geographical area for constructing the SPP. According to these upstream laws, the
policy-making committee identified five provinces of the country’s southeastern region as
areas with high solar potential. These provinces were distinguished by brown on the map
shown in Figure 2. The article describes some of the features that influence this choice below.
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Figure 2. Map of the eastern regions of the Islamic Republic of Iran.

Yazd Province: This province, with an area of 74,493 km2, is one of the arid regions.
The global dry belt and distance from the Oman and Persian Gulf seas, inland lakes, and
marine moisture winds have caused the area to dry. Besides, due to the global dry belt,
summers in Yazd are long, hot, and dry, while winters are cold and relatively humid.

Kerman Province: Kerman is the largest province of Iran, with 181,785 km2. The climate
variation of Kerman province is noteworthy due to the specific climatic conditions. The
province is dry in the north, northwest, and central regions. It is warm and humid in the
south and southeast. The maximum temperature in some parts of the province exceeds
70 degrees Celsius.

South Khorasan Province: This region has a warm and dry climate and a dry and mild
climate. There are no permanent rivers in the province. The rivers flow seasonally due to
the desert climate.

Khorasan-e-Razavi Province: This province, with an area of 128,420 km2, is one of the
semi-arid regions of Iran. It is also one of the least humid regions in the world.

Sistan and Baluchestan Province: The 187,502 km2 area has long, hot summers and
short winters. On average, there is no rainfall in the province for seven months. Due to
the high average temperature and monsoon winds, the evaporation rate in Sistan and
Baluchestan Province is high.

As mentioned in the methodology section, GIS helped identify the list of candidate
locations and create the decision matrix. Figure 3 represents the sample shapefiles of the
study concerning some evaluation criteria.
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Finally, 19 choices are in these five provinces. Candidate site locations (alternatives)
are denoted in Figure 4.
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4.1. Determining Final Criteria List

As mentioned earlier, numerous articles investigated the location problems of SPPs
around the world. Although there is relative agreement among the authors on the most
critical criteria, sometimes the list of criteria differs due to the specific conditions of each
country and the available data. Table 2 presents the list of criteria used in the literature.

SPP location project team members received the list of these criteria. They formed a
final set of criteria according to local Iranian conditions and the availability of the necessary
information (Table 3). Iran is one of the most earthquake-prone areas globally, and because
policy-makers should locate the plant safely, decision-makers added the criterion of dis-
tance from the nearest fault. However, this criterion is very close to the likelihood criterion
of natural disasters (floods and earthquakes) that Azadeh et al. [23] have previously empha-
sized as a critical criterion in Iran [23]. Decision-makers, according to the area’s conditions,
divided the criterion of distance from the transport routes into two conditions—distance
from road and rail. They divided the distance from the population centers into the distance
from the provincial center and the nearest city.
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Table 2. The list of final criteria.

Reference

Criteria

Average
Temperature

Distance from
Transporta-

tion
Network

Distance
from the

Power
Line

Distance
from

Urban
Area

Distance
from

Wildlife
Protection

Areas

Distance
from

Agricul-
tural

Lands

Slope
(%)

Average
Elevation Orientation Land

Use

Distance
from
Water

Resource

[23] * * * * * *
[24] * * * * * * * * *
[25] * * * * *
[26] * * * * * * *
[21] * * * * * *
[14] * * * * * * * *
[27] * * * *
[28] *
[29] * * *
[30] * * * * * * *
[31] * * * * * *
[32] * * * * * * * *
[2] * * * * * * * *

[33] * * * * * * * *
[34] * *
[35] * * * * * * *
[36] * *
[1] * * * * * *
[8] * *

[37] * * * * * *
[38] * * * * * * * * * *
[39] * * * * *
[40] * * * * * *
[41] * * * *
[42] *
[43] * * * * * * * * *
[44] * * *
[7] * * * * * *

Table 3. Calculating the weight of the criteria using the SWARA method.

NO Criteria Criteria Type Sj Kj Wj qj

C1 Average temperature positive — 1 1 0.163
C2 Average elevation positive 0.19 1.19 0.840 0.137
C3 Distance from the power line negative 0.12 1.12 0.750 0.122
C4 Distance from nearest fault positive 0.11 1.11 0.676 0.110
C5 Distance from the center of the province negative 0.17 1.17 0.578 0.0949
C6 Distance from the nearest city negative 0.19 1.19 0.485 0.079
C7 Distance from a water resource negative 0 1 0.485 0.079
C8 Distance from a road negative 0.04 1.04 0.467 0.076
C9 Slope (%) negative 0.04 1.04 0.449 0.073
C10 Distance from the railway network negative 0.14 1.14 0.394 0.064

4.2. Calculating Criteria Weights

The policy-making committee members ranked the criteria in the following step and
calculated their weights. Table 3 presents the results of the SWARA method.

As Table 3 shows, the average temperature and average elevation criteria with signifi-
cance levels of 16% and 14%, respectively, the project team considered the most important
criteria, followed by distance-related criteria.

4.3. Calculating Each Candidate Score Using Different MCDM Methods

In the first step, the decision-making committee calculated each alternative’s perfor-
mance (SPP construction score) for each criterion using the information obtained from
ArcGIS 10.3.1 software based on the available information sources. Table 4 presents the
final decision matrix. The first row of this matrix shows the weight of each criterion. The
weights are the results of the SWARA method.
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Table 4. Decision matrix based on the data collected.

Weight of Criteria 0.163 0.137 0.122 0.110 0.094 0.079 0.079 0.076 0.073 0.064

Alternatives C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Bam 35 1255 4.85 19.3 189 15.22 1.8 5.05 0.79 2.21
Birjand 29 2134 8.23 28.3 21 21.59 14.43 7.1 2.43 212.6

Torbat-e Heydariyeh 26 1664 7.12 15.89 154 14.03 5 0.66 7.9 4.18
Jiroft 33 2308 15.02 13.89 225 23.02 1 12.43 9.86 35.8

Rafsanjan 29 1788 4.76 6.8 120 17.13 15.7 2.14 1.56 29.26
Zabul 35 486 1.35 80.3 210 14.8 0.7 2.14 0.09 181.71

Sabzevar 27 1579 15.74 20 241 23.11 20.55 4.92 3.65 16.77
Sarakhs 24 294 9.22 99.14 194 12.1 1.8 0.63 0.24 5.54
Sirjan 1 26 1753 8.15 50.91 189 12.82 15.33 1.78 0.59 14.24
Sirjan 2 26 1820 28.48 76.24 189 35.91 26.92 3.55 2.49 22.27

Kerman 1 30 1779 7.72 21.47 12 12.1 14.53 2.11 0.07 10.79
Kerman 2 30 1748 4.38 16.62 11 11.84 11.62 1.95 0.14 4.25
Kerman 3 29 1745 5.87 16.5 12 12.67 11.04 2.19 0.08 0.13
Gonabad 31 879 24.63 41.82 284 39.91 12.2 0.54 0.58 5.72
Mahan 1 28 2059 3.94 22.32 37 12.18 19 6.22 3 11.28
Mahan 2 28 2216 1.13 16.71 37 12.25 13.31 0.46 2.28 25.87

Mashhad 1 27 940 1.47 15.93 12 12.27 3.6 2.04 0.69 6.5
Mashhad 2 27 1482 6.04 1.8 13 13.38 5.5 7.53 0.87 13.9

Yazd 31 3027 8.71 27.74 34 34.67 40.74 3.38 8.48 31.74

In the next step, decision-makers used TOPSIS, TODIM, WASPAS, COPRAS, ARAS,
and MULTIMOORA methods to rank the SPP construction alternatives as valid and widely
used methods.

Table 5 presents the final scores of the alternatives calculated in each MCDM tool. The
numbers in parentheses indicate the alternative’s rank.

Table 5. Scores and ranking of alternatives in each method.

Weight of Criteria MULTIMOORA
ARAS COPRAS WASPAS TODIM TOPSIS

Alternatives FM * RM * RP * DT *

Bam 0.038 0.028 1.985 4 0.304 (2) 100 (1) 0.267 (5) 0.960 (3) 0.652 (2)
Birjand 0.052 −0.057 1.202 16 0.222 (7) 56.7 (15) 0.179 (15) 0.525 (11) 0.434 (16)

Torbat-e Heydariyeh 0.040 −0.019 1.669 7 0.214 (8) 72.6 (5) 0.269 (4) 0.500 (12) 0.566 (5)
Jiroft 0.042 −0.025 1.842 9 0.144 (16) 71.0 (7) 0.190 (13) 0.599 (9) 0.529 (11)

Rafsanjan 0.032 −0.066 1.327 13 0.162 (14) 54.6 (16) 0.185 (14) 0.280 (18) 0.445(15)
Zabul 0.048 −0.076 0.951 18 0.156 (15) 50.4 (17) 0.151 (17) 0.398 (13) 0.407 (17)

Sabzevar 0.044 −0.104 0.943 19 0.104 (18) 45.4 (19) 0.136 (18) 0.000 (19) 0.379 (18)
Sarakhs 0.038 −0.048 1.236 15 0.135 (17) 60.7 (14) 0.159 (16) 0.544 (10) 0.475 (14)
Sirjan 1 0.025 0.019 2.293 2 0.263 (3) 88.8 (2) 0.301 (2) 1.000 (1) 0.639 (3)
Sirjan 2 0.036 −0.032 2.572 3 0.407 (1) 66.7 (12) 0.323 (1) 0.372 (15) 0.549 (6)

Kerman 1 0.046 −0.085 0.991 17 0.096 (19) 48.0 (18) 0.124 (19) 0.368 (17) 0.370 (19)
Kerman 2 0.046 −0.038 1.323 14 0.177 (11) 67.4 (11) 0.235 (8) 0.372 (16) 0.535 (8)
Kerman 3 0.033 −0.041 1.536 10 0.212 (9) 61.9 (13) 0.228 (10) 0.602 (8) 0.489 (13)
Gonabad 0.0531 −0.019 1.429 12 0.235 (5) 71.6 (6) 0.212 (12) 0.760 (4) 0.521 (12)
Mahan 1 0.030 −0.024 1.568 8 0.176 (12) 68.8 (9) 0.236 (7) 0.394 (14) 0.575 (4)
Mahan 2 0.044 −0.021 1.474 11 0.175 (13) 69.1 (8) 0.225 (11) 0.649 (6) 0.534 (9)

Mashhad 1 0.019 0.036 1.809 1 0.201 (10) 88.1 (3) 0.280 (3) 0.964 (2) 0.706 (1)
Mashhad 2 0.038 −0.023 1.688 6 0.241 (4) 68.3 (10) 0.267 (6) 0.620 (7) 0.542 (7)

Yazd 0.054 −0.016 1.802 5 0.230 (6) 74.3 (4) 0.229 (9) 0.664 (5) 0.531 (10)

* Fully-multiplicative (FM)/Ratio-method (RM)/Reference-point (RP)/Dominance theory (DT).

4.4. Aggregating Scores and Ranking Candidates

After calculating previous scores, a secondary decision matrix was formed. Table 5
shows this matrix.

The normalized secondary decision matrix is calculated using Equations (1) and (2) In
the next step. Table 6 shows the normalized secondary decision matrix.



Energies 2022, 15, 2801 14 of 20

Table 6. Normalized Secondary Decision Matrix.

Alternatives Fully-Multiplicative
(FM)

Ratio-Method
(RM)

Reference-Point
(RP) ARAS COPRAS WASPAS TODIM TOPSIS

Bam 0.446 0.943 0.639 0.668 1 0.722 0.960 0.838
Birjand 0.056 0.337 0.159 0.405 0.207 0.277 0.525 0.195

Torbat-e Heydariyeh 0.404 0.609 0.445 0.379 0.498 0.732 0.500 0.583
Jiroft 0.342 0.564 0.552 0.153 0.468 0.331 0.599 0.473

Rafsanjan 0.639 0.269 0.236 0.210 0.170 0.306 0.280 0.223
Zabul 0.179 0.195 0.005 0.192 0.092 0.138 0.398 0.110

Sabzevar 0.305 0 0 0.024 0 0.064 0 0.028
Sarakhs 0.474 0.397 0.180 0.126 0.281 0.176 0.544 0.312
Sirjan 1 0.834 0.884 0.829 0.536 0.795 0.890 1 0.800
Sirjan 2 0.524 0.515 1 1 0.390 1 0.372 0.532

Kerman 1 0.232 0.135 0.029 0 0.048 0 0.368 0
Kerman 2 0.243 0.472 0.233 0.259 0.402 0.559 0.372 0.491
Kerman 3 0.596 0.447 0.364 0.374 0.303 0.524 0.602 0.355
Gonabad 0.030 0.610 0.298 0.448 0.481 0.445 0.760 0.449
Mahan 1 0.701 0.570 0.383 0.258 0.430 0.564 0.394 0.609
Mahan 2 0.306 0.594 0.326 0.253 0.434 0.509 0.649 0.490

Mashhad 1 1 1 0.531 0.339 0.782 0.787 0.964 1
Mashhad 2 0.458 0.578 0.457 0.465 0.419 0.718 0.620 0.512

Yazd 0 0.626 0.527 0.431 0.529 0.528 0.664 0.479

The next step calculates the weight of each MCDM method by formulating and solving
the related optimization problem according to the CCSD method. Decision-makers calcu-
lated these weights based on the data from Table 6. Table 7 presents the estimated weights.

Table 7. Weight of MCDM methods using the CCSD method.

Method
MULTIMOORA

ARAS COPRAS WASPAS TODIM TOPSIS
Reference-Point (RP) Ratio-Method (RM) Fully-Multiplicative (FM)

Weight 0.1217 0.1398 0.1148 0.0885 0.1144 0.1490 0.1437 0.1282

Finally, Equation (3) helps calculate the performance value and determine the final
rank of alternatives. Table 8 shows the performance values and final ranking of options.

Table 8. Performance values and the final ranking of alternatives using the developed method.

Alternatives Final Score Final Rank

Bam 0.787 3
Birjand 0.274 16

Torbat-e-Heydariyeh 0.532 6
Jiroft 0.447 12

Rafsanjan 0.295 15
Zabul 0.169 17

Sabzevar 0.052 19
Sarakhs 0.322 14
Sirjan 1 0.837 1
Sirjan 2 0.654 4

Kerman 1 0.109 18
Kerman 2 0.391 13
Kerman 3 0.454 10
Gonabad 0.451 11
Mahan 1 0.500 7
Mahan 2 0.461 9

Mashhad 1 0.826 2
Mashhad 2 0.540 5

Yazd 0.483 8
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5. Discussion and Comparison

In this section, we first compare our findings with earlier literature studies. Besides, to
analyze the stability of the proposed method, the similarity of the final ranking with other
used methods is compared.

5.1. Discussion

According to the results of the weighting criteria (Table 3), we can indicate that average
temperature is the most critical parameter for selecting the SPP location. As mentioned in
the literature, it correlates with other climatological parameters (e.g., solar radiation, wind
speed, vapor pressure, humidity, precipitation, and others). The results are in line with the
findings of the literature survey on SPP location selection [3,23].

On the other hand, for establishing each SPP, a set of topographical conditions is neces-
sary. Considering the conditions of selected locations in Iran, decision-makers introduced
average elevation as one of the essential criteria from the experts’ point of view. It is in line
with Zoghi et al. [2] and Azadeh et al. [23] in Iran.

Decision-makers selected the distance from the power line as another influential factor.
Being Far from power transmission lines causes voltage dropping, wastes more energy,
and reduces the overall efficiency of industrial processes [2,63].

The following essential criteria are that establishing the SPP location with a high
degree of natural disasters (e.g., earthquakes and torrents) could be hazardous and increase
maintenance costs. Accordingly, policy-makers must select a safe and secure place for
locating an SPP [63,64]. Azadeh et al. [23] also stressed the importance of this issue,
especially in Iran [23].

Similarly, proximity to the city’s center with a higher population is advantageous [25,38].
For this reason, decision-makers ranked this criterion ranked next in importance. Moreover,
the vicinity of SPP to locations with the capability of water supply and major roads can
give an idea about construction and supply chain costs [3,14,64]; and these have caused
these two criteria to be in the following ranks.

5.2. Comparison

Table 9 presents the ranking results of the developed integrated approach with the
results of different methods. The results of comparator methods, i.e., Borda and Ensemble
Ranking, have been summarized in the last two columns of Table 9. The Borda method
is one of the most widely used methods identified in previous research. The Ensemble
Ranking method is a recently proposed approach whose rationale aligns with the proposed
method, and hence the comparison is valid.

Table 1 shows that alternative Sirjan 1, based on the proposed method results, has the
highest priority in constructing SPP. Different methods ranked it as 1–3. Another place
(Mashhad 1) has a second priority ranking because the ARAS method put it in tenth place.
Besides, Bam ranks third in the method the authors propose, fourth in the MULTIMOORA
method, and fifth in the WASPAS method. However, decision-makers calculated the final
ranks for the different techniques based on the CCSD method (Table 6).
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Table 9. Summary and comparison of rankings of methods with the developed integration approach.

Alternatives MULTIMOORA ARAS COPRAS WASPAS TODIM TOPSIS
Proposed
Method
(CCSD)

Borda Ensemble
Ranking

Bam 4 2 1 5 3 2 3 2 3
Birjand 16 7 15 15 11 16 16 14 14

Torbat-e-Heydariyeh 7 8 5 4 12 5 6 6 5
Jiroft 9 16 7 13 9 11 12 12 11

Rafsanjan 13 14 16 14 18 15 15 16 15
Zabul 18 15 17 17 13 17 17 17 17

Sabzevar 19 18 19 18 19 18 19 19 19
Sarakhs 15 17 14 16 10 14 14 15 16
Sirjan 1 2 3 2 2 1 3 1 1 1
Sirjan 2 3 1 12 1 15 6 4 4 4

Kerman 1 17 19 18 19 17 19 18 18 18
Kerman 2 14 11 11 8 16 8 13 13 12
Kerman 3 10 9 13 10 8 13 10 11 13
Gonabad 12 5 6 12 4 12 11 9 9
Mahan 1 8 12 9 7 14 4 7 8 8
Mahan 2 11 13 8 11 6 9 9 10 10

Mashhad 1 1 10 3 3 2 1 2 3 2
Mashhad 2 6 4 10 6 7 7 5 5 6

Yazd 5 6 4 9 5 10 8 6 7

Here, the authors applied the Spearman rank correlation coefficient to evaluate the
performance of the proposed method and to measure the similarity of the results obtained
from the proposed method with the results of other ways. Zavadskas et al. [45], using
Equation (4) [65], applied this method also.

rs = 1−
6∑

i
d2

i

n3 − n
. (4)

There di indicates the difference between the rank of ith alternative in the proposed
method and the other methods, and n denotes the number of available pair values. Table 10
presents the values of the Spearman rank correlation coefficient.

Table 10. Spearman’s rank correlation coefficient between the proposed method and MCDM methods.

MULTIMOORA ARAS COPRAS WASPAS TODIM TOPSIS Borda Ensemble
Ranking

CC 0.967 0.753 0.840 0.947 0.679 0.942 0.983 0.975

The results show that the proposed method is highly correlated with the MULTI-
MOORA, WASPAS, and TOPSIS methods and less correlated with the TODIM and ARAS
ways. One reason for this is the different normalization approaches and their different steps
(differences are in logic and how they deal with the ranking issue). These differences have
caused the final ranking of alternatives in these methods to be different, and, therefore, the
Spearman rank correlation coefficient has decreased significantly. Besides, the comparison
of the results of this table with the final weight calculated for the methods (Table 6) shows
the simultaneous effect of the correlation coefficient (CC) and the standard deviation (SD)
in calculating weights using the CCSD method.

On the other hand, comparing the findings of the proposed method with the results of
the Borda and Ensemble Ranking methods (as aggregation methods) is closed. Examining
the Spearman rank correlation coefficient value also shows this similarity.

6. Conclusions

Growing demand for electricity and climate changes such as global warming and
many other factors have led countries to use renewable energy more. SE has attracted
much interest from decision-makers and researchers because of its many advantages over
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other RES. Iran has excellent potential for using SE. Building an SPP in an inappropriate
place wastes cost, time, and resources and causes numerous environmental problems.
This study aimed to find a suitable location for constructing an SPP in the southeastern
region of Iran. Given the multitude of effective criteria and the varying importance of
these criteria, many studies in the literature have used MCDM methods to solve this
problem. The critical thing about utilizing MCDM methods is that they have distinctive
features and qualities, and when used to solve the same problem, they may produce
different results. Therefore, combining different ways increases the robustness of the results.
Accordingly, the aggregation of different MCDM methods has emerged as a new area of
decision-making. The methods used so far to aggregate the results of MCDM methods have
some shortcomings that the authors have attempted to overcome in this paper using the
CCSD method.

The experts first extracted the SPP locating evaluation criteria from the literature
during the study. Later, the experts determined the final list of criteria. ArcGIS software
has helped decision-makers build an initial list of feasible alternatives. In the next phase
of the study, the SWARA method helped assess the criteria weights. Decision-makers
then calculated performance scores for possible options. They used six MCDM methods:
TOPSIS, TODIM, WASPAS, COPRAS, ARAS, and MULTIMOORA methods. Finally, they
summarized the problem solution results and identified the best choice using the CCSD
method. Based on the problem-solution results, decision-makers consider the average
temperature and average altitude as the most important criteria, followed by distance-
related criteria. Besides, Sirjan 1, Mashhad 2, and Bam are the three highest priority
alternatives. Policy-makers should keep in mind that these methods only favor possible
solutions. When choosing the best location for constructing an SPP, project managers and
investors consider the results and constraints of the task solution and decide why, where,
when, and which project to implement.

Results show that the proposed approach to integrating the results of MCDM methods
and eliminating the limitations of previous methods has increased the robustness of the
results. Results also have a high correlation with the results of previous methods. The
authors of this article suggest that future research address the issue of uncertainty in the
decision-making process and develop the approach proposed in this paper using fuzzy or
interval-valued intuitionistic fuzzy (IVIF numbers to calculate the alternatives’ score. The
authors suggest improving this technique to suit hesitant fuzzy (HF) operators if experts
are skeptical about the proposed numbers.
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