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Abstract: With greater power density, a hybrid power source that combines supercapacitors and
batteries has a wide range of applications in pulse-operated power systems. In this paper, a superca-
pacitor/battery semi-active hybrid energy storage system (HESS) with a full current-type control
strategy is presented. The studied HESS is composed of batteries, supercapacitors, and a bidirectional
buck–boost converter. The converter is controlled such that supercapacitors supply load power
pulses, and batteries provide the power in steady state. To realize the fast compensation of the
supercapacitors to the load power pulses, a power distribution module based on hysteresis control
theory is designed in the control system. Moreover, the control strategy does not require the model
parameters of the converter and supercapacitors, so the control system is simplified. A complete
configuration scheme and cost analysis of the proposed HESS are also presented. Obtained results
show that the proposed supercapacitor/battery semi-active HESS has good performance in terms of
dynamic response, weight, and energy utilization coefficient (EUC).

Keywords: hybrid energy storage system; pulsed load; bidirectional buck–boost converter; Li-ion
battery; supercapacitor

1. Introduction

The battery energy storage system (BESS) with a Li-ion battery as the core device
has become the mainstream power supply scheme, due to its high energy density and
decreasing cost [1]. However, limited by the low power density of Li-ion batteries, BESS
used for pulsed power loads such as electric vehicles and satellites faces the problems of
excessive battery size and weight [2,3]. Since supercapacitors have high specific power and
can be charged and discharged quickly, which are very suitable for the pulsed loads, the
HESS combining Li-ion batteries and supercapacitors has been widely studied [4].

In HESS, supercapacitors provide load current pulses instead of batteries, so the battery
pack can be miniaturized. Proper energy management strategy (EMS) and component
configuration can reduce the weight and lifecycle cost of the energy storage system while
improving the payload capabilities and capacity utilization [1,5].

The topology, control strategy, and optimal configuration of HESS have always been
important research content. In recent years, several topologies have been proposed, which
can be divided into passive topology, semi-active topology, and fully active topology
according to the combination mode of battery and supercapacitor [5–7]. The battery is
directly paralleled with the supercapacitor as the DC power source in passive HESS,
without any power converters. This topology is very simple, but due to the lack of control,
the power compensation effect of the supercapacitor is relatively poor [6,8]. In contrast,
fully active HESS has the best performance, as it employs two DC–DC converters for
energy management of the battery and the supercapacitor, respectively. Nonetheless, this
topology has high costs, and the real-time interaction control between the two converters is
complex [9–11]. The semi-active HESS only employs one power converter, and although
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its control performance is not perfect, the cost and complexity of the system are greatly
reduced. Furthermore, most control strategies can be applied to this topology. Due to these
advantages, semi-active HESS is currently the most popular topology [12,13]. There are
two semi-active HESS topologies. One topology is to connect a DC–DC converter between
the supercapacitor and the DC bus, connecting the Li-ion battery directly to the DC bus.
This configuration efficiently utilizes the energy of the supercapacitor, but the DC bus
voltage cannot be changed. Another topology is to connect a DC–DC converter between
the Li-ion battery and the DC bus, connecting the supercapacitor directly to the DC bus.
This structure protects the battery but limits the operating range of the supercapacitor [5].

A variety of control strategies have been designed and studied, and the basic principles
of these strategies are similar due to the simple structure of HESS. In [14], a current-type
polynomial dynamic control strategy for supercapacitor/battery semi-active HESS was
proposed, and the output power of the DC–DC converter was regulated by controlling
the supercapacitor current. This strategy calculates the supercapacitor current reference
using the DC–DC converter model, and the converter efficiency parameters in the model
are corrected online. Since the efficiency parameters of the converter are simultaneously
affected by many factors such as duty cycle, input power, voltage, and current, the output
power of the DC–DC converter may not be precisely controlled using the supercapacitor
current as a reference. In [15], a control algorithm based on power filter theory was
presented, and the high- and low-frequency components of the load power were allocated
to the supercapacitor and battery, respectively. Since the equivalent series resistance (ESR)
of the supercapacitor pack is introduced into the control loop, the accuracy of this control
algorithm may be affected when the supercapacitor cells increase. In [16], a control strategy
based on the current filter algorithm was designed, which limited the battery current
by adjusting the cut-off frequency. In addition, some online high-performance control
algorithms have also been applied to HESS, such as model predictive control and fuzzy
logic control [17–19].

The optimal configuration of HESS mainly considers cost, battery lifetime, and the
total weight of the energy storage devices. In [11,12], the operation cost of HESS was
considered as the optimization object, which could be reduced by 50%, compared with
that of BESS. The authors of [3] proposed a hybrid optimization algorithm to calculate the
feasible optimal solution under the joint constraints of weight, cost, and battery lifetime.
In [1], an optimization algorithm based on the Hamiltonian function was designed to solve
the optimal pack size of the HESS configuration. In addition, the dynamic programming
algorithm and Pontryagin’s minimum principle were also used to reduce the operation
cost and size of HESS [20].

Since most of the energy management strategies of HESS rely on the model of power
converters, it is necessary to modify the model parameters online for ensuring the control
accuracy, which increases the computational cost. In this paper, an improved full current-
type polynomial control strategy is proposed for semi-active HESS. This method takes the
bidirectional DC–DC converter as the controlled object and directly controls the converter
current, which simplifies the control system, and the control accuracy is independent of the
model parameters.

This paper is organized as follows: First, combining the HESS model with the optimiza-
tion objective of the total weight of the energy storage devices, a conventional configuration
scheme is established. Then, a full current-type DC–DC converter control strategy is pro-
posed for energy management. Finally, simulation and experiment are used to evaluate the
proposed control strategy and configuration scheme.

2. HESS Configuration Model

Figure 1 shows the basic topology of supercapacitor/battery semi-active HESS. In
this paper, a non-isolated, bidirectional buck–boost converter was employed. The Li-ion
battery is directly connected to the DC bus to provide energy and stabilize the DC bus
voltage, while the supercapacitor is interfaced to the DC bus with a bidirectional DC–DC
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converter to compensate for the peak load power. The converter operates in buck mode
when the supercapacitor is charged while operating in boost mode when the supercapacitor
discharges.
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2.1. Battery Pack Design Considerations

The power allocation rules should be established first. A typical approach is to obtain
the high-frequency component of the load power through a signal filter and then control
the supercapacitor to output this high-frequency power and the battery pack to output
the remaining low-frequency power [11,15]. However, the battery current of this method
is indeterminate and depends on the filter cut-off frequency and the actual load power.
Therefore, the distribution method based on the current level was adopted. In the process
of HESS providing a power pulse, the battery current is fixed, and the supercapacitor
outputs most of the pulse current via the converter.

The battery pack was designed according to the DC bus voltage, the total energy
consumption during the load operation, and the maximum power allocated.

The voltage of the DC bus is fixed by the battery pack, and the battery pack voltage is
obtained using the following equation, where Vpack,Li is the battery pack voltage, and Vdcbus
is the DC bus voltage:

Vpack,Li = Vdcbus, (1)

The battery pack should provide the energy consumed by the pulsed power during a
mission. In order to ensure the performance and lifetime, the depth of discharge (DOD)
of the Li-ion battery pack cannot exceed 80% [21]. The rated energy of the battery pack
can be denoted as in (2), where Epack,Li is the energy of the battery pack; PL,norm and PL,peak
are the normal power and peak power of the pulsed load, respectively. ηconv is the power
converter efficiency, I is the duration of load operation, DODpack,Li is the DOD of battery
pack, and kLi is the margin coefficient of battery pack.

Epack,Li = kLi

∫ I
0

(
PL,norm(t) +

PL,peak(t)
ηconv2

)
dt

DODpack,Li
, (2)

The battery power is composed of the normal load power and the charging power of
the supercapacitor, which can be expressed as follows, where PSC,charge is the supercapacitor
charging power:

Ppack,Li = kLi

(
PL,norm +

PSC,charge

ηconv

)
, (3)
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2.2. Supercapacitor Pack Design Considerations

Since the supercapacitor has a strong instantaneous power capability, its design mainly
considers the maximum load energy pulse and voltage constraints [22,23]. Additionally,
the rated energy of the supercapacitor pack can be described as

Epack,SC = kSC

∫ tpeak
0

PL,peak(t)
ηconv

dt

DODpack,SC
, (4)

where Epack,SC is the rated energy of supercapacitor pack; tpeak is the duration of single peak
power; DODpack,SC and kSC are the DOD and margin coefficient of supercapacitor pack,
respectively. Since the charging and discharging of supercapacitors is a physical process,
supercapacitors can theoretically be fully discharged. Generally, the DODpack,SC can reach
more than 90%.

Limited by the power loss and cooling system of the DC–DC converter, the voltage
of the supercapacitor pack should not be too low, and a reasonable voltage range is as
follows [1], where Vmin,conv is the minimum voltage of the supercapacitor pack that the
DC–DC converter can operate safely, and Vpack,SC is the rated supercapacitor pack voltage:

Vmin,conv ≤ Vpack,SC ≤ Vdcbus, (5)

2.3. Configuration Scheme

Regardless of Vdcbus, the configuration of the battery pack and supercapacitor pack
are unrelated. Assuming homogeneity of Li-ion cell and supercapacitor cell, combining
(1)–(3), the cell numbers and structure of the battery pack should satisfy the constraints
in (6), where Ns,Li is the number of Li-ion cells in series, Np,Li is the number of Li-ion
cells in parallel; Vcell,Li and Ccell,Li are the rated voltage and capacity of a single Li-ion cell,
respectively. Additionally, µ is the discharge rate of the battery.

Ns,Li ·Vcell,Li = Vdcbus
Vcell,Li · Ccell,Li · Ns,Li · Np,Li ≥ Epack,Li
µ ·Vcell,Li · Ccell,Li · Ns,Li · Np,Li ≥ Ppack,Li

, (6)

In the same way, combining (4) and (5), the constraints on the cell numbers and
structure of the supercapacitor pack can be obtained with the equation below, where
Ns,SC is the number of supercapacitor cells in series, Np,SC is the number of supercapacitor
cells in parallel, and Vcell,sc and Ccell,sc are the rated voltage and capacitance of a single
supercapacitor cell, respectively.{ 1

2 Ccell,SC ·Vcell,SC
2 · Ns,SC · Np,SC ≥ Epack,SC

Vmin,conv ≤ Ns,SC ·Vcell,SC ≤ Vdc bus
, (7)

According to the constraint conditions in (6) and (7), the optimal configuration can be
obtained as 

Ns,Li =
Vdcbus
Vcell,Li

Np,Li = max
{ Ppack,Li

µ·Vdcbus ·Ccell,Li
,

Epack,Li
Vdcbus ·Ccell,Li

}
Ns,SC ∈

(
Vmin,conv
Vcell,SC

, Vdcbus
Vcell,SC

)
Np,SC =

2Epack,SC
Ns,SC ·Ccell,SC ·Vcell,SC

2

, (8)

Additionally, the minimum weight of the battery pack and the supercapacitor pack
can be expressed as (9). Notably, the weights of the battery management system (BMS) and
assembly box were not included.{

Wpack,Li = Ns,Li · Np,Li ·Wcell,Li
Wpack,SC = Ns,SC · Np,SC ·Wcell,SC

, (9)
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where Wpack,Li and Wpack,SC are the weights of the Li-ion battery pack and supercapacitor
pack, respectively. Additionally, Wcell,Li and Wcell,SC are the weights of Li-ion cell and
supercapacitor cell, respectively.

3. DC–DC Converter and Control
3.1. Converter Topology

In this paper, a bidirectional synchronous rectifier buck–boost converter was adopted
to improve efficiency [24], and the topology is shown in Figure 2. During buck mode, Q1
was used as the main switch and Q2 served as the assistant free-wheeling switch. While
during boost mode, Q2 was the main switch, and Q1 served as the assistant switch. In the
continuous conduction mode (CCM), the driving signals of Q1 and Q2 were complementary.
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Figure 2. Bidirectional synchronous rectifier buck–boost converter.

It should be noted that both battery and supercapacitor are active loads, during soft
starting, the converter will operate in discontinuous conduction mode (DCM) due to the
small duty cycle of the main switch. In DCM, if the auxiliary switch is not turned off in
time, the inductor current will flow backward; consequently, the converter efficiency is
diminished, and the battery and switches will also be damaged as the current backflow
increases. Different from the absolutely complementary drive of CCM, in DCM, the
auxiliary switch needs to be turned off when the inductor current returns to zero [25].

3.2. Supercapacitor Model

Figure 3 shows a simple equivalent circuit model of the supercapacitor pack, which
consists of the capacitor C, the equivalent series resistor Res, and the equivalent parallel
resistor Rep [26]. According to this model, the relationship between the supercapacitor pack
voltage VSC and the voltage VC representing the real energy can be obtained with (10),
where ISC is the supercapacitor current, and since Rep is very large, its influence on VSC is
neglected. It must be noted that when ISC is not zero, the directly measured VSC cannot
reflect the actually stored energy of the supercapacitor. Therefore, it is necessary to combine
VSC and ISC to calculate accurate ultracapacitor charging status.

VSC = Res ISC + VC, (10)
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3.3. Control Strategy

The bidirectional buck–boost converter is controlled according to the control strategy
described in Figure 4a. In buck operation mode, the supercapacitor pack is charged
to ensure that there is enough energy to support the load power pulse later, and ISC is
controlled in a closed loop. In boost operation mode, Iconv is closed-loop controlled to
satisfy the peak current requirement of the load. Since the load current Iload is given, the
battery current Ibat is also controlled using (11).

Ibat = Iload − Iconv, (11)
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The power allocation system shown in Figure 4b determines the operation mode of the
DC–DC converter, and the reference currents of the converter and supercapacitors (Iconv,ref
and ISC,ref, respectively) are also given. As the bus voltage is fixed, a controller based on the
hysteresis comparison principle is applied to the load current to assess the load power level.

Figure 5 demonstrates a complete flowchart of the proposed power allocation system.
Define Ith1 and Ith1 as the lower threshold and upper threshold of the hysteresis comparator. If
Iload < Ith1, the load runs at normal power, and at this stage, the converter should operate in buck
mode to charge the supercapacitors. The charging process can be divided into two phases.
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In the first phase, the commonly used constant current charging is employed, and
the supercapacitors’ current reference ISC,ref = Iref is obtained. According to the previous
analysis, due to the influence of Res, the charging status calculated by the measured VSC
is slightly less than the target charging status. Therefore, a second stage of charging is
required after the measured VSC reaches the target voltage Vref. During the second phase,
the charging current gradually decreases, and ISC,ref is calculated as

ISC = Ire f × f (t), (12)

where f(t) is a decreasing linear function, with an initial value of 1 and a final value of 0.
The maximum battery current Ibat,max can be described as

Ibat,max =
PL,norm + Ire f ·Vre f /ηconv

Vdcbus
, (13)

If Iload > Ith2, the load operates at peak power, and at this stage, the converter should
operate in boost mode and the supercapacitor pack starts discharging. The purpose of
this stage is to replace the battery pack with the supercapacitors to provide the peak load
current, so the battery current Ibat is limited as Ibat,ref, and the converter current reference
Iconv,ref is obtained as

Iconv,re f = Iload − Ibat,re f , (14)

4. Simulation Results

To verify the performance of the control strategy proposed in Section 3, a supercapaci-
tor/battery HESS shown in Figure 1 was established in the MATLAB/SIMULINK.

The peak load power was 2 kW, and the normal load power was 0.12 kW. The load
cycle duration was 40 s, PL,peak duration was 5 s, PL,norm duration was 35 s, and the load ran
continuously for one hour under the above conditions. The battery pack had a rated voltage
of 72 V and a rated capacity of 9.6 Ah, the rated voltage of the supercapacitor pack was 56 V,
and the capacitance was 17.5 F. Table 1 shows the values of the main circuit parameters.

Table 1. Parameters used in the simulation and experiment.

Parameters Symbol Value

Battery pack 72 V/9.6 Ah
Supercapacitor pack 56 V/17.5 F

Inductor L 200 µH
Output capacitor C 220 µF

Switching frequency fs 50 kHz

Figure 6 shows the simulation result of the supercapacitor’s current control in buck
mode. In the beginning, the supercapacitor current reference ISC,ref was fixed at 8 A, and
then ISC,ref gradually reduced from 8 A to 0 A. This figure shows that the supercapacitor’s
current-control strategy is satisfactory.
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Figure 7 shows the simulation result of the converter’s current control in boost mode.
In this paper, the peak load power was intended to be provided by the supercapacitor
pack alone, so the battery current reference Ibat,ref was fixed at 0 A, and the sampled load
current Iload was taken as the converter current reference Iconv,ref. Since the battery pack was
connected to the load, the control accuracy was bound to be affected. However, it can be
seen from Figure 7 that almost all of the peak load current was provided by the converter,
meaning that the converter’s current-control strategy was satisfactory.
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The simulation results of battery current and load current in a load cycle are shown in
Figure 8. The peak load current was 24.92 A, while the maximum output current of the
battery pack was only 7.36 A, which was reduced by 17.57 A, compared with the former.
These results mean that the peak current stress of the battery pack greatly decreased by
using HESS.
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5. Experimental Results

To evaluate the supercapacitor/battery semi-active HESS with a full current-type
control strategy, an experimental platform was built, which consists of the pulsed power
load, a Li-ion battery pack, a supercapacitor pack, a bidirectional buck–boost converter,
and the control system based on STM32F103C8T6 microprocessor. The 2 kw peak power
experimental platform is shown in Figure 9. All circuit parameters are consistent with
Table 1.

For safety reasons, the supercapacitor pack voltage ranged from 40 V to 56 V in the
experiment, so the current through the DC–DC converter was not more than 50 A.

Figure 10 shows the experimental waveforms of battery current and load current in
a load cycle. The normal current of the pulse load was 1.55 A, and the peak current was
25.6 A. When the load was running at normal power, the battery provided the power for
charging the supercapacitors and normal operation of the load. Considering the current
ripple, the maximum battery current Ibat,max was 8.5 A. When the load was running at peak
power, the battery current was successfully limited to around 0 A, and almost all of the
peak load current was provided by the supercapacitors with the boost converter.



Energies 2022, 15, 2910 9 of 13

Energies 2022, 15, x FOR PEER REVIEW 9 of 14 
 

 

 
Figure 8. Simulation results of the battery current and load current. 

5. Experimental Results 
To evaluate the supercapacitor/battery semi-active HESS with a full current-type con-

trol strategy, an experimental platform was built, which consists of the pulsed power load, 
a Li-ion battery pack, a supercapacitor pack, a bidirectional buck–boost converter, and the 
control system based on STM32F103C8T6 microprocessor. The 2kw peak power experi-
mental platform is shown in Figure 9. All circuit parameters are consistent with Table 1. 

 
Figure 9. The experimental platform with 2kw peak power. 

For safety reasons, the supercapacitor pack voltage ranged from 40 V to 56 V in the 
experiment, so the current through the DC–DC converter was not more than 50 A. 

Figure 10 shows the experimental waveforms of battery current and load current in 
a load cycle. The normal current of the pulse load was 1.55 A, and the peak current was 
25.6 A. When the load was running at normal power, the battery provided the power for 
charging the supercapacitors and normal operation of the load. Considering the current 
ripple, the maximum battery current Ibat,max was 8.5 A. When the load was running at peak 
power, the battery current was successfully limited to around 0 A, and almost all of the 
peak load current was provided by the supercapacitors with the boost converter. 

The voltage and current experimental waveforms of the supercapacitors in a load 
cycle are shown in Figure 11. The initial voltage of the supercapacitor pack was 40 V, and 
it was charged to the target voltage of 54 V at a constant current of 8 A. After that, the 
charging current gradually decreased, and the charging process was terminated immedi-
ately when the voltage reached the upper limit of 56 V. Five seconds after the end of charg-
ing, the load current suddenly increased, the DC–DC converter switched from buck mode 

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

B
at

te
ry

 a
nd

 lo
ad

 c
ur

re
nt

s (
A

)

Time (s)

 Ibat (A)
 Iload (A)

ΔI=17.57A

Figure 9. The experimental platform with 2 kw peak power.

Energies 2022, 15, x FOR PEER REVIEW 10 of 14 
 

 

to boost mode, and the supercapacitors began to discharge. The initial discharge current 
was 40.5 A, and the maximum discharge current was 48.1A. 

At the moment when the supercapacitors discharge started and ended, the terminal 
voltage VSC dropped and rose suddenly, with amplitudes of 3.1 V and 4.0 V, respectively. 
This phenomenon is mainly caused by the equivalent series resistance Res of the superca-
pacitors. As described in (10), at the moment of supercapacitors discharge, due to the sud-
den increase in the current ISC, the voltage drop on Res increased, so VSC dropped. Similarly, 
when the discharge ended, the voltage drop on Res was reduced to 0 V, so VSC suddenly 
increased. 

  
Figure 10. Experimental waveforms of battery current and load current. 

  
Figure 11. Experimental waveforms of supercapacitors voltage and supercapacitors current. 

Figure 12a shows the experimental waveforms during the dynamic process through 
which the DC–DC converter switched from buck mode to boost mode. Within 4 millisec-
onds after the load current increased, the supercapacitors had completely replaced the 
battery pack to provide peak load power. Figure 12b shows the experimental results dur-
ing the dynamic process through which the DC–DC converter switched from boost mode 
to buck mode. Within 3 milliseconds after the load current decreased, the supercapacitors 
could stop discharging entirely, and the battery and the output capacitor provided normal 
load power and then charged the supercapacitors. These results show that the power al-
location strategy based on the hysteretic control principle has good dynamic-response 
ability. 

Figure 13 shows the efficiency of the converter (buck mode) during the supercapaci-
tor charging process. Since the charging current was fixed, the charging power depended 
on the supercapacitor pack voltage VSC. In the voltage range from 40 V to 56 V, the con-
verter maintained a charging efficiency above 95.84%. Figure 14 shows the efficiency of 
the converter (boost mode) at different levels of load power during the supercapacitor’s 
discharging process. When the output power was constant at 2kW, the efficiency during 
the entire discharge process was not less than 96.89%. 

Figure 10. Experimental waveforms of battery current and load current.

The voltage and current experimental waveforms of the supercapacitors in a load cycle
are shown in Figure 11. The initial voltage of the supercapacitor pack was 40 V, and it was
charged to the target voltage of 54 V at a constant current of 8 A. After that, the charging
current gradually decreased, and the charging process was terminated immediately when
the voltage reached the upper limit of 56 V. Five seconds after the end of charging, the
load current suddenly increased, the DC–DC converter switched from buck mode to boost
mode, and the supercapacitors began to discharge. The initial discharge current was 40.5 A,
and the maximum discharge current was 48.1A.
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At the moment when the supercapacitors discharge started and ended, the terminal
voltage VSC dropped and rose suddenly, with amplitudes of 3.1 V and 4.0 V, respectively. This
phenomenon is mainly caused by the equivalent series resistance Res of the supercapacitors.
As described in (10), at the moment of supercapacitors discharge, due to the sudden increase
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in the current ISC, the voltage drop on Res increased, so VSC dropped. Similarly, when the
discharge ended, the voltage drop on Res was reduced to 0 V, so VSC suddenly increased.

Figure 12a shows the experimental waveforms during the dynamic process through
which the DC–DC converter switched from buck mode to boost mode. Within 4 milliseconds
after the load current increased, the supercapacitors had completely replaced the battery
pack to provide peak load power. Figure 12b shows the experimental results during the
dynamic process through which the DC–DC converter switched from boost mode to buck
mode. Within 3 milliseconds after the load current decreased, the supercapacitors could
stop discharging entirely, and the battery and the output capacitor provided normal load
power and then charged the supercapacitors. These results show that the power allocation
strategy based on the hysteretic control principle has good dynamic-response ability.
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Figure 12. The dynamic experimental waveforms during converter operation mode switch: (a) buck
mode to boost mode, (b) boost mode to buck mode.

Figure 13 shows the efficiency of the converter (buck mode) during the supercapacitor
charging process. Since the charging current was fixed, the charging power depended
on the supercapacitor pack voltage VSC. In the voltage range from 40 V to 56 V, the
converter maintained a charging efficiency above 95.84%. Figure 14 shows the efficiency of
the converter (boost mode) at different levels of load power during the supercapacitor’s
discharging process. When the output power was constant at 2 kW, the efficiency during
the entire discharge process was not less than 96.89%.
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Figure 15 shows the total weight and energy utilization coefficient (EUC) of BESS
and HESS under the same load, where the EUC is defined as the ratio of the total energy
consumed by the load to the rated energy of the battery pack.
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Figure 15. The total weight and energy utilization coefficient of BESS and HESS.

In BESS, the Li-ion battery pack with a rated capacity of 28.8 Ah was used to satisfy the
peak load current, with a total weight of 9.3 kg, and the EUC was only 17.12%. In HESS, the
battery pack with a rated capacity of 9.6 Ah was sufficient, so the EUC increased to 51.36%.
The total weight of HESS was 7.45 kg, consisting of the Li-ion battery pack with a weight of
3.5 kg, the supercapacitor pack with a weight of 2.25 kg, and the DC–DC converter and
control system with a total weight of 1.7 kg. The weight distribution of each device in HESS
is shown in Figure 16.
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Figure 16. Weight distribution of each device in HESS.

Figure 17 shows the cost comparison between BESS and HESS. A 72V/28.8Ah Li-ion
battery was used in BESS to meet the pulse power requirements of the load. In HESS, the
capacity of a Li-ion battery was only 9.6 Ah, and the cost of a Li-ion battery was only 36.68%
of BESS. Although the supercapacitor module and the bidirectional DC–DC converter were
added to HESS, the total cost of HESS was only 59.07% of the cost of BESS due to the
dramatic drop in the cost of Li-ion battery.
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6. Conclusions

In this paper, a supercapacitor/battery semi-active HESS with a full current-type
control strategy was proposed for pulsed power loads. The peak load power was allocated
to the supercapacitors, and the normal load power was provided by the batteries. By
directly controlling the output current of the DC–DC converter, the control system was
simplified, and the model parameters were needless. The rated capacity of the battery pack
was greatly reduced because the peak load power was allocated to the supercapacitors.
The experimental results show that the full current-type control strategy has good control
performance. Compared with the traditional BESS, the total weight of HESS was reduced
by 19.89%, the energy utilization coefficient increased by 34.24%, and the cost was only
59.07% of the cost of BESS.
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