Advantage of a Thermoelectric Generator with Hybridization of Segmented Materials and Irregularly Variable Cross-Section Design
Abstract
:1. Introduction
2. Physical Model
2.1. TEG Structure Design
2.2. Governing Equations
2.3. Irregularly Variable Cross-Section Design and Boundary Conditions
2.4. Optimization Algorithm
2.5. Model Validation
3. Results and Discussion
3.1. Effects of Segment Material Coupled with Irregularly Variable Cross-Section
3.2. Optimization of the S-IVCS Design
3.3. Physics behind the Advantageous Performance
4. Conclusions
- (1)
- It is demonstrated that neither only segmented design nor only variable cross-section design could reach the optimal performance for a TEG with certain volume. Coupling segmented material and irregularly variable cross-section design together is feasible to further boost the output power.
- (2)
- The optimization results confirm the advantage of the proposed S-IVCS design. Compared with the conventional ones, the output power increased from 39.49 mW to 59.91 mW for the S-IVCS design, and from 38.56 to 41.48 mW for the only variable cross-section design. The betterments were enhanced by 51.71% and 7.57% respectively.
- (3)
- There is complex coupling between the appropriate segmented pattern and the irregularly variable cross-section shape. The optimized topography not only rendered the thermal resistance re-distributed but also altered the electrical resistance profile, leading to improved temperature and potential distribution.
- (4)
- The optimized structure by S-IVCS design strategy reaches a higher average figure of merit than conventional designs. It provides a promising method to enhance TEG performance without an increase in the cost of manufacturing.
Author Contributions
Funding
Conflicts of Interest
References
- DiSalvo, F.J. Thermoelectric cooling and power generation. Science 1999, 285, 703–705. [Google Scholar] [CrossRef] [PubMed]
- Bell, L.E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 2008, 321, 1457–1461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tohidi, F.; Holagh, S.G.; Chitsaz, A. Thermoelectric Generators: A comprehensive review of characteristics and applications. Appl. Therm. Eng. 2022, 201, 117793. [Google Scholar] [CrossRef]
- Shakouri, A. Recent developments in semiconductor thermoelectric physics and materials. Annu. Rev. Mater. Res. 2011, 41, 399–431. [Google Scholar] [CrossRef]
- Gayner, C.; Kar, K.K. Recent advances in thermoelectric materials. Prog. Mater. Sci. 2016, 83, 330–382. [Google Scholar] [CrossRef]
- Shittu, S.; Li, G.Q.; Zhao, X.D.; Ma, X.L. Review of thermoelectric geometry and structure optimization for performance enhancement. Appl. Energy 2020, 268, 115075. [Google Scholar] [CrossRef]
- Karana, D.R.; Sahoo, R.R. Influence of geometric parameter on the performance of a new asymmetrical and segmented thermoelectric generator. Energy 2019, 179, 90–99. [Google Scholar] [CrossRef]
- Wang, X.J.; Qi, J.; Deng, W.; Li, G.P.; Gao, X.D.; He, L.X.; Zhang, S.X. An optimized design approach concerning thermoelectric generators with frustum-shaped legs based on three-dimensional multiphysics Model. Energy 2021, 233, 120810. [Google Scholar] [CrossRef]
- Maduabuchi, C.; Njoku, H.; Eke, M.; Mgbemene, C.; Lamba, R.; Ibrahim, J.S. Overall performance optimisation of tapered leg geometry based solar thermoelectric generators under isoflux conditions. J. Power Sources 2021, 500, 229989. [Google Scholar] [CrossRef]
- Yin, T.; Li, Z.M.; Peng, P.; Liu, W.; Shao, Y.Y.; He, Z.Z. Performance analysis and design optimization of a compact thermoelectric generator with T-Shaped configuration. Energy 2021, 229, 120652. [Google Scholar] [CrossRef]
- Maduabuchi, C.C.; Eke, M.N.; Mgbemene, C.A. Solar power generation using a two-stage X-leg thermoelectric generator with high-temperature materials. Int. J. Energy Res. 2021, 45, 13163–13181. [Google Scholar] [CrossRef]
- Khalil, A.; Elhassnaoui, A.; Yadir, S.; Abdellatif, O.; Errami, Y.; Sahnoun, S. Performance comparison of TEGs for diverse variable leg geometry with the same leg volume. Energy 2021, 224, 119967. [Google Scholar] [CrossRef]
- Sahin, A.Z.; Yilbas, B.S. The thermoelement as thermoelectric power generator: Effect of leg geometry on the efficiency and power generation. Energy Convers. Manag. 2013, 65, 26–32. [Google Scholar] [CrossRef]
- Wang, P.; Wang, B.; Wang, K.; Gao, R.; Xi, L. An analytical model for performance prediction and optimization of thermoelectric generators with varied leg cross-sections. Int. J. Heat Mass Transf. 2021, 174, 121292. [Google Scholar] [CrossRef]
- Zhang, G.; Fan, L.; Niu, Z.; Jiao, K.; Diao, H.; Du, Q.; Shu, G. A comprehensive design method for segmented thermoelectric Generator. Energy Convers. Manag. 2015, 106, 510–519. [Google Scholar] [CrossRef]
- Chen, W.H.; Chiou, Y.B. Geometry design for maximizing output power of segmented skutterudite thermoelectric generator by evolutionary computation. Appl. Energy 2020, 274, 115296. [Google Scholar] [CrossRef]
- Yin, T.; He, Z.Z. Analytical model-based optimization of the thermoelectric cooler with temperature-dependent materials under different operating conditions. Appl. Energy 2021, 299, 117340. [Google Scholar] [CrossRef]
- Ge, Y.; Liu, Z.; Sun, H.; Liu, W. Optimal design of a segmented thermoelectric generator based on three-dimensional numerical simulation and multi-objective genetic Algorithm. Energy 2018, 147, 1060–1069. [Google Scholar] [CrossRef]
- Zhao, J.; Xu, W.; Kuang, Z.; Long, R.; Liu, Z.; Liu, W. Segmental material design in thermoelectric devices to boost heat-to-electricity performance. Energy Convers. Manag. 2021, 247, 114754. [Google Scholar] [CrossRef]
- Kishore, R.A.; Sanghadasa, M.; Priya, S. Optimization of segmented thermoelectric generator using Taguchi and ANOVA techniques. Sci. Rep. 2017, 7, 16746. [Google Scholar] [CrossRef]
- Ma, X.; Shu, G.; Tian, H.; Xu, W.; Chen, T. Performance assessment of engine exhaust-based segmented thermoelectric generators by length ratio optimization. Appl. Energy 2019, 248, 614–625. [Google Scholar] [CrossRef]
- Jia, X.; Gao, Y. Estimation of thermoelectric and mechanical performances of segmented thermoelectric generators under optimal operating Conditions. Appl. Therm. Eng. 2014, 73, 335–342. [Google Scholar] [CrossRef]
- Tian, H.; Sun, X.; Jia, Q.; Liang, X.; Shu, G.; Wang, X. Comparison and parameter optimization of a segmented thermoelectric generator by using the high temperature exhaust of a diesel engine. Energy 2015, 84, 121–130. [Google Scholar] [CrossRef]
- Heber, L.; Schwab, J.; Knobelspies, T. 3 kW Thermoelectric Generator for Natural Gas-Powered Heavy-Duty Vehicles—Holistic Development, Optimization and Validation. Energies 2022, 15, 15. [Google Scholar] [CrossRef]
- Hadjistassou, C.; Kyriakides, E.; Georgiou, J. Designing high efficiency segmented thermoelectric generators. Energy Convers. Manag. 2013, 66, 165–172. [Google Scholar] [CrossRef]
- Hatanaka, T.; Korenaga, T.; Kondo, N.; Uosaki, K. Search performance improvement for PSO in high dimensional space. In Particle Swarm Optimization; InTech: Rijeka, Croatia, 2009; Chapter 15; pp. 249–260. ISBN 978-953-7619-48-0. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.; Pant, M.; Abraham, A. Improving differential evolution algorithm by synergizing different improvement mechanisms. ACM Trans. Auton. Adapt. Syst. 2012, 7, 1–32. [Google Scholar] [CrossRef]
- Garmejani, H.A.; Hossainpour, S. Single and multi-objective optimization of a TEG system for optimum power, cost and second law efficiency using genetic algorithm. Energy Convers. Manag. 2021, 228, 113658. [Google Scholar] [CrossRef]
- Zhu, L.; Li, H.; Chen, S.; Tian, X.; Kang, X.; Jiang, X.; Qiu, S. Optimization analysis of a segmented thermoelectric generator based on genetic algorithm. Renew. Energ. 2020, 156, 710–718. [Google Scholar] [CrossRef]
- Coley, D.A. An Introduction to Genetic Algorithms for Scientists and Engineers; World Scientific Publishing Co., Pte. Ltd.: Singapore, 1999. [Google Scholar]
- Hu, X.; Yamamoto, A.; Ohta, M.; Nishiate, H. Measurement and simulation of thermoelectric efficiency for single leg. Rev. Sci. Instrum. 2015, 86, 45103. [Google Scholar] [CrossRef]
- Hsu, C.T.; Huang, G.Y.; Chu, H.S.; Yu, B.; Yao, D.J. An effective Seebeck coefficient obtained by experimental results of a thermoelectric generator module. Appl. Energy 2011, 88, 5173–5179. [Google Scholar] [CrossRef]
- Shen, L.; Zhang, W.; Liu, G.; Tu, Z.; Lu, Q.; Chen, H.; Huang, Q. Performance enhancement investigation of thermoelectric cooler with segmented configuration. Appl. Therm. Eng. 2020, 168, 114852. [Google Scholar] [CrossRef]
- Niu, Z.Q.; Yu, S.H.; Diao, H.; Li, Q.S.; Jiao, K.; Du, Q.; Tian, H.; Shu, G.Q. Elucidating modeling aspects of thermoelectric generator. Int. J. Heat Mass Transf. 2015, 85, 12–32. [Google Scholar] [CrossRef]
- Ge, Y.; He, K.; Xiao, L.H.; Yuan, W.Z.; Huang, S.M. Geometric optimization for the thermoelectric generator with variable cross-section legs by coupling finite element method and optimization algorithm. Renew. Energ. 2022, 183, 294–303. [Google Scholar] [CrossRef]
- Ibeagwu, O.I. Modelling and comprehensive analysis of TEGs with diverse variable leg geometry. Energy 2019, 180, 90–106. [Google Scholar] [CrossRef]
- Al-Merbati, A.S.; Yilbas, B.S.; Sahin, A.Z. Thermodynamics and thermal stress analysis of thermoelectric power generator: Influence of pin geometry on device performance. Appl. Therm. Eng. 2013, 50, 683–692. [Google Scholar] [CrossRef]
1.5 mm | 1.0 mm | 0.4 mm | 3.0 mm | 0.1 mm | 0.2 mm |
Volume (mm3) | Design | P1 (mm) | P2 (mm) | P3 (mm) | P4 (mm) | P5 (mm) | P6 (mm) | P7 (mm) | |
P-leg | 3.00 | IVCS 1 | 0.40 | 0.35 | 0.30 | 0.25 | 0.20 | 0.15 | 0.10 |
Rect. | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | ||
3.17 | IVCS 2 | 0.35 | 0.25 | 0.15 | 0.05 | 0.15 | 0.25 | 0.35 | |
Rect. | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | ||
3.08 | IVCS 3 | 0.30 | 0.35 | 0.30 | 0.25 | 0.20 | 0.10 | 0.15 | |
Rect. | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | ||
Volume (mm3) | design | N1 (mm) | N2 (mm) | N3 (mm) | N4 (mm) | N5 (mm) | N6 (mm) | N7 (mm) | |
N-leg | 2.82 | IVCS 1 | 2.00 | 2.05 | 2.10 | 2.20 | 2.25 | 2.30 | 2.35 |
Rect. | 2.18 | 2.18 | 2.18 | 2.18 | 2.18 | 2.18 | 2.18 | ||
2.98 | IVCS 2 | 2.00 | 2.10 | 2.20 | 2.30 | 2.20 | 2.10 | 2.00 | |
Rect. | 2.15 | 2.15 | 2.15 | 2.15 | 2.15 | 2.15 | 2.15 | ||
2.45 | IVCS 3 | 2.30 | 2.10 | 2.20 | 2.30 | 2.25 | 2.30 | 2.35 | |
Rect. | 2.24 | 2.24 | 2.24 | 2.24 | 2.24 | 2.24 | 2.24 |
P1 (mm) | P2 (mm) | P3 (mm) | P4 (mm) | P5 (mm) | P6 (mm) | P7 (mm) |
---|---|---|---|---|---|---|
0.41 | 0.48 | 0.49 | 0.26 | 0.44 | 0.23 | 0.31 |
N1 (mm) | N2 (mm) | N3 (mm) | N4 (mm) | N5 (mm) | N6 (mm) | N7 (mm) |
2.27 | 2.32 | 2.39 | 2.40 | 2.28 | 2.40 | 2.29 |
I (A) | γ | δ | Popt (mW) | Prect (mW) | ||
0.66 | 0.56 | 0.76 | 59.91 | 39.49 |
P1 (mm) | P2 (mm) | P3 (mm) | P4 (mm) | P5 (mm) | P6 (mm) | P7 (mm) |
---|---|---|---|---|---|---|
0.14 | 0.27 | 0.50 | 0.49 | 0.44 | 0.27 | 0.14 |
N1 (mm) | N2 (mm) | N3 (mm) | N4 (mm) | N5 (mm) | N6 (mm) | N7 (mm) |
2.40 | 2.29 | 2.40 | 2.40 | 2.37 | 2.40 | 2.13 |
I (A) | Popt (mW) | Prect (mW) | ||||
0.48 | 41.48 | 38.56 |
Designs | Average Figure of Merit | |
---|---|---|
P-leg | S-IVCSopt | 0.86575 |
S-IVCSrect | 0.53359 | |
IVCSopt | 0.50990 | |
IVCSrect | 0.52500 | |
N-leg | S-IVCSopt | 1.05570 |
S-IVCSrect | 0.87312 | |
IVCSopt | 0.87913 | |
IVCSrect | 0.86025 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.-Q.; Sun, J.; Wang, G.-X.; Wang, T.-H. Advantage of a Thermoelectric Generator with Hybridization of Segmented Materials and Irregularly Variable Cross-Section Design. Energies 2022, 15, 2944. https://doi.org/10.3390/en15082944
Zhang Y-Q, Sun J, Wang G-X, Wang T-H. Advantage of a Thermoelectric Generator with Hybridization of Segmented Materials and Irregularly Variable Cross-Section Design. Energies. 2022; 15(8):2944. https://doi.org/10.3390/en15082944
Chicago/Turabian StyleZhang, Ye-Qi, Jiao Sun, Guang-Xu Wang, and Tian-Hu Wang. 2022. "Advantage of a Thermoelectric Generator with Hybridization of Segmented Materials and Irregularly Variable Cross-Section Design" Energies 15, no. 8: 2944. https://doi.org/10.3390/en15082944
APA StyleZhang, Y. -Q., Sun, J., Wang, G. -X., & Wang, T. -H. (2022). Advantage of a Thermoelectric Generator with Hybridization of Segmented Materials and Irregularly Variable Cross-Section Design. Energies, 15(8), 2944. https://doi.org/10.3390/en15082944