Identifying the Determinants of Crude Oil Market Volatility by the Multivariate GARCH-MIDAS Model
Abstract
:1. Introduction
- For policymakers, crude oil price volatility involves energy security issues.
- For institutional investors, volatility presents an opportunity to capitalize on risk. Commodity derivatives evaluation and hedging are also closely associated with the volatility of the crude oil futures market.
- (1)
- Macroeconomic uncertainty, financial market uncertainty, and default yield spread are selected from those twenty variables. Crude oil supply and demand, which were widely discussed in previous studies, are surprisingly not selected.
- (2)
- Macroeconomic uncertainty and financial market uncertainty have positive impacts, and default yield spread has negative impacts on the crude oil market volatility.
- (3)
- The recursive out-of-sample forecast results show that our model significantly outperforms the other GARCH-MIDAS models, illustrating the predictive power of the selected variables.
2. Literature Review
3. Model
3.1. The GARCH-MIDAS Model
- for , and
- when and , the weight is gradually decreased as the lag period increases.
3.2. Multivariate GARCH-MIDAS Model
3.3. Parameter Estimation
4. Data
4.1. Crude Oil Fundamental Data
4.2. Macroeconomic Data
4.3. Economic Uncertainty Index
4.4. Financial Market Data
4.5. Descriptive Statistics
5. Empirical Analysis
5.1. In-Sample Analysis
- Estimate the GARCH-MIDAS model with all 20 variables in Equation (6) and obtain the parameter estimates and . Calculate the adaptive weights .
- Estimate the GARCH-MIDAS model with variable selection in Equation (7) conditional on , with the tuning parameter on a grid of . Obtain the parameter estimates , and calculate the GIC for each value of .
- Determine the optimal by GIC, and obtain the selected variables.
- Do post-selection estimate with the selected variables, and test their significance.
5.2. Out-of-Sample Forecast Evaluations
- Basic GARCH model;
- Univariate GARCH-MIDAS models (20 in total);
- GARCH-MIDAS model with all 20 variables.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, J.; Huang, Y.; Ma, F.; Chevallier, J. Does high-frequency crude oil futures data contain useful information for predicting volatility in the US stock market? New evidence. Energy Econ. 2020, 91, 104897. [Google Scholar] [CrossRef]
- Wen, F.; Xiao, J.; Huang, C.; Xia, X. Interaction between oil and US dollar exchange rate: Nonlinear causality, time-varying influence and structural breaks in volatility. Appl. Econ. 2018, 50, 319–334. [Google Scholar] [CrossRef]
- Chairman, B.; Fama, E.F. Efficient capital markets: A review of theory and empirical work. J. Financ. 1970, 25, 383–417. [Google Scholar]
- Chen, Y.C.; Rogoff, K.; Rossi, B. Can Exchange Rates Forecast Commodity Prices? In The Quarterly Journal of Economics; MIT Press: Cambridge, MA, USA, 2010; Volume 125, pp. 1145–1194. [Google Scholar]
- Tabak, B.M.; Cajueiro, D.O. Are the crude oil markets becoming weakly efficient over time? A test for time-varying long-range dependence in prices and volatility. Energy Econ. 2007, 29, 28–36. [Google Scholar] [CrossRef]
- Wang, Y.; Li, L. Is WTI crude oil market becoming weakly efficient over time?: New evidence from multiscale analysis based on detrended fluctuation analysis. Energy Econ. 2010, 32, 987–992. [Google Scholar] [CrossRef]
- Hui, Z. Taylor and Francis Online: The Adaptive Lasso and Its Oracle Properties. J. Am. Stat. Assoc. 2006, 101, 1418–1429. [Google Scholar]
- Ghysels, E.; Qian, H. Estimating MIDAS regressions via OLS with polynomial parameter profiling. Econom. Stat. 2018. [Google Scholar] [CrossRef]
- Fan, Y.; Tang, C.Y. Tuning parameter selection in high dimensional penalized likelihood. J. R. Stat. Soc. 2013, 75, 531–552. [Google Scholar] [CrossRef] [Green Version]
- Yu, W.; Liu, J.; Lai, X.; Hu, Y. Which determinant is the most informative in forecasting crude oil market volatility: Fundamental, speculation, or uncertainty? Energy Econ. 2017, 68, 141–150. [Google Scholar]
- Vo, M.T. Regime-switching stochastic volatility: Evidence from the crude oil market. Energy Econ. 2009, 31, 779–788. [Google Scholar] [CrossRef]
- Cheong, C.W. Modeling and forecasting crude oil markets using ARCH-type models. Energy Policy 2009, 37, 2346–2355. [Google Scholar] [CrossRef]
- Sadorsky, P. Modeling and forecasting petroleum futures volatility. Energy Econ. 2006, 28, 467–488. [Google Scholar] [CrossRef]
- Mohammadi, H.; Su, L. International evidence on crude oil price dynamics: Applications of ARIMA-GARCH models. Energy Econ. 2010, 32, 1001–1008. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, H.; Wang, T. Modeling long memory volatility using realized measures of volatility: A realized HAR GARCH model. Econ. Model. 2016, 52, 812–821. [Google Scholar] [CrossRef]
- Salisu, A.; Fasanya, I.O. Modelling oil price volatility with structural breaks. Energy Policy 2013, 52, 554–562. [Google Scholar] [CrossRef]
- Klein, T.; Walther, T. Oil Price Volatility Forecast with Mixture Memory GARCH. Energy Econ. 2016, 58, 46–58. [Google Scholar] [CrossRef] [Green Version]
- Engle, R.F.; Rangel, J.G. The Spline-GARCH Model for Low-Frequency Volatility and Its Global Macroeconomic Causes. Rev. Financ. Stud. 2008, 21, 1187–1222. [Google Scholar] [CrossRef]
- Engle, R.F.; Ghysels, E.; Sohn, B. Stock market volatility and macroeconomic fundamentals. Rev. Econ. Stat. 2013, 95, 776–797. [Google Scholar] [CrossRef]
- Conrad, C.; Loch, K.; Rittler, D. On the macroeconomic determinants of long-term volatilities and correlations in U.S. stock and crude oil markets. J. Empir. Financ. 2012, 29, 26–40. [Google Scholar] [CrossRef]
- Asgharian, H.; Hou, A.J.; Javed, F. The Importance of the Macroeconomic Variables in Forecasting Stock Return Variance: A GARCH-MIDAS Approach. J. Forecast. 2013, 32, 600–612. [Google Scholar] [CrossRef] [Green Version]
- Conrad, C.; Loch, K. Anticipating Long-Term Stock Market Volatility. J. Appl. Econom. 2014, 30, 394. [Google Scholar]
- Su, Z.; Fang, T.; Yin, L. The role of news-based implied volatility among US financial markets. Econ. Lett. 2017, 157, 24–27. [Google Scholar] [CrossRef]
- Conrad, C.; Kleen, O. Two are better than one: Volatility forecasting using multiplicative component GARCH-MIDAS models. J. Appl. Econom. 2020, 35, 19–45. [Google Scholar] [CrossRef] [Green Version]
- Pan, Z.; Wang, Y.; Wu, C.; Yin, L. Oil price volatility and macroeconomic fundamentals: A regime switching GARCH-MIDAS model. J. Empir. Financ. 2017, 43, 130–142. [Google Scholar] [CrossRef]
- Dees, S.; Karadeloglou, P.; Kaufmann, R.K.; Sanchez, M. Modelling the world oil market: Assessment of a quarterly econometric model. Energy Policy 2007, 35, 178–191. [Google Scholar] [CrossRef]
- Kilian, L. Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market. Am. Econ. Rev. 2009, 99, 1053–1069. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, J.D. Understanding Crude Oil Prices. Energy J. 2009, 30, 179–206. [Google Scholar] [CrossRef] [Green Version]
- Schwert, G.W. Why Does Stock Market Volatility Change Over Time? J. Financ. 1989, 44, 1115–1153. [Google Scholar] [CrossRef]
- Paye, B.S. ‘Déjà vol’: Predictive regressions for aggregate stock market volatility using macroeconomic variables. J. Financ. Econ. 2012, 106, 527–546. [Google Scholar] [CrossRef] [Green Version]
- Charlotte, C.; Maik, S.; Andreas, S.; Andreas, S. A comprehensive look at financial volatility prediction by economic variables. J. Appl. Econom. 2012, 27, 956–977. [Google Scholar] [CrossRef] [Green Version]
- Gkillas, K.; Gupta, R.; Pierdzioch, C. Forecasting Realized Oil-Price Volatility: The Role of Financial Stress and Asymmetric Loss. J. Int. Money Financ. 2019, 104, 102137. [Google Scholar] [CrossRef]
- Pastor, L.; Veronesi, P. Uncertainty about Government Policy and Stock Prices. J. Financ. 2012, 67, 1219–1264. [Google Scholar] [CrossRef]
- Gong, X.; Lin, B. The incremental information content of investor fear gauge for volatility forecasting in the crude oil futures market. Energy Econ. 2018, 74, 370–386. [Google Scholar] [CrossRef]
- Chiang, I.H.E.; Hughen, W.K.; Sagi, J.S. Estimating Oil Risk Factors Using Information from Equity and Derivatives Markets. J. Financ. 2015, 70, 769–804. [Google Scholar] [CrossRef]
- Kang, B.; Nikitopoulos, C.S.; Prokopczuk, M. Economic determinants of oil futures volatility: A term structure perspective. Energy Econ. 2020, 88, 104743. [Google Scholar] [CrossRef]
- Ghysels, E.; Valkanov, A. MIDAS Regressions: Further Results and New Directions. Econom. Rev. 2007, 26, 53–90. [Google Scholar] [CrossRef]
- Marsilli, C. Variable Selection in Predictive MIDAS Models. SSRN J. 2014. [Google Scholar] [CrossRef] [Green Version]
- Tibshirani, R. Regression Shrinkage and Selection via the Lasso. J. R. Stat. Soc. Ser. B 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Boriss, S. Short-term forecasting with mixed-frequency data: A MIDASSO approach. Appl. Econ. 2017, 49, 1326–1343. [Google Scholar] [CrossRef] [Green Version]
- Bai, J.; Ng, S. Forecasting economic time series using targeted predictors. J. Econom. 2009, 146, 304–317. [Google Scholar] [CrossRef] [Green Version]
- Mu, X.; Ye, H. Understanding the Crude Oil Price: How Important Is the China Factor? Energy J. 2011, 32. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, L. Crude oil and world stock markets: Volatility spillovers, dynamic correlations, and hedging. Empir. Econ. 2016, 50, 1481–1509. [Google Scholar] [CrossRef]
- Jurado, K.; Ludvigson, S.C.; Ng, S. Measuring Uncertainty. Am. Econ. Rev. 2015, 105, 1177–1216. [Google Scholar] [CrossRef]
- Baker, S.R.; Bloom, N.; Davis, S.J. Measuring Economic Policy Uncertainty. Q. J. Econ. 2016, 131, 1593–1636. [Google Scholar] [CrossRef]
- Qiu, L.X.; Welch, I. Investor Sentiment Measures. NBER Work. Pap. 2004, 117, 367–377. [Google Scholar]
- Morana, C. Oil price dynamics, macro-finance interactions and the role of financial speculation. J. Bank. Financ. 2013, 37, 206–226. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.J.; Wang, J.L. Do high-frequency stock market data help forecast crude oil prices? Evidence from the MIDAS models. Energy Econ. 2019, 78, 192–201. [Google Scholar] [CrossRef]
- Ratti, K. Oil shocks, policy uncertainty and stock market return. J. Int. Financ. Mark. Inst. Money 2013, 26, 305–318. [Google Scholar]
- Chen, S.S. Forecasting Crude Oil Price Movements with Oil-Sensitive Stocks. Econ. Inq. 2014, 52, 830–844. [Google Scholar] [CrossRef]
- Welch, I.; Goyal, A. A Comprehensive Look at the Empirical Performance of Equity Premium Prediction. Rev. Financ. Stud. 2009, 21, 1455–1508. [Google Scholar] [CrossRef]
- Ghysels, E.; Sinko, A. Volatility forecasting and microstructure noise. J. Econom. 2011, 160, 257–271. [Google Scholar] [CrossRef]
- Giacomini, R.; White, H. Tests of Conditional Predictive Ability. Econometrica 2006, 74, 1545–1578. [Google Scholar] [CrossRef] [Green Version]
Variable | Mean | Std. | Min. | Max. | Skew | Kurt. | Uint Root Test |
---|---|---|---|---|---|---|---|
WTI log return | 0.01 | 2.5 | −40.64 | 19.15 | −0.63 | 13.53 | −19.38 *** |
Oil Production | 1.97 | 1.69 | −57.25 | 72.15 | 0.47 | 6.28 | −9.69 *** |
GEA | 0.07 | 0.6 | −100.19 | 69.46 | −0.71 | 5.9 | −9.32 *** |
Unemployment rate | −0.01 | 0 | −0.5 | 0.5 | 0.39 | 1.07 | −3.77 ** |
Industrial production | 2.2 | 2.4 | −40.77 | 27.93 | −0.76 | 3.85 | −5.32 *** |
CPI | 2.6 | 2.61 | −19.29 | 17.83 | −0.86 | 8.61 | −7.40 *** |
PPI | 2.27 | 2.44 | −30.86 | 25.41 | −0.35 | 2.48 | −6.67 *** |
Personal consumption | 2.96 | 2.9 | −26.27 | 33.17 | 0.68 | 8.07 | −5.24 *** |
Housing starts | 49.1 | −4.19 | −91.21 | 1219.03 | 3.57 | 17.35 | −7.51 *** |
Monetary base | 6.19 | 4.57 | −33.29 | 95.61 | 2.86 | 17.65 | −4.97 *** |
CFNAI | −0.04 | 0.02 | −2.6 | 0.6 | −2.57 | 10.02 | −3.78 ** |
Macroeconomic uncertainty | 0 | 0.15 | −0.54 | 0.81 | 0.92 | 5.09 | −6.24 *** |
Financial uncertainty | 0.01 | 0.15 | −1.95 | 2.14 | 0.4 | 6.46 | −7.13 *** |
EPU | 114.08 | 103.7 | 44.78 | 284.14 | 1.27 | 1.78 | −4.15 *** |
CSI | 0.01 | −0.2 | −12.7 | 17.3 | 0.01 | 1.41 | −8.40 *** |
AMEX oil index | 34.09 | 11.06 | −92.8 | 679.5 | 2.79 | 10.93 | −7.54 *** |
Oil industry returns | 0.92 | 0.98 | −18.29 | 19.13 | −0.1 | 0.89 | −7.59 *** |
RV | 0.01 | 0.01 | 0 | 0.26 | 6.6 | 67.21 | −6.77 *** |
svar | 0.27 | 0.14 | 0.02 | 7.09 | 8.41 | 88.13 | −5.52 *** |
Term spread | −0.05 | −0.2 | −11.6 | 9.6 | 0.44 | 0.95 | −5.55 *** |
Default yield spread | −0.01 | −0.01 | −7.23 | 6.9 | −0.6 | 67.66 | −8.23 *** |
prod | GEA | unem | ipt | cpi | ppi | pc | hs | mb | cfnai | uim | uif | epu | csi | oi | mkt | rv | svar | ts | dfy | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
prod | 1.00 | 0.01 | −0.07 | 0.16 | −0.01 | −0.05 | −0.06 | 0.04 | −0.01 | 0.08 | 0.05 | 0.07 | −0.04 | −0.03 | −0.02 | 0.00 | −0.06 | 0.00 | −0.07 | −0.12 |
GEA | 0.01 | 1.00 | 0.00 | 0.07 | 0.08 | 0.10 | 0.05 | −0.04 | −0.04 | 0.01 | −0.09 | −0.05 | −0.01 | −0.04 | 0.02 | 0.03 | 0.00 | −0.01 | −0.04 | −0.02 |
unem | −0.07 | 0.00 | 1.00 | −0.23 | 0.03 | 0.00 | −0.05 | −0.09 | 0.01 | −0.31 | −0.01 | 0.02 | 0.14 | −0.02 | −0.01 | −0.03 | 0.21 | 0.20 | 0.01 | 0.04 |
ipt | 0.16 | 0.07 | −0.23 | 1.00 | 0.00 | −0.03 | 0.21 | 0.05 | −0.13 | 0.54 | −0.10 | 0.03 | −0.18 | −0.07 | −0.05 | −0.04 | −0.23 | −0.11 | −0.05 | −0.09 |
cpi | −0.01 | 0.08 | 0.03 | 0.00 | 1.00 | 0.64 | −0.11 | −0.02 | −0.06 | 0.02 | 0.09 | 0.02 | −0.14 | −0.18 | 0.02 | 0.04 | −0.13 | −0.06 | 0.11 | 0.08 |
ppi | −0.05 | 0.10 | 0.00 | −0.03 | 0.64 | 1.00 | −0.06 | 0.06 | −0.04 | −0.03 | 0.08 | 0.00 | −0.06 | −0.09 | 0.07 | 0.09 | −0.13 | −0.06 | 0.14 | 0.08 |
pc | −0.06 | 0.05 | −0.05 | 0.21 | −0.11 | −0.06 | 1.00 | 0.07 | −0.12 | 0.27 | −0.01 | −0.04 | −0.15 | 0.02 | 0.10 | 0.11 | 0.00 | −0.08 | 0.01 | 0.02 |
hs | 0.04 | −0.04 | −0.09 | 0.05 | −0.02 | 0.06 | 0.07 | 1.00 | 0.01 | 0.03 | −0.03 | −0.06 | 0.00 | −0.05 | −0.05 | −0.06 | −0.10 | −0.03 | 0.00 | 0.00 |
mb | −0.01 | −0.04 | 0.01 | −0.13 | −0.06 | −0.04 | −0.12 | 0.01 | 1.00 | −0.22 | −0.02 | −0.11 | 0.34 | 0.06 | −0.05 | −0.06 | −0.05 | −0.02 | 0.10 | 0.11 |
cfnai | 0.08 | 0.01 | −0.31 | 0.54 | 0.02 | −0.03 | 0.27 | 0.03 | −0.22 | 1.00 | −0.02 | 0.07 | −0.40 | 0.05 | 0.06 | 0.05 | −0.21 | −0.23 | −0.20 | −0.20 |
uim | 0.05 | −0.09 | −0.01 | −0.10 | 0.09 | 0.08 | −0.01 | −0.03 | −0.02 | −0.02 | 1.00 | 0.29 | 0.02 | −0.08 | −0.11 | −0.11 | 0.06 | 0.02 | −0.01 | −0.12 |
uif | 0.07 | −0.05 | 0.02 | 0.03 | 0.02 | 0.00 | −0.04 | −0.06 | −0.11 | 0.07 | 0.29 | 1.00 | −0.14 | −0.08 | −0.17 | −0.19 | 0.01 | 0.02 | 0.02 | −0.12 |
epu | −0.04 | −0.01 | 0.14 | −0.18 | −0.14 | −0.06 | −0.15 | 0.00 | 0.34 | −0.40 | 0.02 | −0.14 | 1.00 | −0.07 | −0.13 | −0.13 | 0.07 | 0.27 | 0.07 | 0.10 |
csi | −0.03 | −0.04 | −0.02 | −0.07 | −0.18 | −0.09 | 0.02 | −0.05 | 0.06 | 0.05 | −0.08 | −0.08 | −0.07 | 1.00 | 0.01 | 0.01 | −0.05 | −0.14 | −0.05 | 0.03 |
oi | −0.02 | 0.02 | −0.01 | −0.05 | 0.02 | 0.07 | 0.10 | −0.05 | −0.05 | 0.06 | −0.11 | −0.17 | −0.13 | 0.01 | 1.00 | 0.95 | −0.11 | −0.20 | 0.10 | 0.19 |
mkt | 0.00 | 0.03 | −0.03 | −0.04 | 0.04 | 0.09 | 0.11 | −0.06 | −0.06 | 0.05 | −0.11 | −0.19 | −0.13 | 0.01 | 0.95 | 1.00 | −0.12 | −0.19 | 0.11 | 0.18 |
rv | −0.06 | 0.00 | 0.21 | −0.23 | −0.13 | −0.13 | 0.00 | −0.10 | −0.05 | −0.21 | 0.06 | 0.01 | 0.07 | −0.05 | −0.11 | −0.12 | 1.00 | 0.38 | −0.03 | −0.04 |
svar | 0.00 | −0.01 | 0.20 | −0.11 | −0.06 | −0.06 | −0.08 | −0.03 | −0.02 | −0.23 | 0.02 | 0.02 | 0.27 | −0.14 | −0.20 | −0.19 | 0.38 | 1.00 | 0.04 | −0.04 |
ts | −0.07 | −0.04 | 0.01 | −0.05 | 0.11 | 0.14 | 0.01 | 0.00 | 0.10 | −0.20 | −0.01 | 0.02 | 0.07 | −0.05 | 0.10 | 0.11 | −0.03 | 0.04 | 1.00 | 0.80 |
dfy | −0.12 | −0.02 | 0.04 | −0.09 | 0.08 | 0.08 | 0.02 | 0.00 | 0.11 | −0.20 | −0.12 | −0.12 | 0.10 | 0.03 | 0.19 | 0.18 | −0.04 | −0.04 | 0.80 | 1.00 |
m | |||||||
0.028 | 0.051 *** | 0.944 *** | 0.009 | −0.312 | 0.736 *** | 1.121 *** | −1.240 *** |
(0.033) | (0.016) | (0.014) | (0.010) | (0.865) | (0.242) | (0.256) | (0.472) |
1.265 * | 6.012 | 3.453 ** | 4.386 ** | 1.000 | 4.426 *** | ||
(0.784) | (8.698) | (1.478) | (1.802) | (1.141) | (2.130) |
GARCH Model | 1.2101 (−) *** | ||
---|---|---|---|
Univariate GARCH-MIDAS model: | |||
Oil Production | 1.0131 (−) *** | Macroeconomic uncertainty | 1.0091 (−) *** |
GEA | 1.0140 (−) *** | Financial uncertainty | 1.0294 (−) *** |
Unemployment rate | 1.0082 (−) ** | EPU | 1.0100 (−) *** |
Industrial production | 1.0021 (−) ** | CSI | 1.0133 (−) *** |
CPI | 1.0091 (−) *** | AMEX oil index | 1.0156 (−) *** |
PPI | 1.0127 (−) *** | Oil industry returns | 1.0129 (−) *** |
Personal consumption | 1.0294 (−) *** | RV | 1.0107 (−) *** |
Housing starts | 1.0101 (−) *** | svar | 1.0091 (−) *** |
Monetary base | 1.0085 (−) ** | Term spread | 1.0123 (−) *** |
CFNAI | 1.0137 (−) *** | Default yield spread | 1.0117 (−) *** |
GARCH-MIDAS model with all 20 variables | 1.0317 (−) *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chuang, O.-C.; Yang, C. Identifying the Determinants of Crude Oil Market Volatility by the Multivariate GARCH-MIDAS Model. Energies 2022, 15, 2945. https://doi.org/10.3390/en15082945
Chuang O-C, Yang C. Identifying the Determinants of Crude Oil Market Volatility by the Multivariate GARCH-MIDAS Model. Energies. 2022; 15(8):2945. https://doi.org/10.3390/en15082945
Chicago/Turabian StyleChuang, O-Chia, and Chenxu Yang. 2022. "Identifying the Determinants of Crude Oil Market Volatility by the Multivariate GARCH-MIDAS Model" Energies 15, no. 8: 2945. https://doi.org/10.3390/en15082945
APA StyleChuang, O. -C., & Yang, C. (2022). Identifying the Determinants of Crude Oil Market Volatility by the Multivariate GARCH-MIDAS Model. Energies, 15(8), 2945. https://doi.org/10.3390/en15082945