Sedimentary Environment and Model for Organic Matter Enrichment: Chang 7 Shale of Late Triassic Yanchang Formation, Southern Margin of Ordos Basin, China
Abstract
:1. Introduction
2. Geological Setting
3. Samples and Methods
3.1. Samples
3.2. Experimental Methods
4. Results
4.1. Total Organic Carbon Contents
4.2. Major and Trace Element Geochemistry
4.3. Molecular Geochemical Characteristics
4.3.1. n-alkanes and Isoprenoids
4.3.2. Steranes and Terpanes
4.4. Mineral Constituent of Shale
4.5. Volcanic Tuff and Hydrothermal Mineral in Shale
5. Discussion
5.1. Sedimentary Environment and Its Impact on OM Enrichment
5.1.1. Biological Productivity and Its Impact on OM Enrichment
5.1.2. Biomarker Assemblages and Depositional Environments
5.1.3. Climate Conditions
5.1.4. Paleowater Conditions
5.1.5. Terrestrial Inputs and Hydrodynamic Conditions
5.1.6. Volcanism and Hydrothermal Activity
5.2. Enrichment Model of Lacustrine OM
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miall, A.D. Architectural-element analysis: A new method of facies analysis applied to fluvial deposits. Earth-Sci. Rev. 1985, 22, 261–308. [Google Scholar] [CrossRef]
- Miall, A.D. Chapter Two—Sequence Stratigraphy and Geologic Time. Stratigr. Timescales 2017, 2, 59–83. [Google Scholar]
- Lüning, S.; Craig, J.; Loydell, D.K.; Štorch, P.; Fitches, B. Lower Silurian ‘hot shales’ in North Africa and Arabia: Regional distribution and depositional model. Earth-Sci. Rev. 2000, 49, 121–200. [Google Scholar] [CrossRef]
- Mohamed, W.A.; Aljubouri, Z.A.; Aldobouni, I.A. Depositional environment of the Lower Silurian Akkas hot shales in the Western Desert of Iraq: Results from an organic geochemical study. Mar. Pet. Geol. 2015, 64, 294–303. [Google Scholar]
- Jarvie, D.M.; Hill, R.J.; Ruble, T.E.; Pollastro, R.M. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bull. 2007, 91, 475–499. [Google Scholar] [CrossRef]
- Potter, C.J. Paleozoic shale gas resources in the Sichuan Basin, China. AAPG Bull. 2018, 102, 987–1009. [Google Scholar] [CrossRef]
- Pedersen, T.F.; Calvert, S.E. Anoxia vs. productivity: What controls the formation of organic-carbon-rich sediments and sedimentary rocks? AAPG Bull. 1990, 74, 454–466. [Google Scholar]
- Sageman, B.B.; Lyons, T.W. Geochemistry of Fine-grained Sediments and Sedimentary Rocks. Treatise Geochem. 2003, 7, 115–158. [Google Scholar]
- Michael, A.A.; Walter, E.D.; Kirsten, L. Organic carbon accumulation and preservation in surface sediments on the Peru margin. Chem. Geol. 1998, 152, 273–286. [Google Scholar]
- Haydon, M.; Olivier, J.; Thierry, A.; Philip, S.; Karl, F.; Virginie, M.; Zsolt, B.; Doris, S. The Cenomanian/Turonian anoxic event at the Bonarelli Level in Italy and Spain: Enhanced productivity and/or better preservation? Cretac. Res. 2007, 28, 597–612. [Google Scholar]
- McArthur, J.M.; Algeo, T.J.; Schootbrugge, B.; Li, Q.; Howarth, R.J. Basinal restriction, black shales, Re-Os dating, and the Early Toarcian (Jurassic) oceanic anoxic event. Paleoceanography 2008, 23, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Demaison, G.J.; Moore, G.T. Anoxic environments and oil source bed genesis. Org. Geochem. 1980, 2, 9–31. [Google Scholar] [CrossRef]
- Hugh, C.J. The early Toarcian (Jurassic) anoxic event; stratigraphic, sedimentary and geochemical evidence. Am. J. Sci. 1988, 288, 101–151. [Google Scholar]
- Röhl, H.J.; Schmid-Röhl, A. Lower Toarcian (Upper Liassic) Black Shales of the Central European Epicontinental Basin: A Sequence Stratigraphic Case Study from the Sw German Posidonia Shale. Spec. Publ. 2005, 82, 165–189. [Google Scholar]
- Słowakiewicz, M.; Tucker, M.E.; Perri, E.; Pancost, R.D. Nearshore euxinia in the photic zone of an ancient sea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2015, 426, 242–259. [Google Scholar] [CrossRef]
- Algeo, T.J.; Herrmann, A.D. An ancient estuarine_circulation nutrient trap: The Late Pennsylvanian Midcontinent Sea of North America. Geology 2018, 46, 143–146. [Google Scholar] [CrossRef]
- Shi, Y.Z.; Xi, D.P.; Qin, Z.H.; Tong, X.N.; Zhu, X.B.; Yu, Z.Q.; Gu, A.Q.; Song, J.Z.; Hu, J.F.; Wang, X.R.; et al. The biostratigraphy of the 2nd Member of the Nenjiang Formation from the Yuewangcheng section of the eastern Songliao Basin and its response to the lake transgression event. Geol. Bull. China 2019, 38, 1095–1104. [Google Scholar]
- Zheng, R.C.; He, L.; Liang, X.W.; Xu, W.L. Forming conditions of shale gas (oil) plays in the Lower Jurassic Da’anzhai member in the eastern Sichuan Basin. Nat. Gas Ind. 2013, 12, 30–40. [Google Scholar]
- Loucks, R.G.; Reed, R.M.; Ruppel, S.C.; Hammes, U. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bull. 2012, 96, 1071–1098. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.X.; Hou, J.G.; Li, S.H.; Dou, L.X.; Song, S.H.; Kang, Q.Q.; Wang, D.M. Insight into the nanoscale pore structure of organic-rich shales in the Bakken Formation, USA. J. Pet. Sci. Eng. 2020, 191, 107182. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, L.F.; Cheng, H.F. Gas adsorption characterization of pore structure of organic-rich shale: Insights into contribution of organic matter to shale pore network. Nat. Resour. Res. 2021, 30, 2377–2395. [Google Scholar] [CrossRef]
- Gu, Z.A.; Zheng, R.C.; Wang, L.; Liang, X.W. Characteristics of shale reservoir of Da’anzhai segment in Fuling area, eastern Chongqing. Lithol. Reserv. 2014, 26, 67–73. [Google Scholar]
- Bao, S.J.; Lin, T.; Nie, H.K.; Ren, S.M. Preliminary study of the transitional facies shale gas reservoir characteristics: Taking Permian in the Xiangzhong depression as an example. Earth Sci. Front. 2016, 23, 44–53. [Google Scholar]
- Zhang, W.Z.; Yang, H.; Li, S.P. Hydrocarbon accumulation significance of Chang 91 high-quality lacustrine source rocks of Yanchang Formation, Ordos Basin. Pet. Explor. Dev. 2008, 5, 557–562. [Google Scholar] [CrossRef]
- Liu, Z.J.; Meng, Q.T.; Liu, R. Characteristics and genetic types of continental oil shales in China. J. Palaeogeogr. 2009, 11, 105–114. [Google Scholar]
- Zheng, H.J.; Dong, Y.X.; Wang, X.D. The generation and characteristics of source rocks in nanpu oil-rich depression, Bohai Bay Bsain. Nat. Gas Geosci. 2007, 18, 78–83. [Google Scholar]
- Ni, C.; Hao, Y.; Hou, G.F.; Gu, M.F.; Zhang, L.T. Cognition and Significance of Lower Jurassic Daanzhai Organic Muddy Shell Limestone Reservoir in Central Sichuan Basin. Mar. Orig. Pet. Geol. 2012, 17, 45–56. [Google Scholar]
- Zhang, X.B. Study on the origin of the dolostone inthrcalcated in the black shales in middle permian lucaogou formayion eastern part of southern margin of Junggar Basin. Acta Sedimentol. Sin. 1993, 11, 133–140. [Google Scholar]
- Zou, C.N.; Zhao, Q.; Cong, L.Z. Development progress, potential and prospect of shale gas in China. Nat. Gas Ind. 2021, 41, 1–14. [Google Scholar]
- Zhao, Q.; Wang, H.Y.; Yang, S. Potential of continental shale gas accumulation in medium-and small-sized fault basins in eastern China: A case study from the Fuxin Basin. Nat. Gas Ind. 2018, 38, 26–33. [Google Scholar]
- Zou, C.N.; Dong, D.Z.; Wang, S.J. Geological characteristics, formation mechanism and resource potential of shale gas in China. Pet. Explor. Dev. 2010, 37, 641–653. [Google Scholar] [CrossRef]
- Yao, J.L.; Deng, X.Q.; Zhao, Y.D. Characteristics of tight oil in Triassic Yanchang Formation, Ordos Basin. Pet. Explor. Dev. 2013, 40, 150–158. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, H.F.; Hu, Q.H.; Liu, L.F.; Jia, L.B.; Gao, S.S.; Wang, Y. Pore structure heterogeneity of Wufeng-Longmaxi shale, Sichuan Basin, China: Evidence from gas physisorption and multifractal geometries. J. Pet. Sci. Eng. 2022, 208, 109313. [Google Scholar] [CrossRef]
- Zou, C.N.; Tao, S.Z.; Hou, L.H. Chapter V shale oil and gas. In Unconventional Oil and Gas Geology, 2nd ed.; Zou, C.N., Dong, D.Z., Yang, Z., Eds.; Geological Publishing House: Beijing, China, 2013; pp. 130–134. [Google Scholar]
- Luo, C.X.; Zhou, W.H. Shale oil development in US and implications. Sino-Glob. Energy 2013, 18, 33–40. [Google Scholar]
- Wang, H.J.; Ma, F.; Tong, X.G. Assessment of global unconventional oil and gas resources. Pet. Explor. Dev. 2016, 43, 850–862. [Google Scholar] [CrossRef]
- Song, Y.; Li, Z.; Jiang, Z.X. Progress and development trend of unconventional oil and gas geological research. Pet. Explor. Dev. 2017, 44, 638–648. [Google Scholar] [CrossRef]
- Jia, C.Z.; Zheng, M.; Zhang, Y.F. Unconventional hydrocarbon resources in China and the prospect of exploration and development. Pet. Explor. Dev. 2012, 39, 129–136. [Google Scholar] [CrossRef]
- Zhang, D.Q.; Zhang, J.Q.; Wang, Y.F. China’s unconventional oil and gas exploration and development: Progress and prospects. Resour. Sci. 2015, 37, 1068–1075. [Google Scholar]
- Yang, H.; Niu, X.B.; Xu, L. Exploration potential of shale oil in Chang 7 Member, Upper Triassic Yanchang Formation, Ordos Basin, NW China. Pet. Explor. Dev. 2016, 43, 511–520. [Google Scholar] [CrossRef]
- Lei, Y.; Luo, X.; Wang, X. Characteristics of silty laminae in Zhangjiatan Shale of southeastern Ordos Basin, China: Implications for shale gas formation. AAPG Bull. 2015, 99, 661–687. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, G.; Li, T. Characterization and control of mesopore structural heterogeneity for low thermal maturity shale: A case study of Yanchang Formation Shale, Ordos Basin. Energy Fuels 2017, 31, 11569–11586. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, W.; Xie, Q. Controls on organic matter accumulation in the Triassic Chang 7 lacustrine shale of the Ordos Basin, central China. Int. J. Coal Geol. 2017, 183, 38–51. [Google Scholar] [CrossRef]
- Lu, Z.X.; Chen, S.J.; He, Q.B.; Li, Y.; Zhang, J.Y.; Wu, Q.B. Relationship between methylphenanthrene distribution and organic matter maturity: A case study of Yangchang Formation Chang 7 source rocks, Ordos Basin, China. Pet. Sci. Technol. 2018, 36, 1718–1724. [Google Scholar] [CrossRef]
- Wu, F.L.; Li, W.H.; Li, Y.H. Delta sediments and evolution of the Yanchang Formation of Upper Triassic in Ordos Basin. J. Palaeogeogr. 2004, 6, 307–315. [Google Scholar]
- Liu, H.Q.; Yuan, J.Y.; Li, X.B. Lake basin evolution of Ordos Basin during Middle-Late Triassic and its origin analysis. Lithol. Reserv. 2007, 19, 52–56. [Google Scholar]
- Bai, Y.B.; Zhao, J.Z.; Zhao, Z.L.; Ying, Y.Y.; Tong, J.N. Accumulation conditions and characteristics of the Chang 7 tight oil reservoir of the the Yanchang Formation in Zhidan area, Ordos Basin. Oil Gas Geol. 2013, 34, 631–639. [Google Scholar]
- Zou, C.N.; Zhao, Z.Z.; Yang, H. Genetic Mechanism and Distribution of Sandy Debris Flows in Terrestrial Lacustrine Basin. Acta Sedimentol. Sin. 2009, 7, 1065–1075. [Google Scholar]
- Chen, S.J.; Lei, J.J.; Liu, C.; Yao, J.L.; Li, Y.; Li, S.X.; Su, K.M.; Xiao, Z.L. Factors controlling the reservoir accumulation of Triassic Chang 6 Member in Jiyuan-Wuqi area, Ordos Basin, NW China. Pertoleum Explor. Dev. 2019, 46, 253–264. [Google Scholar] [CrossRef]
- Su, K.M.; Lu, J.G.; Zhang, H.X.; Chen, S.J.; Li, Y.; Xiao, Z.L.; Qiu, W.; Han, M.M. Quantitative study on hydrocarbon expulsion mechanism based on microfracture. Geosci. Front. 2020, 11, 1901–1913. [Google Scholar] [CrossRef]
- Ren, Y.S.; Yang, X.Y.; Miao, P.S.; Hu, X.W.; Chen, Y.; Chen, L.L.; Zhao, H.L. Mineralogical and geochemical research on Pengyang deposit: A peculiar eolian sandstone-hosted uranium deposit in the southwest of Ordos Basin. Ore Geol. Rev. 2022, 141, 104571. [Google Scholar] [CrossRef]
- He, Z.X.; Fu, J.H.; Xi, S.L. Geological features of reservoir formation of Sulige gas field. Acta Pet. Sin. 2003, 2, 6–12. [Google Scholar]
- He, F.Q.; Qi, R.; Wang, F.B. Tectonic genesis of Triassic Yanchang Formation valley systems, southern Ordos Basin. Oil Gas Geol. 2021, 42, 1056–1062. [Google Scholar]
- Liu, C.Y.; Zhao, H.G.; Gui, X.J. Temporal and spatial coordinates of evolution transformation and its reservoir (ore) forming response in Ordos Basin. J. Geol. 2006, 5, 617–638. [Google Scholar]
- Yin, X.D.; Jiang, S.; Li, Y.L.; Gao, W.; Lu, J.G.; Wu, P.; Ma, L.T. Impact of pore structure and clay content on the water-gas relative permeability curve within tight sandstones: A case study from the LS block, eastern Ordos Basin, China. J. Nat. Gas Sci. Eng. 2020, 81, 103418. [Google Scholar]
- Fu, J.H.; Guo, Z.Q.; Deng, X.Q. Sedimentary facies of the Yanchang Formation of Upper Triassic and petroleum geological implication in southwestern Ordos Basin. J. Palaeogeogr. 2005, 1, 34–44. [Google Scholar]
- Lai, J.; Wang, G.W.; Fan, Z.Y.; Zou, Z.L.; Chen, J.; Wang, S.C. Fractal analysis of tight shaly sandstones using nuclear magnetic resonance measurements. AAPG Bull. 2018, 102, 175–193. [Google Scholar] [CrossRef]
- Yin, X.D.; Jiang, S.; Chen, S.J.; Wu, P.; Gao, J.X.; Shi, X. Impact of rock type on the pore structures and physical properties within a tight sandstone reservoir in the Ordos Basin, NW China. Pet. Sci. 2020, 17, 896–911. [Google Scholar] [CrossRef]
- Fu, J.H.; Li, S.X.; Liu, X.Y. Geological theory and practice of petroleum exploration in the Ordos Basin. Nat. Gas Geosci. 2013, 24, 1091–1101. [Google Scholar]
- Su, K.M.; Chen, S.J.; Hou, Y.T.; Zhang, H.F.; Zhang, X.L.; Zhang, W.X.; Liu, G.L.; Hu, C.; Han, M.M. Geochemical characteristics, origin of the Chang 8 oil and natural gas in the southwestern Ordos Basin, China. J. Pet. Sci. Eng. 2021, 200, 108406. [Google Scholar] [CrossRef]
- Fan, B.J.; Jin, Y.; Shi, L.; Li, Y.T.; Chen, W.C. Shale oil exploration potential in central Ordos Basin: A case study of Chang 7 lacustrine shale. Oil Gas Geol. 2021, 42, 1078–1088. [Google Scholar]
- Xiao, Z.L.; Chen, S.J.; Li, Y.; Wang, P.; Ding, Z.G.; He, Q.B. The influence of bitumen on reservoir properties and hydrocarbon accumulation in the Chang-8 Member of Huaqing area, Ordos Basin, China. Pet. Sci. Technol. 2019, 37, 103–109. [Google Scholar] [CrossRef]
- Peters, K.E. Guidelines for evaluating petroleum source rock using programmed pyrolysis. Am. Assoc. Pet. Geol. Bull. 1986, 70, 318–329. [Google Scholar]
- Xiao, Z.L.; Chen, S.J.; Zhang, S.M.; Zhang, R.; Zhu, Z.Y.; Lu, J.G.; Li, Y.; Yin, X.D.; Tang, L.X.; Liu, Z.H.; et al. Sedimentary environment and model for lacustrine organic matter enrichment: Lacustrine shale of the Early Jurassic Da’anzhai Formation, central Sichuan Basin, China. J. Palaeogeogr. 2021, 10, 1–18. [Google Scholar]
- Tribovillard, N.; Algeo, T.J.; Lyons, T. Trace metals as paleoredox and paleoproductivity proxies: An update. Chem. Geol. 2006, 232, 12–32. [Google Scholar] [CrossRef]
- Tribovillard, N.; Algeo, T.J. Environmental analysis of paleoceanographic systems based onmolybdenum-uranium covariation. Chem. Geol. 2009, 268, 211–225. [Google Scholar]
- Rock and Mineral Teaching and Research Section, Department of Geology, Peking University. Optical Mineralogy; Geological Publishing House: Beijing, China, 1979; pp. 49–432. [Google Scholar]
- Zhao, J.S.; Tang, H.M.; Lei, B.J. Basis for Research on Thin Section of Mineral and Rock; Petroleum Industry Press: Beijing, China, 2003; pp. 109–220. [Google Scholar]
- Harris, N.B.; Freeman, K.H.; Pancost, R.D. The character and origin of lacustrine source rocks in the Lower Cretaceous synrift section, Congo Basin, West Africa. AAPG Bull. 2004, 88, 1164–1184. [Google Scholar] [CrossRef]
- Zhang, S.C.; Zhang, B.M.; Bian, L.Z. Development constraints of marine source rocks in China. Earth Sci. Front. 2005, 3, 39–48. [Google Scholar]
- Liang, X.; Chen, K.L.; Zhang, T.S. The controlling factors of depositional environment to pores of the shales: Case study of Wufeng Formation-Lower Longmaxi Formation in Dianqianbei area. Nat. Gas Geosci. 2019, 30, 1393–1405. [Google Scholar]
- Sun, Z.L.; Wang, F.R.; Hou, Y.G. Main Controlling Factors and Modes of Organic Matter Enrichment in Salt Lake Shale. Earth Sci. 2020, 45, 1375–1387. [Google Scholar]
- Bonn, W.J.; Gingele, F.X.; Grobe, H. Palaeoproductivity at the Antarctic continental margin: Opal and barium records for the last 400 ka. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1998, 139, 195–211. [Google Scholar] [CrossRef] [Green Version]
- Ju, M.S.; Chen, Z.H.; Zhao, R.J. Late Quaternary cyclic variations of ice sheet and paleoproductivity in the Amundsen Sea sector, Antarctica. Acta Oceanol. Sin. 2019, 41, 40–51. [Google Scholar]
- Quan, Y.B.; Liu, J.Z.; Zhao, D.J.; Hao, F.; Wang, Z.F.; Tian, J.Q. The origin and distribution of crude oil in Zhu III sub-basin, Pearl River Mouth Basin, China. Mar. Pet. Geol. 2015, 66, 732–747. [Google Scholar] [CrossRef]
- Xiao, Z.L.; Chen, S.J.; Liu, C.W.; Lu, Z.X.; Zhu, J.; Han, M.M. Lake basin evolution from early to Middle Permian and origin of Triassic Baikouquan oil in the western margin of Mahu Sag, Junggar Basin, China: Evidence from geochemistry. J. Pet. Sci. Eng. 2021, 203, 108612. [Google Scholar] [CrossRef]
- Fu, J.M.; Sheng, G.Y.; Xu, J.Y. Application of Biomarkey compounds in assessment of paleoenvironments of chines terrestrial sediments. Acta Geochim. 1991, 12, 1–12. [Google Scholar]
- Peters, K.E.; Walters, C.C.; Moldowan, J.M. The Biomarker Guide, 2nd ed.; Cambridge University Press: Cambridge, UK, 2005; pp. 1155–1160. [Google Scholar]
- Liang, D.G.; Chen, J.P. Oil-source correlations for high and over matured marine source rocks in South China. Pet. Explor. Dev. 2005, 32, 8–14. [Google Scholar]
- Sun, L.N.; Zhang, Z.N.; Wu, Y.D. Evolution patterns and their significances of biomarker maturity parameters: A case study on liquid hydrocarbons from type III source rock under HTHP hydrous pyrolysis. Oil Gas Geol. 2015, 36, 573–580. [Google Scholar]
- Didyk, B.M.; Simoneit, B.R.T.; Brassell, S.C.; Eglinton, G. Organic geochemical indicators of paleoenvironmental conditions of sedimentation. Nature 1978, 272, 216–222. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Meng, Q.X.; Wang, Z.D. Geochemical classification and significance of Jurassic coal-bearing source rocks in Taibei depression, Turpan-Hami Basin. Acta Sedimentol. Sin. 2010, 28, 1238–1243. [Google Scholar]
- Xiao, Z.L.; Chen, S.J.; Li, Y.; Su, K.M.; He, Q.B.; Han, M.M. Local high-salinity source rock and origin of crude oil in the xianshuiquan structure in the northwestern Qaidam Basin, China. J. Pet. Sci. Eng. 2021, 198, 108233. [Google Scholar]
- Moldowan, J.M.; Sundararaman, P.; Schoell, M. Sensitivity of biomarker properties to depositional environment and/or source input in the Lower Toarcian of S.W. Germany. Org. Geochem. 1986, 10, 915–926. [Google Scholar] [CrossRef]
- Nytoft, H.P.; Lutns, B.F.; Johansen, J.E. 28-Nor-spergulanes, a novel series of rearranged hopanes. Org. Geochem. 2006, 37, 772–786. [Google Scholar] [CrossRef]
- Dong, J.Y.; Chen, S.J.; Zou, X.L. Distribution and origin of rearranged hopanes in Yanchang Formation, Wuqi-Gaoqiao area, Ordos Basin. Pet. Geol. Exp. 2017, 39, 834–842. [Google Scholar]
- Grantham, P.J. The occurrence of unnatural C27 and C29 steranes predominance in two oil types of Oman crude oil. Org. Geochem. 1986, 9, 1–10. [Google Scholar] [CrossRef]
- Su, K.M.; Lu, J.G.; Zhang, G.W.; Chen, S.J.; Li, Y.; Xiao, Z.L.; Wang, P.; Qiu, W. Origin of natural gas in Jurassic Da’anzhai Member in the western part of central Sichuan Basin, China. J. Pet. Sci. Eng. 2018, 167, 890–899. [Google Scholar] [CrossRef]
- Fu, Q.; Sun, X.T.; Liu, Y.D. Geological significance and re-establishment of basin character in Late Triassic of Ordos Basin. J. Tongji Univ. (Nat. Sci.) 2009, 37, 1537–1540. [Google Scholar]
- Ji, L.M.; Meng, F.W. Palynology of Yanchang Formation of Middle and Late Triassic in Eastern Gansu Province and Its Paleoclimatic Significance. J. China Univ. Geosci. 2006, 17, 209–220. [Google Scholar] [CrossRef]
- Wang, L. The Recovery of the Paleoproductivity in the Period of Chang 7 in Ordos Basin and Its Control Factors. Ph. D. Thesis, Northwest University, Xi’an, China, 2015. [Google Scholar]
- Fathy, D.; Wagreich, M.; Ntaflos, T.; Sami, M. Paleoclimatic variability in the southern Tethys, Egypt: Insights from the mineralogy and geochemistry of Upper Cretaceous lacustrine organic-rich deposits. Cretac. Res. 2021, 126, 104880. [Google Scholar] [CrossRef]
- Moradi, S.A. Geochemistry of the Miocene oil shale (Hancili Formation) in the Cankiri-Corum Basin, Central Turkey: Implications for paleoclimate conditions, source-area weathering, provenance and tectonic setting. Sediment. Geol. 2016, 341, 289–303. [Google Scholar] [CrossRef]
- Song, L.J.; Liu, C.Y.; Zhao, H.G. Geochemical characteristics, sedimentary environment and tectonic setting of Huangqikou Formation, Ordos Basin. Earth Sci. 2016, 41, 1295–1308. [Google Scholar]
- Zhang, T.F.; Sun, L.X.; Zhang, Y. Geochemical characteristics of the Jurassic Yan’an and Zhiluo Formations in the Northern Margin of Ordos Basin and their paleoenvironmental implications. Acta Geol. Sin. 2016, 90, 3454–3472. [Google Scholar]
- Qiu, X.W.; Liu, C.Y.; Mao, G.Z. Major, trace and platinum-group element geochemistry of the Upper Triassic nonmarine hot shales in the Ordos basin, Central China. Appl. Geochem. 2015, 53, 42–52. [Google Scholar] [CrossRef]
- Hu, J.J.; Li, Q.; Li, J. Geochemical characteristics and depositional environment of the Middle Permian mudstones from central Qiangtang Basin, northern Tibet. Geol. J. 2016, 51, 560–571. [Google Scholar] [CrossRef]
- Hatch, J.R.; Leventhal, J.S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark shale member of the Dennis limestone, Wabaunsee County, Kansas, U.S.A. Chem. Geol. 1992, 99, 65–82. [Google Scholar] [CrossRef]
- Miao, J.Y.; Zhou, L.F.; Zhang, H.F. The relationship between the geochemical characteristics and sedimentary environments of the middle Permian hydrocarbon source rocks in northern Xinjiang, China. Acta Geol. Sin. 2004, 78, 534–541. [Google Scholar]
- Jones, B.; Manning, D.A.C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chem. Geol. 1994, 111, 111–129. [Google Scholar] [CrossRef]
- Rimmer, T.; Goodnight, R. Multiple controls on the preservation of organic matter in Devonian–Mississippian marine black shales: Geochemical and petrographic evidence. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2004, 215, 125–154. [Google Scholar] [CrossRef]
- Jarvis, I.A.N.; Murphy, A.M.; Gale, A.S. Geochemistry of pelagic and hemipelagic carbonates: Criteria for identifying systems tracts and sea-level change. J. Geol. Soc. 2001, 158, 685–696. [Google Scholar] [CrossRef]
- Kimura, H.; Watanabe, Y. Oceanic anoxia at the Precambrian-Cambrian boundary. Geology 2001, 29, 995–998. [Google Scholar] [CrossRef]
- Wang, S.M. Physics and chemistry of saline lakes. Lake Sci. 1993, 5, 278–286. [Google Scholar]
- Katz, B.; Lin, F. Lacustrine basin unconventional resource plays: Key differences. Mar. Pet. Geol. 2014, 56, 255–265. [Google Scholar] [CrossRef]
- Taylor, S.R.; Mclennan, S.M. (Eds.) The Continental Crust: Its Composition and Evolution; Blackwell Scientific Publications: Oxford, UK, 1985; pp. 117–140. [Google Scholar]
- Xu, Q.L.; Liu, B.; Ma, Y.S. Controlling factors and dynamical formation models of lacustrine organic matter accumulation for the Jurassic Da’anzhai Member in the central Sichuan Basin, southwestern China. Mar. Pet. Geol. 2017, 86, 1391–1405. [Google Scholar] [CrossRef]
- Arthur, M.A.; Dean, W.E. Organic-matter production and preservation and evolution of anoxia in the Holocene Black Sea. Paleoceanography 1998, 13, 395–411. [Google Scholar] [CrossRef]
- Wang, Q.F.; Jiang, F.J.; Ji, H.C. Effects of paleosedimentary environment on organic matter enrichment in a saline lacustrine rift basin: A case study of Paleogene source rock in the Dongpu Depression, Bohai Bay Basin. J. Pet. Sci. Eng. 2020, 195, 107658. [Google Scholar] [CrossRef]
- Li, C.R.; Chen, K.Y. Evolutional characteristics and their paleoclimate significance of elements in the Qianjiang Formation, Qianjiang Depression. Pet. Geol. Eng. 2007, 21, 18–21. [Google Scholar]
- Ji, L.M.; Li, J.F.; Zhang, M.Z. Effects of the lacustrine hydrothermal activity in the Yanchang period on the abundance and type of organic matter in source rocks in the Ordos Basin. Earth Sci. Front. 2021, 28, 388–401. [Google Scholar]
- Dypvik, H.; Harris, N.B. Geochemical facies analysis of fine-grained siliciclastics using Th/U, Zr/Rb and (Zr+Rb)/Sr ratios. Chem. Geol. 2001, 181, 131–146. [Google Scholar] [CrossRef]
- Zhong, D.K.; Jiang, Z.C.; Guo, Q. A review about research history, situation and prospects of hydrothermal sedimentation. J. Palaeogeogr. 2015, 17, 285–296. [Google Scholar]
- Li, Y.; Chen, S.J.; Wang, Y.X.; Qiu, W.; Su, K.M.; He, Q.B.; Xiao, Z.L. The origin and source of the Devonian natural gas in the Northwestern Sichuan Basin, SW China. J. Pet. Sci. Eng. 2019, 181, 106259. [Google Scholar] [CrossRef]
- Dover, C.L.V.; Humphris, S.E.; Fornari, D. Biogeography and ecological setting of Indian Ocean Hydrothermal Vents. Science 2001, 294, 818–823. [Google Scholar] [CrossRef] [Green Version]
- Xie, X.M.; Teng, G.E.; Qin, J.Z. Depositional environment, organisms components and source rock formation of siliceous rocks in the base of the Cambrian Niutitang Formation, Kaili, Guizhou. Acta Geol. Sin. 2015, 89, 425–439. [Google Scholar]
- Zou, C.N.; Yang, Z.; Cui, J.W. Formation mechanism, geological characteristics and development strategy of nonmarine shale oil in China. Pet. Explor. Dev. 2013, 40, 14–26. [Google Scholar] [CrossRef]
- Fu, J.H.; Li, S.X.; Xu, L.M. Paleosedimentary enviromental restoration and its significance of Chang 7 Member of Triassic Yanchang Formation in Ordos Basin, NW China. Pet. Explor. Dev. 2018, 45, 936–946. [Google Scholar] [CrossRef]
- Fu, J.H.; Li, S.X.; Niu, X.B. Geological characteristics and exploration of shale oil in Chang 7 Member of Triassic Yanchang Formation, Ordos Basin, NW China. Pet. Explor. Dev. 2020, 47, 870–883. [Google Scholar] [CrossRef]
- Chen, Z.P. Characteristics and Forming Mechanism of Lacustrine Hydrothermal Sedimentary Rocks in Lower Cretaceous, Hari Sag, Yin-e FFBasin. Ph.D. Thesis, Northwest University, Xi’an, China, 2019. [Google Scholar]
No. | Stratum | TOC (%) | Ba/Al | P/Ti | C | V/Cr | V/(V + Ni) | Sr/Ba | Fe/Mn | CIA | SiO2 (%) | TiO2 (%) | Fe + K (%) | Si/(Si + Al + Fe) | Fe/Ti | U/Th | Eu (ppm) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
H1 | Chang72 | 5.85 | 72.85 | 0.54 | 0.71 | 3.65 | 0.90 | 0.35 | 127.30 | 70.19 | 36.42 | 0.43 | 9.47 | 0.55 | 37.60 | 4.90 | 1.23 |
H2 | Chang72 | 5.96 | 72.86 | 0.51 | 0.63 | 3.52 | 0.89 | 0.31 | 190.13 | 76.40 | 40.61 | 0.32 | 9.23 | 0.57 | 30.71 | 1.28 | 1.19 |
H3 | Chang72 | 5.93 | 81.88 | 0.91 | 0.50 | 3.91 | 0.89 | 0.50 | 142.77 | 69.19 | 46.90 | 0.46 | 8.17 | 0.64 | 30.75 | 5.68 | 1.29 |
H4 | Chang73 | 5.47 | 86.70 | 0.56 | 0.38 | 2.76 | 0.84 | 0.30 | 38.19 | 72.34 | 44.44 | 0.51 | 7.72 | 0.61 | 18.39 | 1.35 | 1.28 |
H5 | Chang73 | 5.22 | 86.01 | 0.53 | 0.39 | 2.35 | 0.83 | 0.30 | 35.48 | 70.18 | 46.51 | 0.53 | 7.07 | 0.64 | 16.75 | 1.80 | 1.20 |
H6 | Chang73 | 4.84 | 78.55 | 0.31 | 0.36 | 2.18 | 0.82 | 0.27 | 42.98 | 75.70 | 48.17 | 0.63 | 7.65 | 0.63 | 14.11 | 0.91 | 1.39 |
H7 | Chang73 | 5.20 | 92.78 | 0.67 | 0.48 | 4.55 | 0.90 | 0.33 | 78.62 | 68.81 | 45.36 | 0.40 | 8.46 | 0.62 | 28.66 | 4.32 | 1.16 |
H8 | Chang73 | 5.85 | 111.51 | 0.66 | 0.35 | 4.20 | 0.91 | 0.57 | 42.47 | 69.01 | 43.58 | 0.36 | 8.59 | 0.60 | 25.61 | 5.13 | 1.42 |
H9 | Chang73 | 6.03 | 114.66 | 0.86 | 0.28 | 4.49 | 0.89 | 0.50 | 28.81 | 71.28 | 46.09 | 0.40 | 7.54 | 0.63 | 23.87 | 4.13 | 1.84 |
H10 | Chang73 | 6.01 | 53.14 | 0.60 | 0.41 | 3.18 | 0.85 | 0.29 | 69.78 | 72.99 | 45.73 | 0.30 | 7.86 | 0.18 | 27.99 | 3.63 | 1.04 |
H11 | Chang73 | 5.99 | 117.05 | 0.77 | 0.35 | 5.27 | 0.92 | 0.50 | 114.25 | 72.89 | 43.33 | 0.32 | 7.43 | 0.61 | 31.38 | 6.39 | 1.42 |
H12 | Chang73 | 5.79 | 118.26 | 0.62 | 0.39 | 4.63 | 0.92 | 0.41 | 96.59 | 73.26 | 44.26 | 0.41 | 8.70 | 0.61 | 33.04 | 3.70 | 1.46 |
Well | Stratum | Depth/m | Lithology | Pr/Ph | C27/C29 | Ts/Tm | C30H/C30diaH |
---|---|---|---|---|---|---|---|
Z59 | Chang 73 | 1263.2 | Shale | 0.62 | 0.65 | 1.44 | 8.15 |
Z71 | Chang 73 | 1651.4 | Shale | 0.75 | 0.82 | 1.15 | 5.77 |
Z25 | Chang 73 | 1070.6 | Shale | 0.93 | 0.69 | 0.36 | 12.31 |
Z40 | Chang 73 | 1475.0 | Shale | 0.97 | 0.61 | 0.62 | 10.16 |
No. | Stratum | Quartz (%) | Feldspar (%) | Dolomite (%) | Calcite (%) | Pyrite (%) | Illite/Smectite Formation (%) | Illite (%) | Kaolinite (%) | Chlorite (%) |
---|---|---|---|---|---|---|---|---|---|---|
H1 | Chang 72 | 30.3 | 12.0 | 3.2 | 15.3 | 25.4 | 12.4 | 1.4 | ||
H2 | Chang 72 | 30.1 | 14.8 | 1.4 | 14.2 | 24.9 | 14.6 | |||
H3 | Chang 72 | 31.5 | 11.3 | 1.6 | 16.4 | 22.7 | 15.2 | 1.3 | ||
H4 | Chang 73 | 32.3 | 18.3 | 0.4 | 17.2 | 19.5 | 12.3 | |||
H5 | Chang 73 | 25.8 | 16.7 | 3.7 | 16.9 | 23.6 | 11.7 | 1.6 | ||
H6 | Chang 73 | 33.2 | 20.4 | 1.6 | 15.8 | 18.4 | 10.6 | |||
H7 | Chang 73 | 27.4 | 16.6 | 0.5 | 0.3 | 18.4 | 23.5 | 11.5 | 0.8 | 1.0 |
H8 | Chang 73 | 31.1 | 17.3 | 14.2 | 22.8 | 14.3 | 0.3 | |||
H9 | Chang 73 | 24.2 | 9.6 | 1.8 | 18.7 | 27.3 | 17.7 | 0.7 | ||
H10 | Chang 73 | 23.0 | 12.7 | 19.3 | 25.8 | 18.2 | 1.0 | |||
H11 | Chang 73 | 24.9 | 16.2 | 18.1 | 24.5 | 16.3 | ||||
H12 | Chang 73 | 34.3 | 15.0 | 2.5 | 16.0 | 20.1 | 12.1 | |||
Average | 29.0 | 15.1 | 2.3 | 1.1 | 16.7 | 23.2 | 13.9 | 0.7 | 1.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Zhang, C.; Lu, J.; Zhu, X.; Li, L.; Si, S. Sedimentary Environment and Model for Organic Matter Enrichment: Chang 7 Shale of Late Triassic Yanchang Formation, Southern Margin of Ordos Basin, China. Energies 2022, 15, 2948. https://doi.org/10.3390/en15082948
Zhao Y, Zhang C, Lu J, Zhu X, Li L, Si S. Sedimentary Environment and Model for Organic Matter Enrichment: Chang 7 Shale of Late Triassic Yanchang Formation, Southern Margin of Ordos Basin, China. Energies. 2022; 15(8):2948. https://doi.org/10.3390/en15082948
Chicago/Turabian StyleZhao, Yonggang, Chunyu Zhang, Jungang Lu, Xingcheng Zhu, Lei Li, and Shanghua Si. 2022. "Sedimentary Environment and Model for Organic Matter Enrichment: Chang 7 Shale of Late Triassic Yanchang Formation, Southern Margin of Ordos Basin, China" Energies 15, no. 8: 2948. https://doi.org/10.3390/en15082948
APA StyleZhao, Y., Zhang, C., Lu, J., Zhu, X., Li, L., & Si, S. (2022). Sedimentary Environment and Model for Organic Matter Enrichment: Chang 7 Shale of Late Triassic Yanchang Formation, Southern Margin of Ordos Basin, China. Energies, 15(8), 2948. https://doi.org/10.3390/en15082948