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Abstract: The Lower Paleozoic marine shale in southern China has undergone several strong tectonic
transformations in an extensive region outside the Sichuan Basin. Although some shale strata under-
went strong deformation, they still contain a significant amount of shale gas. The gas preservation
mechanism in the strongly deformed shale has become the focus of attention. In this paper, the
Lower Cambrian gas-bearing shale samples with a strong deformation taken from an exploration
well in northern Chongqing, China, were investigated on their pore types and structure, with the
aim to reveal the reason for the gas preservation. The pore types of the Lower Cambrian shale are
dominated by microfractures and interparticle (interP) pores occurring mainly between clay minerals
and between organic matter (OM) and clay minerals, while pores within OM that can be observed
by FE-SEM (field emission-scanning electron microscopy) are rare. The shale has a low porosity,
with an average of 1.56%, which is mainly controlled by the clay mineral content. The adsorption
experiments of low pressure N2 (LPNA) and CO2 (LPCA) indicate that the shale is rich in micropores
and small mesopores (<2–3 nm) provided mainly by OM, but mesopores with a size range of 3–50 nm
are underdeveloped. The shale, as revealed by LPNA data, has dominant slit-like or plate-like pores
and an obvious low-pressure hysteresis (LPH), indicating a low gas diffusion. The deformed shale
samples with a removal of OM by oxidation and their isolated kerogen further indicate that the LPH
is completely related to OM, without any relationship with minerals, while an undeformed shale
sample, taken from another well for a comparison, has no obvious LPH for both of its OM-removed
sample and kerogen. Based on a comprehensive analysis of the relative data, it is suggested that
the nanopores related to OM and clay minerals in the shale were significantly altered owing to the
deformation, with a result of the pores being squeezed into the slit-like shape and converted into
micropores. This extraordinary pore structure of the shale formed during the deformation process
should be the main preservation mechanism of shale gas.

Keywords: Lower Cambrian shale; tectonic deformation; pore structure; low pressure gas adsorption;
low pressure hysteresis; shale gas; preservation mechanism

1. Introduction

As an unconventional natural gas resource, shale gas has been exploited commercially
for more than several decades. However, the occurrence and enrichment mechanism of
shale gas have still remained unclear since the formation that shale gas plays is very compli-
cated and controlled by a variety of geological and geochemical factors [1–9]. In southern
China, the Lower Cambrian and Lower Silurian shales are considered to have great poten-
tial [10–13], but currently, only the Lower Silurian shale gas has been exploited commer-
cially [14,15]. The Lower Cambrian shale is distributed more widely and displays greater
TOC (total organic carbon) content compared with the Lower Silurian shale [5,16–18], but
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its exploration and development for shale gas is not optimistic. The gas content and/or
gas-containing properties vary considerably. Some shale gas reservoirs with high gas
content are dominated by methane [19–23], while others with low gas content are chiefly
composed of nitrogen [24–28], implicating that factors controlling the Lower Cambrian
shale gas are more complex. Therefore, it is necessary to deeply study the enrichment and
preservation mechanism of Lower Cambrian shale gas, thus reducing the risk of shale gas
exploration and development.

The nanopore structure of shales is one of the important factors controlling their gas
content [29–32]. The International Union of Pure and Applied Chemistry (IUPAC) classi-
fies shale pore as micropore (<2 nm), mesopore (2–50 nm), and macropore (>50 nm) [33].
The Lower Cambrian shale in southern China generally underwent strong tectonic move-
ments [34,35]. In some shale gas blocks, the shale suffered from severe deformation, leading
to the damage of bedding textures or even mylonitization [36]. The storage of shale gas
related to strong tectonic reformation had been studied by previous scholars [37–42], but it
still remained controversial. For example, Shi et al. [42] investigated the pore structure of
the Lower Silurian shale samples from different tectonic locations in the Chongqing area
of southern China and found that the pore volumes and specific surface areas decreased
with the enhancement of their deformation extent. Zhu et al. [39] found that the Lower
Cambrian deformed shale samples from the Upper Yangtze area of southern China had an
increase in their micropores and connectivity but a decrease in their porosity. However,
Ma et al. [36] pointed out that the strong tectonic deformation led the OM and clay minerals
in the shale to form a three-dimensional space-connected pore network, which greatly
increased the pore spaces and specific surface areas of the shale matrix. Liang et al. [43] and
Li et al. [41], based on the studies of artificially deformed shales and naturally deformed
shales, suggested that stress deformation could cause a significant improvement in shale
reservoir permeability. Therefore, further research is urgently needed to understand the
alteration mechanism of porosity and pore structure and their influences on gas storage,
especially gas preservation in strongly deformed shale strata.

The Dabashan tectonic belt in northeastern Chongqing, southern China, had ex-
perienced strong tectonic reformations, resulting in a severe deformation of the Lower
Cambrian shale strata [19,36,39]. Quite different from the Lower Cambrian shales in other
blocks in southern China [24–26], the Lower Cambrian shale in this tectonic belt still retains
a high content of shale gas, with methane as the main gas component [19,23,36,44]. In
this study, a variety of approaches, such as field emission-scanning electron microscopy
observations and low pressure gas (N2 and CO2) adsorption experiments were applied
to investigate the pore characteristics and the controlling factors of the Lower Cambrian
deformed gas-bearing shale in this deformed zone. The major purpose of this study was to
reveal the micro-mechanism of methane preservation in the deformed shale.

2. Samples and Experiments
2.1. Samples

The studied Lower Cambrian shale samples were taken from well YC2, which is
located at the Dabashan tectonic belt (Figure 1a). The Dabashan tectonic belt is the transition
area between the Yangtze plate and the Qinling orogenic belt [45,46]. The regional strata
mainly include the Sinian, Cambrian, Ordovician, Middle-Lower Silurian, Permian, Triassic
and Middle-Lower Jurassic, missing Devonian, Carboniferous, and Tertiary strata. Multiple
phases of tectonic movements resulted in several sedimentary discontinuities, with a serious
erosion of the strata. Especially since Yanshanian Period (180–140 Ma), an overlapping
thrust structure was formed by strong tectonic compression, with a serious deformation
of the strata [46]. Black shales developed widely in the Lower Cambrian Shuijingtuo
Formation in this area, with a thickness of 80–150 m [19,47], and it is one of the main targets
for shale gas exploration in this area. The Lower Cambrian shale has a current burial depth
of less than 3000 m, with a large inclination angle, and was exposed to the earth surface as
outcrops in many locations. The geological conditions for shale gas preservation are quite
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poor. Unexpectedly, several drilling wells implemented in this area showed a significant
amount of gas in the Lower Cambrian shale. The desorbed gas content is averaged at
0.65 m3/t from well CY1 and 1.51 m3/t from well CQ1, with a maximum of 3.64 m3/t.
The gas is composed of 95.38–98.80% methane, with a minor amount of non-hydrocarbon
gases [19,23,44].
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Figure 1. Schematic map to show the geological outline of the Dabashan tectonic belt (a) and a
profile to pass through the tectonic belt (b). (a,b) were modified from Yu et al. [19] and Ma et al. [36],
respectively.

Well YC2 is close to the Chengkou fault, where tectonic compression is strong. The
Lower Cambrian strata have an inclined angle of as high as 35◦–80◦ (Figure 1b). A to-
tal of 10 samples collected from the well were all black shale, with a burial depth of
941.34–1147.68 m. They experienced a heavy deformation, with abundant microfractures
filled by irregular veins (Table 1; Figure 2). According to the data from Yu et al. [19], the
shale had an average desorbed gas amount of 0.79 m3/t, with a maximum of 1.23 m3/t, and
methane is the main gas component (84.20–99.87%), while N2 and other non-hydrocarbon
gases are approximatively less than 10% [48]. For a comparison, a black shale sample of the
Lower Cambrian Niutitang Formation from well YC9 in southeastern Chongqing, China,
was selected in this study. The area where well YC9 was located has had a relatively stable
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geological background [49], and the shale had no obvious deformation, with a complete
sedimentary texture. However, its desorbed gas is much less (0.01–0.13 m3/t) and rich in
nitrogen (>90%) [49]. The basic geological information and visible features of the 11 samples
mentioned above are shown in Table 1.

Table 1. Burial depth and macroscopic characteristics of Lower Cambrian shale samples in this study.

Well/Location Sample ID Depth (m) Lithology Visible Feature

YC2/Northeastern
Chongqing

YC2-1 956.6 black shale

Fragmented and fractured
as a whole, without

bedding textures, and
irregular veins filled in

some fractures.

YC2-2 1004.1 black shale
YC2-3 1023.8 black shale
YC2-4 1078.8 black shale
YC2-5 1086.9 black shale
YC2-6 1101.9 black shale
YC2-7 1109.7 black shale
YC2-8 1115.6 black shale
YC2-9 1134.4 black shale

YC2-10 1147.6 black shale

YC9/Southeastern
Chongqing YC9-1 1440.0 black shale Dense and massive, with

clear bedding textures
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Figure 2. (a) A photograph of the core sample of YC2-3, showing visible friction surfaces with a 
mirror effect caused by structural friction. (b) A photograph of the core sample of YC2-4, with 
multiple slippage surfaces and unrecognizable bedding textures. (c) A microscopic photograph of 
sample YC2-6 (thin section, single polarized light), showing multiple veins composed of gypsum 
and a fault cutting through the veins that indicates at least one phase of stress action. (d) A 
photograph of sample YC2-9 (thin section, single polarized light), showing gypsum veins and 
surrounding mineral matrix with an obvious deformation. 

Figure 2. (a) A photograph of the core sample of YC2-3, showing visible friction surfaces with a
mirror effect caused by structural friction. (b) A photograph of the core sample of YC2-4, with
multiple slippage surfaces and unrecognizable bedding textures. (c) A microscopic photograph of
sample YC2-6 (thin section, single polarized light), showing multiple veins composed of gypsum and
a fault cutting through the veins that indicates at least one phase of stress action. (d) A photograph of
sample YC2-9 (thin section, single polarized light), showing gypsum veins and surrounding mineral
matrix with an obvious deformation.

2.2. Experiments
2.2.1. TOC Content Analysis

The samples were crushed into powders of 80 mesh sizes, treated by enough dilute
hydrochloric acid to remove carbonate minerals, and then dried at 383.15 K for 12 h. A
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LECO CS-200 carbon-sulfur analyzer was applied for the TOC content analysis of the
prepared samples, then the peak area of CO2 generated from combustion of the organic
matter and calibrated by carbon steel (TOC = 0.812 ± 0.006%) was calculated, with analytical
precision better than 10%.

2.2.2. Solid Bitumen Reflectance Measurement

Although the Lower Cambrian shale samples lack vitrinite, but solid bitumen are
abundant, and the solid bitumen reflectance (BRo, %) can be used as an indicator of their
maturity. A total of 4 samples were highly polished for sample preparation and reflectance
measurements. The used instrument was a 3Y-Leica DMR XP microphotometer, with an
objective of 50 × 0.85 in oil immersion and under incident light. The calibration standard
samples were YAG-08-57 (Ro = 0.904%) and cubic zirconia (Ro = 3.11%). Large solid bitumen
particles with a smooth surface were selected for the measurement in order to reduce the
interference from surrounding minerals. More than 50 individual particles were measured
for each sample, and their average was deemed as its representative reflectance value.

2.2.3. Mineral Composition Analysis

The mineral composition of the shale samples was analyzed by a Bruker D8 Advance
X-ray diffractometer from Germany. The samples (about 2 g for each) were crushed to
200 mesh and dried at 378.15 K for 12 h to remove the moisture and volatile substances.
The measured conditions were as follows: a Cu target, an acceleration voltage of 40 KV, a
laser diffraction slit width of 1 mm, and a scanning speed of 4◦/min. The relative content
of minerals was calculated according to their spectral peak areas integration approach with
correction of Lorentz Polarization [50,51].

2.2.4. Porosity Measurement

The porosity of the samples (Φ, %) was determined by their skeletal density and
apparent density [29], and the calculation formula is as follows:

Φ = (1 − ρb/ρs) × 100% (1)

where ρb is apparent density (cm3/g), and ρs is skeletal density (cm3/g).
The apparent density and skeleton density were measured, respectively, by the wax

wrapping method and helium injection method, as suggested by Tian et al. [52].

2.2.5. FE-SEM Observation

The samples were prepared using an argon ion milling instrument (Hitachi High-Tech
IM4000), with conditions of an acceleration voltage of 3 kV and a grinding duration of 4 h.
The field emission scanning electron microscopy (FE-SEM) applied for the observation was
Hitachi S4800. The working voltage was 1–2 kV, and the working distance of the electron
gun was 1–8 mm. Both the backscattering (BSE) mode and secondary electron (SE) mode
were used in order to identify different minerals and facilitate pore observation.

2.2.6. Kerogen Isolation and OM Oxidation

In order to reveal the organic and inorganic pore structure characteristics of the shale
samples, some of them were selected for kerogen isolation and OM oxidation. The method
to isolate kerogen from shales suggested by Liu et al. [53] was followed to treat the samples.
The purpose for the OM oxidation to the samples is to remove their OM, while leaving
their mineral framework. The method recommended by Chen et al. [54] and Gu et al. [55]
was followed and is described as below. Shale samples (about 5 g for each) were crushed to
20–40 mesh, dried at 383.15 K for 12 h, and then placed into a muffle furnace to be oxidized
at 698.15 K for 24 h. The treated samples were deemed to be OM-free [54].
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2.2.7. Low-Pressure Gas Adsorption

The experiments of low-pressure N2 adsorption (LPNA) and low-pressure CO2 ad-
sorption (LPCA) were performed with a Micromertics ASAP 2020 automatic specific surface
analyzer. The experimental procedures are as follows. The samples (including original
shale, isolated kerogen, and oxidized samples) were crushed to 20–40 mesh and dried
at 383.15 K for 12 h. The samples (1.5 g for each) were transferred into the instrument
sample tube and degassed for 10 h at 383.15 K under vacuum conditions (<10 mm Hg).
The LPNA experiment was performed at the liquid nitrogen temperature (77.4 K) and a
relative pressure (P/P0) range of 0.001–0.995. The LPCA experiment was conducted at
the temperature of ice-water mixture (273.15 K) and a relative pressure (P/P0) range of
0.0001–0.03.

Based on LPNA adsorption branching data, the Barret–Joyner–Hallenda (BJH) model
and Brunauer–Emmett–Teller (BET) model were used, respectively, to calculate the pore size
distribution (PSD) and specific surface area, with an effective pore size range of 1.7–230 nm.
Based on the LPCA data, the micropore volume and specific surface area were calculated,
respectively, using density functional theory (DFT) model and the Dubinin–Astakhov (DA)
equation [56–58].

3. Results and Discussion
3.1. TOC Content, Mineral Composition, and Maturity

The TOC content of the YC2 well samples ranges from 1.37% to 3.79%, with an
average of 2.47% (Table 2), greater than the lowest limit (2%) of the gas-bearing shale with
commercial potential [5]. The TOC content varied within a small range, without an obvious
relationship with depth, different from the Lower Cambrian shales from other blocks where
their TOC increases with depth [59].

Table 2. TOC content, mineralogical composition, and porosity of shale samples.

Sample
ID

TOC (%) Porosity
(%)

Mineralogical Composition (%)

Quartz Plagioclase Illite Chlorite Calcite Dolomite Pyrite

YC2-1 3.16 1.64 37.1 15.9 25.6 7.2 3.1 8.4 2.6
YC2-2 2.62 1.69 33.7 11.1 29.1 5.9 11.6 6.4 2.2
YC2-3 1.9 1.63 27.6 20.8 29.4 10.4 2.2 3.2 6.4
YC2-4 3.79 1.23 27 23.2 17 0 17.2 14.1 1.5
YC2-5 2.53 1.08 30.2 16.3 19.8 3.9 17.1 10.6 2.2
YC2-6 2.98 1.56 26.8 14 22.5 4.2 24.6 5.4 2.5
YC2-7 1.87 1.34 21.5 14.2 19.3 0 9.2 0 35.8
YC2-8 2.47 1.81 29.9 13.4 35.3 6.5 7.9 4.9 2
YC2-9 2.05 2.15 27.5 17.7 32.6 12.6 5.4 3 1.3

YC2-10 1.37 1.43 28 22.4 26.2 9.8 5.4 6.3 1.9
YC9-1 2.08 2.51 36.5 15.3 37.3 0 0 7.2 3.7

The YC2 well samples are composed of quartz, clay minerals, plagioclase, calcite,
pyrite, and a small amount of dolomite (Table 2), and the quartz and clay minerals are their
main components. The quartz content ranges from 21.5% to 37.1%, with an average of 28.9%.
The clay minerals include illite and chlorite, and their total content ranges from 17.0% to
45.2%, with an average of 31.7%. The carbonate minerals are mainly calcite and dolomite,
and their total content ranges from 5.4% to 31.3%, with an average of 16.6%. The samples
also contain a certain amount of plagioclase and pyrite, with a content of 11.1–23.2% (an
average of 16.9%) and 1.5–35.8% (an average of 5.8%), respectively. Compared with the
Lower Silurian shale in typical blocks (e.g., Jiaoshiba block) in southern China [60,61],
the YC2 samples have a high content of clay minerals and can be considered to be a
clay-rich shale.

Figure 3 shows the correlation between the TOC and four main mineral contents of the
YC2 samples. The TOC is positively correlated with quartz, total carbonate minerals, and
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dolomite (Figure 3a,b,d), while negatively correlated with the clay minerals (Figure 3c). This
is slightly different from the Lower Cambrian shale from well HY1 in northern Guizhou,
China, reported by Tian et al. [62]. For their samples, the TOC shows a weak positive
correlation with the clay minerals but no obvious correlation with quartz. A positive
correlation between TOC and quartz content is generally believed to contain a significant
amount of biogenic quartz in shales [60,61,63,64]. The quartz in the YC2 samples may have
two origins: biological and detrital, but the latter should be dominant because of the weak
positive correlation between the TOC and quartz (Figure 3a).
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YC2 well samples.

Thermal maturity is of great importance for influencing shale porosity, pore structure,
and gas-bearing property [65,66]; thus, an accurate evaluation of shale thermal maturity is
critical. The maturity of the Lower Cambrian shale in the studied area has been reported in
previous studies [36,44,67,68], but with quite different results. For example, the measured
BRo value had a range of 3.28–4.25% from Ma et al. [36] and 4.22–5.34% from Cui et al. [67];
the EqRo value (calculated equivalent vitrinite reflectance from bitumen reflectance or
other parameters) was between 2.4% and 3.0% from Han et al. [44] and between 3.34% and
3.78% from Wang et al. [68]. The BRo value can be influenced by a series of factors except
for maturity, such as the optical anisotropy, size, and internal structure of the measured
bitumen particles, as well as the numbers of measured points [69–71], which may be the
reason for the great variation in the above results. In order to reduce the influence of
the above factors, only large particles, especially band-shaped bitumen without internal
structure were selected for the reflectance measurement in this study. The results are
shown in Figure 4. Although the BRo ranges of the selected four samples are different,
the main peak values are similar, between 3.0% and 3.2%. The averaged BRo values of
the four samples are from 3.01% to 3.12%, which gives the EqRo values of 3.10–3.20% by
the formula: EqRo = (BRo + 0.2443)/1.0495 [69], similar to the maturity of Lower Silurian
shales in the Jiaoshiba block of the Sichuan Basin (a commercial shale gas reservoirs in
southern China) [72].
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Figure 4. Reflectance distributions of solid bitumen (a) and bitumen micrograph (b,c) of the selected
shale samples from well YC2.

Xiao et al. [5] proposed that a maturity with an EqRo value > 3.5% would be a high
risk to shale gas exploration for Lower Paleozoic shales in southern China, which has
been verified by pyrolysis experiments and shale gas exploration and development [73–75].
Although the maturity of the YC2 shale samples is quite high, it does not exceed this
maturity limit, which is believed to be the basis of the storage of shale gas.

3.2. Pore Types, Porosity and Controlling Factors

The FE-SEM observation revealed that microfractures, interparticle (interP) pores,
and intraparticle (intraP) pores occurred widely in the YC2 samples. Some minerals were
deformed or fractured to form micro-fractures due to intense extrusion (Figure 5a,b), and
some pyrite particles were elongated and oriented (Figure 5a). The interP pores occurred
mainly between different particles, especially between clay minerals and between clay
minerals and OM. This type of pores is mainly sheet, triangle, and irregular shapes, sizing
from a few to hundreds of nanometers (Figure 5c,f). They may be formed by extrusion
deformation. The OM in the samples was found mainly in the form of mineral–OM
aggregates, with irregular or reticular pores within them (Figure 5d,e), while pores within
pore OM particles were rare (Figure 5d,f). IntraP pores developed mainly in carbonate
minerals (Figure 5g), with triangular and multilateral shapes, and a size of hundreds
of nanometers. Their formation may be related to dissolution. Figure 5h,i shows the
pores from sample YC9-1. Compared with the YC2 samples, its microfractures were
underdevelopment (Figure 5h), but OM-hosted pores with a diameter of 20–50 nm were
widely present (Figure 5i), quite similar to the Lower Cambrian shale from the northern
Guizhou, China [62].
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Figure 5. FE-SEM photomicrograph images of the studied shale samples. (a–c): sample YC2-6,
BSE model; (d–g): sample YC2-7; (d): BSE model; (e–g): SE model; (h,i): sample YC9-1, SE model.
(a): Orientation and deformation of minerals resulted from intense compression, forming interlayer
pores and microfractures in clay minerals. (b): Fractures within a single quartz particle. (c): InterP
pores between clay and OM, formed by deformation. (d): Irregular pores occurring within OM–
mineral aggregates, but rare pores occurring within OM. (e): OM–mineral aggregates with reticular
pores. (f): OM between clay minerals, without pores, and interP pores between clay minerals, which
may be caused by deformation. (g): Dissolution pores in carbonate minerals. (h,i): OM with a large
number of circular and elliptic pores.

The porosity of the YC2 samples is quite small, ranging from 1.08% to 2.15%, with
an average of 1.56% (Table 2). The porosity has no obvious correlation with either the
TOC or quartz content, but it has a good positive correlation with the clay mineral content
(R2 = 0.71) and a weak negative correlation with the carbonate content (R2 = 0.31) (Figure 6).
It can be inferred from the results that the porosity of the shale is mainly controlled by its
clay minerals.
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Previous studies have shown that although the porosity of Lower Cambrian shale
without obvious deformation in southern China is not greater as a whole, it generally
reaches 2–4%, and the TOC content is a dominant controlling factor [12,16,62,76]. For
example, Tian et al. [62] reported the porosity of Lower Cambrian shale samples from
well HY1 in the northern Guizhou, China, ranged from 2.51% to 4.13%, having a clear
positive correlation with their TOC content (R2 = 0.77) but no obvious relationship with
their clay minerals. In contrast, the porosity of the YC2 samples is lower, and the clay
minerals provide more pore spaces, with a limited contribution from OM pores. The
reason may be related to the deformation of clay minerals to form some larger deformed
pores and the compaction of larger OM pores into smaller pores. Under the action of
intense compressive stress, clay minerals in shales may creep [77], with their original
interlayer pores being compacted or deformed to increase spaces due to the existence of
unbalanced deformation and distortion [78]; especially, some interP pores protected by
brittle minerals (such as pyrite, quartz, etc.) may be enlarged significantly. Although
clay minerals may form some larger deformation pores, and some brittle minerals may
form tensile microfractures in deformed shales, their total porosity generally shows a
decreasing trend [39,79]. Liu et al. [80] also pointed out that the stronger the tectonic stress
compression, the lower the porosity of shales. The FE-SEM observation from the YC2
samples and sample YC9-1 are shown in Figure 5, and more data on their pore structure,
which is presented in next sections, all support the above interpretation. In addition, the
weak negative correlation between porosity and carbonate minerals (Figure 5d) may be
related to the cementation of carbonate minerals, which may be another reason for the low
porosity of the YC2 samples.
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3.3. Pore Structure Characteristics and Controlling Factors
3.3.1. LPNA and LPCA Curves and Pore Size Distribution

According to the gas adsorption mechanism of porous materials, with the increase in
relative pressure (P/P0), gas in pores will be micropore filling, and there will be monolayer
and multilayer adsorption on the pore wall, and then capillary condensation up to a high
relative pressure [33,81]. LPNA curves of shales can reflect their overall pore characteristics.
According to IUPAC, LPNA curves can be divided into four categories based on their
hysteresis ring morphology [33]. The LPNA curves of the YC2 samples all are close to type
H4 in the IUPAC classification (Figure 7a–e), indicating that their nanopores have silt-like
or layered shales. Their adsorption capacity increased rapidly (P/P0 < 0.1) and then slowly
(0.1 < P/P0 < 0.9), reflecting the presence of a large number of micropores and a very limited
multilayer adsorption, respectively. As P/P0 > 0.90, their adsorption capacity increased
rapidly, implicating the capillary condensation occurring in the macropores. Compared
with sample YC9-1 (Figure 7f), the YC2 samples present a unique hysteresis ring, although
the maximum adsorption quantity between the two well shales is also different—e.g., that
of sample YC9YC is significantly greater than that of sample YC2-9 (both have a similar
TOC content). Sample YC9-1 has a hysteresis loop as P/P0 > 0.5 and presents a strong
“forced closure” phenomenon due to “tensile strength effect” (TSE) [82] in a P/P0 range
of 0.4–0.5, exhibiting a totally reversible adsorption–desorption process as P/P0 < 0.4.
However, as for the YC2 samples, their hysteresis rings were not closed, owing to only a
slight TSE at the P/P0 of 0.4–0.5, which resulted in a low pressure hysteresis phenomenon
(LPH) [83].
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Figure 7. LPNA curves of selected shale samples with different TOC. All samples from well YC2
have a LPH, while sample YC9-1 does not.

The LPCA curves of the samples are shown in Figure 8, and they are similar to the
type I isothermal adsorption curve suggested by IUPAC. The slope of the curves has a trend
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of gradual decline with increasing pressure, indicating that the growth rate of adsorption
capacity decreases. Based on the adsorption capacity at the maximum relative pressure
(P/P0 ≈ 0.03), the adsorption capacity of the samples to CO2 can be preliminarily judged.
Compared with the samples from well YC2 with a similar TOC content (e.g., YC2-9), the
adsorption capacity of sample YC9-1 is also greater.
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Figure 8. LPCA curves of selected shale samples with different TOC. The adsorption capacity of
sample YC9-1 is significantly greater than that of the sample from well YC2 (e.g., YC2-9) with a
similar TOC.

As can be seen from the pore size distribution (PSD) curves characterized by the BJH
model (Figure 9), the peak value of the YC2 samples is mainly located at about 2 nm,
and the peak width is very narrow (1.7–3 nm), indicating that the shale is dominated by
micropores and small mesopores. The PSD curve of the sample YC9-1 in the microporous
and mesoporous ranges (1.7–50 nm) all are relatively high, without an obvious peak
(Figure 9), indicating that both its micropores and mesopores developed well. The PSD
(0.35–1.1 nm) curves characterized by DFT model based on LPCA data show that there is no
significant difference between the YC2 samples and sample YC9-1 (Figure 10). According to
these PSD data, mesopores were greatly reduced in the deformed YC2 shale samples. In a
study of the Lower Silurian shale samples with and without deformation from the southeast
area of Sichuan Basin, China, Liang et al. [84] also found that tectonic deformation caused
an alteration of pore structure in the deformed shale—i.e., from a relatively equal pore
distribution, even an advantage of mesopores of the undeformed shale to a pore structure
with obvious macropore and micropore advantages of the deformed shale.
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Figure 10. PSD curves of the selected samples with different TOC based on their LPCA data. The
YC2 samples and the sample YC9-1 have no significant difference, and both show multi-peaks.

3.3.2. Pore Structure Parameters and Their Controlling Factors

According to the pore structure data of the YC2 samples (Table 3), their VBJH (BJH
pore volume), SBET (BET specific surface area), Vmic (micropore volume), and Smic (mi-
cropore specific surface area) vary in a range of 0.32–0.64 cm3/100 g, 2.68–9.79 m2/g,
0.25–0.46 cm3/100 g, and 6.80–11.96 m2/g, respectively, with an average of 0.45 cm3/100 g,
5.55 m2/g, 0.36 cm3/100 g, and 9.57 m2/g, respectively. The Smic and Vmic are on average
1.72 and 0.80 times the SBET and VBJH, respectively. The VBJH, SBET, Vmic, and Smic values
of the sample YC9-1 are 1.00 cm3/100 g, 10.91 m2/g, 0.46 cm3/100 g, and 7.35 m2/g,
respectively. The Smic and Vmic are on average 0.62 and 0.46 times of the SBET and VBJH,
respectively (Table 3). Compared with the sample YC9-1, the VBJH and SBET of the YC2
samples are much less, while their Vmic and Smic are only slightly lower (Table 3), which
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further indicates that the YC2 samples are dominated by micropores, while sample YC9-1
has an obvious advantage of mesopores, as presented by their PSD curves in Figure 9.

Table 3. Pore structure parameters of shale samples.

Sample ID
N2 Adsorption CO2 Adsorption

SBET (m2/g) VBJH (cm3/100 g) Smic (m2/g) Vmic (cm3/100 g)

YC2-1 6.33 0.49 11.96 0.42
YC2-2 3.36 0.42 9.67 0.37
YC2-3 2.68 0.32 7.97 0.30
YC2-4 8.67 0.58 10.94 0.39
YC2-5 5.70 0.45 10.57 0.38
YC2-6 9.79 0.64 11.59 0.46
YC2-7 5.53 0.35 6.80 0.25
YC2-8 4.87 0.44 9.69 0.36
YC2-9 3.11 0.35 9.19 0.36

YC2-10 5.45 0.48 7.35 0.31
YC9-1 10.91 1.00 11.39 0.46

The VBJH and Vmic of the YC2 samples have no significant correlation with their
porosity (Figure 11), indicating that their nanopores (<220 nm, the maximum pore size
characterized by LPNA in this study) have a limited contribution to their porosity and that
their porosity should be provided mainly by macropores with a size of >220 nm.
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Figure 11. Relationships of porosity with VBJH (a) and Vmic (b) for samples.

Although The TOC content of the YC2 samples has no obvious correlation with
porosity, it has clear positive correlations with VBJH, Vmic, SBET, and Smic, and moreover,
its correlation with Vmic is better than that with VBJH, and its correlation with Smic is better
than that with SBET (Figure 12). Combined with the PSD curves of the samples (Figure 9),
it can be believed that the TOC controls not only the micropores but also some of small
mesopores (<5–10 nm, the limit of FE-SEM observation) [29,85].
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Figure 12. Correlations of TOC with pore structure parameters of the YC2 samples. Subfigures (a–d)
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The clay mineral content of the YC2 samples has weak negative correlations with
their VBJH and SBET, but no obvious correlation with their Vmic and Smic (Figure 13a–d).
Considering that the TOC content has a dominant control on pore structure parameters
(Figure 12), the pore structure parameters were normalized by the TOC content. The results
show that the clay mineral content has no correlation with the VBJH/TOC (ratio of VBJH
to TOC) and SBET/TOC (ratio of SBET to TOC), but positive correlations with both the
Vmic/TOC (ratio of Vmic to TOC) and Smic/TOC (ratio of Smic to TOC) (Figure 13e–h),
indicating that the clay minerals in the samples contain less mesopores but are rich in
micropores. This result is obviously different from previous research on clay minerals. For
example, Ji et al. [86,87] documented that micropores in chlorite and illite (both of them
are present in theYC2 samples, see Table 2) were underdeveloped, and their pores were
dominated by pores with a size of 20–100 nm (mesopores and macropores); Li et al. [88]
suggested that 2–50 nm pores in clay minerals provided their main pore volume and
specific surface area. Considering that the porosity of the YC2 samples is mainly controlled
by the clay minerals (Figure 6c), it can be further deduced that the tectonic deformation
resulted in a significant reduction in mesopores in clay minerals, with the formation of
some larger deformation macropores and the transformation into micropores.
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Similar to the correlation between the quartz content and porosity of the YC2 sam-
ples, there is also no obvious relationship of the quartz content with the VBJH and Vmic
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(Figure 14a,b). Although the carbonate content is positively correlated with the VBJH and
Vmic (Figure 14c,d), its correlations with VBJH/TOC and Vmic/TOC were also not found
(Figure 14e,f). Thus, it can be inferred that the quartz and carbonate minerals have no
obvious influence on the pore structure parameters for the YC2 samples. This is consistent
with previous studies on the undeformed Lower Cambrian shales in other areas of southern
China [62,89].
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3.4. Mechanism of LPH and Its Significance for Shale Gas Preservation

There are several reports with a LPH record of shales from their LPNA data
(e.g., [84,90–92]), but their authors did not give a further explanation of its mechanism.
Rouquerol [81] summarized three possible causes for a LPH: adsorption deformation,
occurrence of chemical adsorption, and inadequate adsorption balance. Considering that
there are not the obvious adsorption deformations and chemical adsorptions in high and
over-mature shales [83], the LPH of the YC2 samples should be caused by an imbalance in
adsorption, which is most likely related to their special pore structure.

To further reveal the mechanism of LPH of the shale from well YC2, three samples
(YC2-6, YC2-7, YC9-1) were selected to obtain their kerogen and OM-oxidized samples
(see Section 2.2.6). The mineral composition of the oxidized samples (YC2-6F, YC2-7F,
and YC9-1F) remained basically unchanged, compared with their corresponding original
shale samples (YC2-6, YC2-7, and YC9-1) (Tables 2 and 4), indicating that the OM in the
samples were only removed during the treatment process. Although the TOC content was
not measured to the oxidized samples in this study, their OM should have been almost
completely removed according to the data from Chen et al. [54]. They reported that the
oxidized shale samples have a TOC of <0.1% (using the same method as that in the present
study). Thus, it is deemed that oxidized samples can be representative of the minerals in
shale samples.

Table 4. TOC and mineral composition of isolated kerogen and OM-oxidized samples.

Sample ID TOC
(%)

Mineral Composition of OM-Oxidized Sample (%)

Quartz Plagioclase Illite Chlorite Calcite Dolomite Pyrite

2-6K 1 47.67 / / / / / / /
2-7K 50.41 / / / / / / /
9-1K 41.23 / / / / / / /

2-6F 2 / 27.9 14.6 23.1 3.5 22.8 6.2 1.9
2-7F / 20.9 16.8 20.5 0.8 9.8 1.9 29.3
9-1F / 37.4 14.6 36.3 0 0 9.7 2.0

1 YC2-6k, YC2-7K and YC9-1K are kerogen samples, respectively, from YC2-6, YC2-7, and YC9-1; 2 YC2-6F, YC2-7F,
and YC9-1F are OM-oxidized samples, respectively, from YC2-6, YC2-7, and YC9-1; “/” means no data.

LPNA experiments were performed on the kerogen and OM-oxidized samples. Ac-
cording to the adsorption–desorption curves, the OM-oxidized samples (YC2-6F, YC2-7F,
YC9-1F) became very similar—without a LPH, but with a hysteresis loop in the high pres-
sure section (P/P0 > 0.5)—while the two kerogens (YC2-6K and YC2-7K) show an obvious
LPH, but the kergenYC9-1K does not (Figure 15). As presented in Figure 7 for their original
shale samples, both the YC2-5 and YC2-6 have a LPH (Figure 7c,d), while YC9-1 does not
(Figure 7f). Therefore, it can be believed that the LPH of the YC2 samples should be caused
by their OM with a pore structure having been altered during strong deformation.

In addition, the adsorption equilibrium duration of those samples seems to depend on
whether there is a LPH (Figure 16). As P/P0 is less than 0.1, the adsorption equilibrium
duration of the samples with a LPH (YC2-6, YC2-6K, YC2-7, YC2-7K) is much greater
than those without a LPH (YC2-6F, YC2-7F, YC9-1, YC9-1K, YC9-1F), and the data of the
three OM-oxidized samples (YC2-6F, YC2-7F, YC9-1F) became overlapped, indicating the
minerals in the shales have a very similar adsorption behavior. For a specific shale sample,
the equilibrium duration order is kerogen > original shale > OM-oxidized sample.
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Gas diffusion in the shale nanopore system is mainly characterized by Fick diffusion,
Knudsen diffusion, and surface diffusion [93–95]. As a shale is dominated by micropores,
its gas diffusion is dominated by surface diffusion, owing to the influence of surface
adsorption potentials, with a diffusion coefficient to be closely related to pore diameter
and morphology [95–97]. If the diffusion is insufficient in a finite time, the resulting LPNA
curve will show a LPH [83]. Therefore, the LPH of a shale indicates that its pore structure
is characterized by low diffusion.

The leakage process of shale gas mainly includes desorption and diffusion [97]. As the
pore diameter of a shale becomes smaller, its gas adsorption potential energy will increase,
meaning that its gas desorption will overcome a greater resistance. As discussed in above
sections, the YC2 samples are mainly characterized by micropores and small mesopores,
with undeveloped mesopores, and their pores, such as OM-hosted pores and clay-hosted
pores may be flattened by extrusion and/or compaction to have silt-like or layered shapes.
This unique pore structure is obviously not conducive to gas loss and would play an
important role in the preservation of shale gas. On the other hand, the Lower Cambrian
shale gas in southern China is usually rich in N2 [25–27]. A high content of N2 in shale
strata is generally believed to be sourced from the thermal decomposition of their organic
matter and NH4

+-rich minerals, and/or from the atmospheric N2 infiltration [24,25,27,74].
The thermal decomposition-derived N2 occurs mainly at a very high maturity stage, e.g.,
EqRo > 3.5% according to Gai et al. [74], while the YC2 samples have an EqRo of 3.1–3.2%
(see Section 2.2), within the maturity range of methane generation and preservation [5,75].
In addition, the Lower Cambrian shale at well YC2 is currently shallowly buried and has
a high dip angle, which is suitable for the infiltration of atmospheric N2. However, the
shale gas contains only a minor amount of N2. This further suggests that the unique pore
structure of the shale has prevented N2 from entering its nanopore system and that the
reserved methane has been preserved. These two aspects are believed to be the basic
reasons for the preservation of the Lower Cambrian shale gas at well YC2. However, it
should be pointed out that whether this mechanism has a general significance for shale gas
exploration and development in strongly deformed shale strata in southern China needs to
be verified by more cases.



Energies 2022, 15, 2956 21 of 25

4. Conclusions

In this research, the pore characteristics and pore structure and the controlling factors
of the Lower Cambrian gas-bearing shale samples with strong tectonic deformation taken
from the YC2 well in southern China were investigated, and the main conclusions have
been drawn as follows:

(1) The pore types of the shale are microfractures—interP pores occurring mainly between
clay minerals and OM-clay mineral composite pores within their aggregates—and all
of them were formed or obviously affected by extrusion deformation. The porosity of
the shale is low, and it is mainly contributed by macropores with a size of >220 nm
and controlled by clay mineral content.

(2) The pore structure of the shale is characterized by predominant micropores and
2–3 nm mesopores that are mainly contributed by organic matter and an underdevel-
opment of 3–50 nm mesopores, with dominant pores being a slit-like or layered shape.

(3) The alteration of OM and clay mineral-related pores by strong deformation appears
to be the main mechanism for the formation of the unique pore structure of the shale.
This results in an obvious low pressure hysteresis of the LPNA curve caused by
low gas diffusion, which is the main reason for the preservation of shale gas. This
explanation gives a new significance to the LPH phenomenon, that is, it indicates a
lower gas diffusion rate. This study provides new enlightenment for the preservation
mechanism of shale gas under a background of complex structure.
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