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Abstract: Over the last few years, improving power extraction from the wind energy conversion
system (WECS) under varying wind speeds has become a complex task. The current study presents
the optimum maximum power point tracking (MPPT) control approach integrated with neural
network (NN)-based rotor speed control and pitch angle control to extract the maximum power from
the WECS. So, this study presents a reference model adaptive control (RMAC) for a direct-drive
(DD) permanent magnet vernier generator (PMVG)-based WECS under real wind speed conditions.
Initially, the RMAC-based rotor speed tracking control is presented with adaptive terms, which tracks
a reference model that guarantees the expected exponential decay of rotor speed error trajectory.
Then, to reduce the wind speed measurement errors, a recurrent neural network (RNN)-based
training model is presented. Moreover, the asymptotic stability of the proposed control method is
mathematically proven by Lyapunov theory. In addition, the pitch angle control is presented to
efficiently operate the rotor speed within the allowable operating range. Eventually, the proposed
control system demonstrates its effectiveness through simulation and experimentation using a
prototype of 5 kW DD PMVG-based WECS. After that, the comparative results affirm the superiority
of the proposed control method over existing control methods.

Keywords: permanent magnet vernier generator; variable speed wind turbine; reference model
adaptive control

1. Introduction

As the global demand for wind energy has grown, the amount of energy produced by
wind turbine (WT) capacity has increased to gigawatts [1,2]. This demands the installation
of larger generators capable of managing high torques and converting the vast majority
of the energy collected by turbine blades. Consequently, it is not easy to handle both
the volumetric size and total mass of the generator. Moreover, it should concern the
material cost, the maximum weight support by the tower, and its vibration handling
capability [3]. Therefore, the direct-drive (DD) permanent magnet synchronous generator
(PMSG) without gears is being used to overcome these challenges. However, in this instance,
the generator’s weight and size become too heavy, proportionally increasing the nacelle’s
weight [4]. Hence, a low weight DD generator with a substantially greater power density
is required to overcome all of the problems at once. In this regard, permanent magnet
vernier generators (PMVGs) have gained much interest in wind energy conversion systems
(WECSs) because they can generate higher torque density even in low-speed conditions
due to their magnetic gear effect compared to PMSG. Furthermore, it has a significantly
greater output power density since it employs the primary permanent magnet flux as the
modulation flux simultaneously [5–7].

From this point of view, the DD PMVG-based WECS has been designed and discussed
in [8]. This design method decreases the uncertainty and avoids the complexity of repetitive
design and performance computations. The authors in [9] have investigated the PMVGs
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in a small-scale uncontrolled passive wind energy system. As a result, they found that
the inherently high internal reactance is advantageous for this application. Moreover, the
authors in [10] have completed a comparative analysis of the performance and cost of
the conventional and PMVG-based WECS. Based on this analysis, PMVG seems to be the
most acceptable alternative to conventional generators in terms of power matching, torque
quality and generator mass. In addition, a limited study focused on the design of efficient
control and nonlinear modelling of the PMVG-based WECS. Therefore, this study deals
with the nonlinear modelling and efficient tracking control design for the PMVG-based
WECS under various wind conditions.

The maximum power point tracking (MPPT) controllers have been developed to
increase the maximum power extraction (MPE) capability of the variable-speed WT gen-
erators under various wind conditions [11]. It can be divided into two methods: pitch
angle regulation and rotor speed regulation-based MPPT control techniques. In this regard,
the authors establish various MPPT methods for maximizing wind power, such as linear
quadratic Gaussian (LQG) control [12], sliding mode control [13,14], fuzzy control [15]
and optimal power curve estimation algorithm [16]. Even so, these techniques have sig-
nificant disadvantages, including the lack of ability to follow references and reject system
disturbance. Furthermore, the authors in [17] have introduced the polynomial disturbance
observer-based MPPT control techniques for WECS, which can determine the aerodynamic
torque, wind speed and electromagnetic torque without sensors. However, this approach
has high computational complexity. Similarly, an adaptive hybrid intelligent MPPT control
was investigated in [18] to approximate the effective wind speed and the optimal rotor
speed of variable-speed wind turbines. The authors in [19] have proposed an adaptive
perturbation and observation approach-based MPPT scheme for PMSG-based WECS, in
which step size is proportional to the slope, and it enhances the tracking capability. How-
ever, constantly changing wind conditions can cause the step size to be larger, affecting
the tracking performance. Unlike the previously described MPPT methods, the proposed
method can significantly improve the dynamic performance of the PMVG-based WECS to
achieve an MPE from the varying wind speed conditions.

On the other hand, neural networks (NN) have advantages in universal approximation,
quick learning capabilities, parallel computing, and fault tolerance [20]. Thus, the NN-
based MPPT control algorithms are most popular in the WECS [21]. From this perspective,
the authors in [22] have been presented a robust control technique by combining MPPT
and pitch angle control for variable-speed WT systems. In this approach, the artificial NN
adjusts the pitch angle to select the optimum generator speed for stable power extraction.
In addition, the authors in [23] investigated the MPE approach using a cascade forward
NN. This method presented the multi-layer cascade forward backpropagation technique
rather than the most basic and widely used feed-forward multi-layer perceptron scheme.
Following that, the authors in [24] have introduced a self-recurrent wavelet NN control
approach for WECS and it has local self-feedback loops in a self-recurrent wavelet neural
network, which give the memory function and the essential knowledge of historical signal
values. The authors in [25] have proposed an upgraded gray BP NN and a modified
ensemble empirical mode decomposition auto-regressive integrated moving average for
real-time wind speed estimation. However, the aforementioned control algorithms are
dependent on the wind measuring sensors, and it takes much time to collect the wind data.
In the case of faulty wind sensors, the estimation methods results can be inaccurate. To
handle this issue, in this study, a recurrent neural network (RNN) is presented to estimate
wind speed without using wind speed measurement sensors. Moreover, the RNN is
well-suited for real-time control and identification applications for WECS.

In recent years, regulating a WECS under fluctuating wind speed and enhancing the
quality of the electricity supplied to the grid has become a complex challenge. In addition,
a limited study only focused on the design of efficient control of the PMVG-based WECS.
Therefore, this study deals with the nonlinear modeling and efficient tracking control
design for the PMVG-based WECS. The main contribution of this study is to present an
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effective rotor speed tracking control and to estimate wind speeds even at varying wind
speeds using RNN. The RNN eliminates the wind speed measuring sensors because it
estimates the wind speed from the current data of the torque and the rotor speed. As a
result, MPPT ensures the MPE capability and significantly improves the electrical efficiency
of the WECS. The contributions of this study can be summarized as follows:

• First, the RMAC is proposed for DD variable-speed PMVG-based WECS, which tracks
a reference model that guarantees the expected exponential decay of rotor speed
error trajectory.

• Based on the given reference model, the proposed technique can ensure a rapid
exponential decrease of the speed error trajectory. Moreover, to enhance the tracking
capability of the proposed RMAC method, an adaptive compensative term and a
stabilizing feedback control term are presented.

• A RNN is trained offline to learn the rotor speed and torque information. Then, the
trained RNN-model is deployed online to retrieve the wind speed without using an
additional wind speed sensor. Furthermore, the pitch angle adjustment is presented
to maintain the optimum rotor speed under varying wind conditions.

• Finally, the proposed control system demonstrates its effectiveness through simulation
and experimentation using a prototype of 5 kW DD PMVG-based WECS. Then, the
comparative results validate the superiority of the proposed control over existing
control methods.

The paper is organized as follows: The WT and PMVG dynamics are presented in
Section 2. The design of RMAC and stability analysis are detailed in Section 3, and the NN
and pitch angle controller is explained in Sections 4 and 5. Simulation and experimental
results and their discussions are carried out in Section 6. Finally, Section 7 summarizes
the conclusion.

2. Modeling of PMVG-Based WECS

This section provides an overview of the wind energy conversion system. It consists
of the wind turbine and PMVG modeling. The topology of a DD PMVG-based WECS with
basic architecture and control approaches are shown in Figure 1.

Figure 1. Basic topology of PMVG-based WECS with control strategy.
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2.1. Wind Turbine Modeling

The amount of power generated by the WT is given by [8]:

P =
1
2

ρAV3Cp(λ, β), (1)

where ρ is the air density, V is the wind speed and A = πR2 is the blade rotor swept area.
Here, R is the radius of the WT blade. The power coefficient Cp is a function of the blade
pitch angle β and tip speed ratio (TSR) λ.

λ =
ωmR

V
. (2)

Here, the mechanical angular speed of a turbine is denoted by ωm. With a changeable
pitch angle β, the power coefficient Cp(λ, β) of the WT can be defined as follows [26]:

Cp(λ, β) = 0.73

(
151
λj
− 0.5β− 0.002β2.14 − 13.2

)
e
− 18.4

λj , (3)

λj is given as
1
λj

=
1

λ− 0.02β
− 0.003

β3 + 1
.

In general, there is an ideal TSR for each WT blade pitch angle β; it is indicated by
λ

β=0
opt = 6.912. The maximum power coefficient Cpmax = 0.441 is obtained from the ideal

TSR-based MPPT, which typically captures maximum power of 5 kW at various wind
speeds. As shown in Figure 2 the cut-in, rated, and cut-out speeds are 3 m/s, 9 m/s, and
15 m/s, respectively. In addition, Figure 3 shows the typical power curve used in this study,
which was obtained from (1).
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Figure 2. Different operating region of the PMVG-based WECS.
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Figure 3. The wind power versus wind speed characteristics of the 5 kW PMVG-based WECS.
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2.2. PMVG Modeling

Dynamic modeling of the PMVG can be described in the synchronously rotating d− q
reference system as follows [27]:

Vsd = Rsisd −ωsLsqisq + Lsd
disd
dt

,

Vsq = Rsisq + ωsLsdisd + Lsq
disq

dt
+ ωsΦmag,

ω̇m =
1
J
[
TL − Telec − Bωm

]
.

(4)

where Vsd and Vsq represent the d − q frame stator voltages, Rs represents the winding
resistance of the stator, and isd and isq represent the d − q frame stator currents. The
electrical rotating speed of the generator ωs is the product of the generator pole pair Pn
and the mechanical angular speed ωm. Lsd and Lsq are the d− q frame inductance of the
generator, Φmag is expressed as modulation flux linkage and J represents the cumulative
inertia of the WT system. The electromagnetic torque of the PMVG is as follows:

Telec =
3
2

PnisqΦmag. (5)

3. The Proposed Rotor Speed Control Design

This section describes the RMAC design and its stability analysis. First, according to
the system dynamics, the reference model is designed. Then, the proposed RMAC-based
speed control law is created. It consists of a stabilizing feedback term and an adaptive term.

3.1. Reference Model for the Rotor Speed Control Design

The conventional model reference adaptive control is presented in [28], and the refer-
ence model rotor speed ωmr is directly compared with the actual rotor speed ωm. Likewise,
in [29], the output of the reference model is compared to the electrical speed error, which
is obtained from the real and desired rotor speeds. Based on the sampling period, the
desired speed is changing. However, this study calculates the desired speed accurately
from the RNN controller according to the obtained wind speed. Therefore, it gives a better
dynamic performance, and the generator can extract the maximum power under wind
speed variation. Figure 4 shows the block diagram of the proposed RMAC and RNN-based
wind speed estimation controller. In (4), the rotor speed is in the form of a first-order
derivative. Therefore, the reference model is also taken in the same way as follows [29]:

ω̇mr + λmrωmr = 0. (6)

where λmr > 0 is a constant term, and ωmr is the reference model output. In addition, the
reference model output has following the exponential decay form:

ωmr = ceλmrt, (7)

where c > 0. The error dynamics are created by using the error vector e = [e1, e2] as follows:
e1 =

∫ t
0 ewdt =

∫ t
0 e2dt,

ė1 = e2,
ė2 = R1isq − R2ωm − R3TL + λmrωmr.

(8)

where R1 =
3
2J

PnΦmag, R2 = B
J , R3 = Pn, and e2 = ωe − ωmr. The state variables are

isd, isq, and ωm, while R1, R2 and R3 are unknown in (8). The tracking error is defined
as follows:

ϕ = µe1 + e2. (9)
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where µ > 0 is constant. Using the lemma 1 from [29], we can derive that

Ω∗ = − 1
R1

[
µ− R2, λmr − µ, µωd + R3TL

]T . (10)

Here, the load torque TL and parameters R1, R2, R3, µ, λmr and ωd are unknown, and
their differentiation is zero. Therefore, the considered parameters are constant.

Figure 4. Block diagram of the proposed RMAC and the RNN-based wind estimation model.

3.2. Reference Model Adaptive Control Design for the Speed Control

This subsection describes the proposed RMAC design, which includes stabilizing
feedback control and an adaptive compensatory control term. Then, using the Lyapunov
technique, Theorem 1 proves the asymptotic stability of the closed-loop system.

Theorem 1. If the PMVG parameters are unknown, the reference q-axis current iq can be expressed
as a combination of a stabilizing feedback control term (kϕ) and an adaptive compensating control
term (Ω̂T f ) , as shown below [29].

iq = −kϕ + Ω̂T f . (11)

where (Ω̂T) is the adaptive compensating control term, (−kϕ) is the stabilizing feedback control
term and the f = [ f1, f2, f3]

T . The updating law for RMAC is as follows:

˙̂Ω = −Θ−1 f ϕ, (12)

where the adaptation gain Θ = diag(Θ1, Θ2, Θ3) > 0.

Proof. The Lyapunov function is defined as follows:

V =
ϕ2 + R1$TΘ$

2
, (13)

where $ = Ω∗ − Ω̂. Then, the time derivative of (14) is given by

dV
dt

=
1
2

[
2ϕ

dϕ

dt
+ 2R1$TΘ

d$

dt

]
, (14)

V̇ = ϕ(µė1 + ė2) + R1$T f ϕ (15)

By using the Lemma 1 in [29], we can verify that

V̇ = −R1kϕ2 ≤ 0 (16)

which implies that V̇ ≤ 0, as shown in (16), V(t) is non-increasing and has an upper bound
(V(t) ≤ V(0)). Hence, we can conclude that the proposed control scheme guarantees the
stable performance under Lyapunov stability theory.



Energies 2022, 15, 3091 7 of 17

From (9), the transfer function of the tracking error is expressed as follows:

G(s) =
1

s + µ
(17)

From (11), the estimate term Ω̂ can be written as follows:

Ω̂ =

Ω̂1
Ω̂2
Ω̂3

 = −
[∫ t

0
ϕωm

Θ1
dt

∫ t
0

ϕωmr

Θ2
dt

∫ t
0

ϕ

Θ3
dt
]T

(18)

From (18), the update law of (11) can be written as:

Ω̂T f = −
[

ωm

∫ t

0

ϕωm

Θ1
dt + ωmr

∫ t

0

ϕωmr

Θ2
dt +

∫ t

0

ϕ

Θ3
dt
]

(19)

where f = [ f1, f2, f3]
T = [ωm, ωmr, 1]T

4. The Proposed RNN for Wind Speed Estimation

The neural networks can learn and process data in parallel to achieve output values.
Furthermore, the universal NN approximation theorem states that NN can accurately
approximate any nonlinear behavior with single or several hidden layers [30]. In this
respect, an RNN is a deep learning network topology presented to improve the network
performance on current and future inputs by using knowledge from the past. In addition,
RNNs are distinct in that they have a hidden state and loops, which enables the network to
retain previous data in a hidden state and operate on sequences. The topology of the RNN
scheme is as illustrated in Figure 5. In addition, the RNN outperforms other frequently
used NNs in speed and efficiency, making it ideal for real-time control and identification
applications. Furthermore, by picking adequate input signals, the RNN detects the wind
speed reference accurately. The RNN input and output can be written as:

Ij = WjOj(k− 1) + ∑n
j=1 ΞijSi

Oj =
exp(Ij)

exp(Ij) + exp(−Ij)

(20)

where the hidden layer input and output denote Ij and Oj (j = 1, 2, . . . n), Wj and Ξij
denote the recurrent weight and the connecting weight, respectively, and k denotes the
sampling instant.

Figure 5. Topology of the recurrent neural networ.

Based on [31], the wind speed is measured using wind speed sensors. However, in this
study, the wind speed V is measured using the generator speed ωm and the electromagnetic
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torque Telec. Therefore, the RNN inputs are ωm and Telec and the output is V. In the input
layer, the inputs are d1 = ωm and d2 = Telec and the following is output:

Si = f (di) =
exp(di)− exp(−di)

exp(di) + exp(−di)
(21)

where di (i = 1, 2) denotes the i-th input of the input layer, Si represents the i-th ouput of
the input layer, and a symmetrical hyperbolic tangent sigmoid function is defined as f (di).
A single neuron in the output layer calculates the wind speed V as the weighted sum of all
hidden layer output signals. Therefore, the final output of the estimated wind speed can be
written as follows :

V =
n

∑
j=1
Wj1Oj. (22)

On the other hand, an RNN is trained using the numerical model of the PMVG-based
WECS. In addition, the generator speed and torque are used as inputs, and the output is
the wind speed. These are calculated within the range of 2–4 m/s and with the respective
rotor speed and generator torque with an increment of 0.25 m/s. Moreover, the calculated
numerical data are considered as training data. After training, validating, and testing, the
mean square error is reached not more than 400 iterations, as shown in Figure 6. Therefore,
the proposed NN can provide the estimated wind speed output with very minimum
error value.

559 Epochs

M
e
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n

 S
q

u
a
re

d
 E

rr
o

r 
 (

m
s
e
)

Train

Validation

Test

Best

Figure 6. Neural network training performance.

5. Pitch Angle Controller

When the wind speed increases or power decreases, the rotor speed rises beyond the
rated speed. In such a situation, the pitch angle regulation is activated to keep the rotor
speed at its rated speed to maximize the output power, as shown in Figure 7. Then, the
optimum pitch angle is used in the rotor-side control method, which can operate between
lower and higher rotor speeds. Therefore, the rotor speed and pitch angle control are
employed separately to sustain continuous power generation in WECS for balancing the
input/output power [32].

Figure 7. Pitch angle controller design for WT.
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6. Simulation and Experimentation Results
6.1. Simulation Verification and Discussion

The PMVG-based variable speed WECS simulation is carried out to validate the
efficiency of the proposed control method. Table 1 displays the PMVG-based WECS
parameters, as similar in [27]. In this study, the PMVG-based WECS is investigated under
the following three cases:

1. A random wind speed under region II;
2. A random wind speed under regions II and III;
3. A real wind speed is measured at the location of Gunsan, South Korea.

To do this, the constant λmr in the reference model (6) is set as 1000, and the c value
in (7) is set as 0.25. The gain k in the feedback control (11) is 0.51. In addition, the proposed
RMAC system dynamic performance is compared using proportional integral (PI) and
optimal torque control (OTC) [33,34] methods.

Figure 8 shows the step wind speed and the corresponding wind speed estimated by
the RNN for each step variation. It shows that there is a small time transient in the wind
speed estimation with no oscillations before settling.

Table 1. Parameters of PMVG-based WECS [27].

Parameter Symbol Value

Rated power Pwt 5 kW
Air density ρ 1.225 kg/m3

Radius R 2.82 m
Moment of inertia J 0.188 kg·m2

Resistance Rs 0.44 Ω
d-q inductanc of generator Lsd, Lsq 17.5 mH

No. of poles Pn 20
Flux density Φmag 0.4459 Wb

Figure 8. Real and estimated wind speeds.

6.1.1. Case I: A Random Wind Speed under the Region II

In this case, wind speed is below 9 m/s and β is zero. Figure 9 shows the comparative
simulation results of the PI, OTC controllers and the proposed control method, respectively.
The region II random wind speed is shown in Figure 9a, with an upper limit of 9 m/s and
a lower limit of 6.3 m/s. Moreover, the rotor speed tracking performance is illustrated in
Figure 9b, with the different control methods. From this, it is evident that the rotor speed
tracks the optimal rate much more rapidly and efficiently when comparing the proposed
control method to the other control methods in terms of overshoot and settling time. From
Figure 9c, we can confirm that the proposed control method can recover Cp to Cpmax very
quickly compared to the PI and OTC methods. In addition, for varying wind speeds, the
rotor speed tracks the reference speed to maintain a consistent power coefficient. As a
result, the MPPT under region II yields the best value of Cp = 0.4412. Moreover, as seen in
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Figure 10, we can see the TSR (λ) can be smoothly maintained around the excellent value
(6.912) under the proposed control scheme.

Figure 9. Simulation results for PMVG-based WECS under the case I with region II wind speed:
(a) Random wind speed. (b) Rotor speed. (c) Power coefficient.

Figure 10. Lambda for region II.

6.1.2. Case II: A Random Wind Speed under the Region II and III

In this case, the random wind speed changes across regions II and III, with wind
speeds ranging from 7.1 to 10 m/s. As mentioned earlier, when the wind speed hits
9 m/s, the PMVG rated rotor speed of 22.3 rad/s is reached. Thus, when the wind speed
exceeds 9 m/s, the pitch control shifts the WT blades to the pitch angle that minimizes
mechanical stress. Accordingly, the λ and Cp values are also lowered. When the wind speed
drops below 9 m/s, the MPPT kicks in to provide rotor speed control. In detail, Figure 11
provides the dynamic performance of the simulation results of the PI, OTC controllers and
the proposed control method, respectively. Following that, Figure 11a shows the variable
wind speed. At the same time, the rotor speed is presented in Figure 11b.

From this, it can be observed that pitch angle control is activated when the wind
speed exceeds 9 m/s; then, the Cp and λ values will be reduced to maintain the rotor
speed below the rated speed of 22.3 rad/s. Thus, the generator power also reduced
correspondingly. The enlarged figure inside Figure 11b clearly confirms that the proposed
controller technique effectively achieves the MPPT target compared to the PI and OTC
controllers. The corresponding power and Cp are displayed in Figure 11c,d, respectively.
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The corresponding λ and β values are illustrated in Figure 12a and Figure 12b, respectively.

Figure 11. Simulation results for PMVG-based WECS under the case II with region II and region III
wind speed: (a) Random wind speed. (b) Rotor speed. (c) Output power. (d) Power coefficient.

Figure 12. Results for the case II with wind speed of region II and III: (a) Tip speed ratio λ. (b) Pitch
angle β.

6.1.3. Case III: Real Wind Speed

In this case, actual wind speed data for 10 min are gathered from the place of Gunsan
in South Korea. It is measured by using an anemometer, which is called point wind speed.
However, point wind speed cannot be used directly, so we estimate the effective wind
speed using the Newton Raphson equation [35], as shown in Figure 13. For simulation,
the estimated wind speed duration is 100 s ranging from 5 to 13.7 m/s. Furthermore,
Figure 14 shows the comparison of the dynamic performance of PMVG for real wind speed.
First, the real wind speed is clearly shown in Figure 14a. From Figure 14b, it is evident
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that the proposed RMAC-based speed tracking control responds faster than the existing
control methods.

Figure 13. Estimated real wind speed profile.

At this time, the Cp value is increased because the rotor speed effectively tracks the
reference speed, as seen in Figure 14c. In addition, as illustrated in Figure 14d, the WT
output power is more elevated than the PI and OTC controllers. The corresponding λ and β
values are given in Figure 15. From this result, we can confirm that the proposed method’s
average generator output power for a specific period (100 s) is 0.5489% greater than the PI
controller and 1.973% higher than the OTC control method. In addition, dynamic responses
within the graphs are highlighted during low and high wind speeds. It has been shown
that speed tracks form smoothly when all control methods are used. However, for the
proposed control method, the generator speed is accelerated or slowed down very quickly
during the MPPT operation under the actual wind speed variation compared to the PI and
OTC control methods. Hence, it is worth concluding that the proposed control scheme
effectively tracks the MPPT reference under varying wind conditions.

Figure 14. Results for the case III with real wind speed: (a) Real wind speed. (b) Rotor speed.
(c) Power coefficient. (d) Output power.
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Figure 15. Results for case III with real wind speed. (a) Tip speed ratio λ. (b) Pitch angle β.

Finally, the rotor speed tracking performance and quantitative analysis for power
extraction are given in Table 2. These findings proved that the proposed RMAC for
rotor speed tracking control outperforms the other conventional methods. Moreover, the
electrical power extraction also significantly improved. Using the proposed controller, we
may gain 2.35% and 0.38% more than the PI and OTC controllers in region II. We may
achieve 1.01% and 0.23% greater than the PI and OTC controllers in regions II and III.
We can achieve 1.75% and 1.16% higher than the PI and OTC controllers in real wind
speed conditions.

Table 2. PMVG rotor speed tracking performance and electrical power efficiency analysis from the
simulation results.

Regions Control Methods Tracking Efficiency
(%)

Electrical Power
Efficiency (%)

PI 94.25 84.82
II OTC 95.24 85.71

Proposed 95.60 86.04

PI 93.75 84.37
II and III OTC 94.48 85.03

Proposed 94.70 85.23

PI 92.58 83.32
Under real wind

speed OTC 93.12 83.80

Proposed 94.21 84.78

6.2. Experimental Verification and Discussion

The experimental setup of the PMVG-based WECS is shown in the Figure 16. A
Sinamics-S120 power controller controls a Siemens induction motor that emulates a wind
turbine model. A 5 kW PMVG coupled with an induction motor and a three-phase back-
to-back converter is used to rectify the generator AC voltage. The Texas Instruments
TMS320F28335 DSP board with a 10 kHz sampling frequency is used to implement the
control methods, and the easy DSP platform is used to monitor the response of the system.
In addition, to test the efficiency of the proposed control strategy, it is compared to the OTC
method, which is commonly used in industrial purposes.

The dynamic behaviors of the PMVG-based WECS under the proposed control scheme
are demonstrated in Figure 17. First, the real wind speed given in Figure 17a. From
Figure 17b, we can affirm that the proposed control method can offer good rotor speed
tracking performance under real wind speed fluctuations. Following the MPPT operation,
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when the wind speed is below the rated speed (region II), the power coefficient is main-
tained at its maximum value Cp = 0.441, and the blades are at their ideal angle θ = 0o.
Conversely, if the wind speed exceeds the rated speed (region III) of the turbine, the WECS
switches to pitch angle control its lowered the power coefficient, as illustrated in Figure 17c.
From Figure 17d, we can confirm that the proposed control method effectively operates the
WECS under MPPT conditions. In addition, the rise in pitch angle at high wind speeds is
displayed in Figure 18a. From Figure 18b, it is evident that the proposed control scheme
enhances the stable MPE for the real varying wind conditions. Furthermore, the negative
sign indicates that the generator output power is transformed to the grid. From the rigorous
analysis of the simulation and experimental results, we conclude that the proposed control
method exhibits the fast dynamic response and stable power extraction capability over
existing control methods.

Figure 16. Hardware of the experimental setup.
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Figure 17. Experimental results for real wind speed: (a) Real wind speed. (b) Rotor speed. (c) Power
coefficient. (d) Output power.

Finally, an overview of rotor speed tracking performance and electrical power ex-
traction efficiency are compared and given in Table 3. These findings proved that the
proposed RMAC for rotor speed tracking and electrical power extraction outperforms
the OTC method. Furthermore, using the proposed controller may acquire 2.56% more
electrical power than the OTC controller.
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Figure 18. Experimental results for real wind speed: (a) Beta β. (b) Grid output power.

Table 3. PMVG rotor speed tracking performance analysis and electrical power efficiency from the
experimental results.

Control Methods Tracking Efficiency (%) Electrical Power Efficiency
(%)

OTC 94.24 83.01
Proposed 94.60 85.14

7. Conclusions

In this study, an RMAC has been investigated for a DD PMVG-based WECS under
real wind speed conditions. To do this, first, RMAC-based rotor speed tracking control has
been presented to track a reference model that guarantees the expected exponential decay
of rotor speed error trajectory. Next, an RNN-based training model has been presented
to estimate the actual wind speed without using the wind speed measuring sensor. In
addition, the pitch angle control has been presented to operate the rotor speed within the
allowable operating range, ensuring the stable power production of the WECS. We have
shown that the proposed control asymptotic stability has been guaranteed using Lyapunov
theory. Finally, the proposed control system has demonstrated its effectiveness through
some simulations and experimentation using a prototype of 5 kW DD PMVG-based WECS.
In addition, the comparative results have verified the superiority of the proposed control
over the existing control methods.
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