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Abstract: This paper concerns a multi-physical modeling framework based on the spectral element
method (SEM) for axisymmetric wireless power transfer systems. The modeling framework consists
of an electromagnetic and a thermal model. The electromagnetic model allows for eddy currents
in source- and non-source regions to be included in the analysis. The SEM is a numerical method,
which is particularly advantageous in 2D problems for which the skin-depth is several orders of
magnitude smaller compared to the object dimensions and complex geometrical shapes are absent.
The SEM applies high-order trial functions to obtain the approximate solution to a boundary-value
problem. To that end, the approximation is expressed as an interpolation at a set of nodal points,
i.e., the nodal representation. The trial functions are Legendre polynomials, which reduces the
complexity of the formulation. Furthermore, numerical integration is performed through Gaussian
quadratures. In order to verify the SEM, a benchmark system is modeled using both the SEM and
a finite element-based commercial software. The differences in the SEM solutions, i.e., magnetic
vector potential and temperature distribution, and the discrepancies in essential post-processing
quantities are assessed with respect to the finite element solutions. Additionally, the computational
efforts of both methods are evaluated in terms of the sparsity, number of degrees of freedom, and
non-zero elements.

Keywords: eddy currents; finite element analysis; inductive power transmission; numerical models;
spectral element method; transformer cores

1. Introduction

Wireless power transfer (WPT) by means of an inductive coupling is a popular and
mature technology. Correspondingly, inductive WPT systems are widely applied in applica-
tions that require reliable and durable power transfer to rotary parts, for example, robotics
and battery charging applications [1,2], as well as electrical machines and actuators [3,4].
Such a system generally employs a cylindrical transformer, which consists of a stationary-
and rotary side separated by a (small) air gap. For the purpose of achieving a high magnetic
coupling, a magnetic core, which provides a low reluctance path to the magnetic flux, is
often added on either or both sides of the system. Furthermore, a high electrical frequency is
generally applied, which benefits the efficiency and reduces the volume [5]. Consequently,
gallium-nitride (GaN) transistors are emerging in WPT applications, since frequencies in
the range of several MHz are realized compactly and efficiently [6]. The electrical frequency
of a WPT system based on an inductive coupling typically ranges from tens of kHz up to
several MHz [7]. In order to accommodate for high electrical frequencies, the magnetic
core material is generally ferrite, which, as a result of the low electrical conductivity, has
low losses in a wide frequency range, i.e., up to 3 MHz for energy conversion applications.
Furthermore, the coils typically consist of litz wire, such that the losses caused by the skin-
and proximity-effect are minimized. Alternatively, foil windings are often applied in case
the required effective copper cross-section is high [8]. In small transformers, foil windings
are popular as a result of the simplicity of the winding operations [9].
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A wide variety of WPT systems for rotary applications have been designed and
analyzed in the literature [3,10–17]. For the purpose of designing and analyzing such
systems, a modeling framework, which consists of an electromagnetic and a thermal model,
is imperative to predict the characteristics of the system. In order to significantly reduce
the computational effort, the cylindrical geometry is often reduced to an axisymmetric
problem, e.g., as done in (part of) the analysis presented in [3,10,13,14,16,17]. Generally, the
electromagnetic model employs the finite element method (FEM), e.g., the works presented
in [2,3,5,17]. Similarly, in order to analyze the temperature distribution of the system, the
FEM is often applied, for instance [13,16,18].

A WPT system is often a subsystem of a unified whole. Consequently, the application
of shielding techniques may be necessary, such that undesirable effects, caused by the pene-
tration of the magnetic field into surrounding objects, are mitigated. For example, in [17], a
WPT system is designed for a satellite application. In order to minimize interference caused
by the air gap fringing-fluxes, an open-ended cylinder acting as a shield surrounds the
cylindrical transformer. The incorporation of surrounding electrically conductive materials,
e.g., as a result of shielding techniques, into the modeling framework is crucial, since the
performance might degrade significantly [19]. However, for high-frequency applications in
which skin-depths are orders of magnitude smaller compared to the overall model dimen-
sions, the locally different requirements on the mesh density may cause meshing problems
in the electromagnetic model [20,21]. Therefore, electrically conductive materials present
in the direct vicinity of a WPT system are often replaced by surface impedance boundary
conditions (SIBCs). This type of model reduction introduces a (small) discrepancy, which is
dependent on the relation of the radius to the skin-depth [22,23]. For this reason, SIBCs are
not applicable to any arbitrary problem. Furthermore, SIBCs are unable to obtain the mag-
netic field distribution inside the electrically conductive region. In coil regions, analytical
models, e.g., such as presented in [8,24], are often applied for the approximation of the coil
ac resistance. However, such approximations might lead to significant underestimations of
the ac resistance [25]. Consequently, the accuracy of the thermal model and efficiency cal-
culation is compromised. Alternatively, for these types of problems, higher-order methods
can be applied, such as the spectral element method (SEM), which, in comparison to the
FEM, provides superior accuracy at the expense of geometrical domain flexibility [26,27].

The SEM is a numerical method, which can be applied in order to obtain approximate
solutions to boundary-value problems. The SEM was originally applied to problems
occurring in fluid dynamics and meteorology [28]. Over the past decades, the application
of the method has spread to a wide variety of linear and non-linear engineering and
mathematical problems [29], e.g., wave propagation, structural analysis, astrophysics,
financial engineering, and more recently electromagnetic field modeling [27,30], including
eddy current problems [16,20,31]. The formulation of the SEM for 2D Cartesian magneto-
static and thermal problems is presented in [27], of which the former has been applied to a
linear synchronous actuator in [32]. In [20], the SEM has been applied for the modeling of
induced losses in a high-speed rotating cylinder. Alternatively, approaches that combine the
SEM and FEM are observed in the literature, e.g., in [21] a coupled SEM-FEM approach has
been applied to model an induction machine, where the former is used to model rotor eddy
current losses and the latter is applied to the remainder of the domain. Another example is
observed in [33], where a coupled SEM-FEM approach is applied to investigate magneto-
convection for transformer cooling. In the context of high-frequency axisymmetric WPT
systems, in [31], the SEM has been applied for the modeling of the losses that are induced
in an electrically conductive and permeable cylinder, which surrounds the domain. The
results have demonstrated that, compared to the FEM, the SEM obtains a higher accuracy
per degree of freedom (DoF) and lower computation time. Similarly, in [16], the SEM
has been applied in order to design such a system, whereas the FEM has been applied to
analyze the temperature distribution. However, in none of the aforementioned works have
eddy currents in coil regions, i.e., consisting of foil windings, been incorporated into the
modeling technique. Moreover, a thermal model to complement the modeling framework
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is desired. For this purpose, the SEM is applicable as well. In this case, the heat sources
and temperature-dependent material properties can be enforced on the same grid, i.e.,
without the need for interpolation, within the same software environment. Alternatively,
an interpolation step can be included, such that the models can apply a different degree of
the approximation, which potentially reduces the computational effort. The formulation of
the SEM for 2D Cartesian steady-state thermal problems is introduced in [27]. However,
in order to apply axisymmetry, modifications are necessary. Succinctly, a multi-physical
modeling framework for axisymmetric WPT systems based on the SEM is an imminent
research topic. In particular, in case the analysis involves (high-frequency) eddy currents in
both source and non-source regions.

Multi-physical modeling frameworks are emerging in a wide variety of research areas,
e.g., earth and nuclear science, fluid-structure interaction, selective laser melting, and fuel
cells [34–39]. In earth science, non-linear phenomena occur that result from multi-physics
coupling across multiple scales from the quantum level to the scale of the earth. More-
over, the time scale varies in the range of femtoseconds to billions of years. In [34], a first
overview is presented of the current approaches to coupling the scales using methods
borrowed from other disciplines. Two trends in the approaches to this type of problem
have been reported. The first trend is a statistical mechanics-based upscaling approach that
considers discrete energy interactions in a hierarchical nesting of calculations that can be
seen as the equivalent of quantum mechanical simulations extended to larger scales. In
the second trend, the problem is approached from a thermodynamically-based continuum
framework. With regard to nuclear science, in [35], the Picard and Jacobian-free Newton–
Krylor (JFNK) methods are developed based on the high-temperature gas-cooled reactor
simulator TINTE, which is widely used to analyze the transient behavior of such a reactor.
The numerical results have indicated that both algorithms, as a result of the accuracy and
stability advantages, achieve a higher computational performance with respect to the origi-
nal semi-implicit coupling algorithm in TINTE. Furthermore, in the field of nuclear science,
ref. [36] employs a multi-physics coupling of SCALE/TRACE for neutronic analysis and
spent fuel validation of boiling-water reactors spent fuel isotopics. The methodology has
been applied to two boiling-water reactor assemblies, discharged from the Fukushima
Daini-2 unit. The neutronic analysis on the assembly level has indicated that the coupling
process is verified. Moreover, validation of the coupling process has been carried out
through spent fuel isotopics data, which demonstrated good results for uranium isotopes
and satisfactory results for other isotopes. On the subject of fluid-structure interaction,
ref. [37] introduces a partitioned Newton-based method for solving non-linear coupled
systems arising in the numerical approximation of such problems. The work proposes
a new strategy to implement linearized solvers for the evaluation the various Jacobians
involved in Newton’s algorithm. The main contribution lies in the establishment of the
expressions for these Jacobians. With regard to selective laser melting, ref. [38] introduces
a mesoscale discrete element method and computational fluid dynamics combined simu-
lation framework for the simulation of such processes. The application of the framework
has demonstrated a successful layer-by-layer simulation. Furthermore, multi-physical
modeling frameworks are applied in the research area concerned with fuel cells. In [39],
a multi-physical and electrochemical coupling model has been established for a protonic
ceramic fuel cell. Experimental validation of the model has been carried out and a good
agreement between the simulation and experimental results has been obtained.

In this paper, a multi-physical modeling framework based on the SEM for axisymmet-
ric WPT systems is presented. The framework includes an electromagnetic and a thermal
model, of which the former incorporates eddy currents in both source and non-source
regions. The formulation and implementation of both models are discussed and verified.
Furthermore, the computational effort is evaluated. The modeling framework is well-suited
for the design analysis of (high-frequency) axisymmetric WPT systems, in which complex
geometrical shapes are absent and various electrically conductive materials are present.
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2. Materials and Methods
2.1. Benchmark System

For the purpose of establishing, applying, and verifying the multi-physical modeling
framework based on the SEM, a benchmark system is considered, which is representative
of a WPT system for a rotary application. An overview of the benchmark system in 3D
space is shown in Figure 1. The primary and secondary sides of the system both consist of
a ferrite magnetic core, in which a copper foil winding is situated. The transformer is fully
enclosed by a stainless-steel shaft and an aluminum housing, which acts as a shield. The
electrical frequency is 1 MHz, thus (high-frequency) eddy current losses are induced in all
electrically conductive materials, i.e., the coils, the aluminum housing, and the stainless-
steel shaft. Furthermore, hysteresis losses are present in both ferrite magnetic cores. The
eddy current losses in the magnetic cores are neglected, since the electrical conductivity of
ferrite is negligible compared to aluminum and stainless-steel. As a result of the various
loss components, the temperature of the domain rises. The aluminum housing transfers
heat by means of convection and radiation to an infinitely large surrounding.

r

z

θ

Primary core

Primary coil
(foil-winding)

Stainless-steel shaftAluminum housing

Secondary core

Secondary coil
(foil-winding)

Bobbin

Figure 1. Overview of the benchmark system in 3D space.

The cylindrical geometry of the benchmark system, shown in Figure 1, is reduced
to an axisymmetric problem, such that the computational effort is significantly reduced.
In order to obtain the electromagnetic field solution and temperature distribution with
the SEM, the investigated domain is divided into multiple elements of matching material
properties. Furthermore, the boundary conditions are applied, such that a boundary-
value problem is obtained. In the case of the electromagnetic model, the investigated
domain is bounded by a zero Dirichlet boundary condition. In the thermal model, both
convection and radiation to an infinitely large surrounding are present on the domain
boundary, thus a Robin boundary condition is applied. In both cases, continuous boundary
conditions are applied to the interior boundaries between the elements. An overview of
the benchmark system with axisymmetry is shown in Figure 2. The various boundary
conditions, geometrical parameters, and physical quantities for both the electromagnetic
and thermal domain are indicated in the figure. The corresponding numerical values of
the geometrical parameters and physical quantities are given in Table 1. Unless otherwise
specified, the relative permeability is equal to one. A negligible offset is present in the
geometry, such that the zero-axis is excluded from the domain and singularities in the
solution are avoided. The design of the ferrite cores present in the benchmark system has
been derived in [16]. However, in this paper, the primary and secondary coil consist of foil
windings, which, for simplicity, employ two turns on both sides of the system.
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Figure 2. Overview of the benchmark system with axisymmetry, including indication of the boundary
conditions, element discretization, geometrical parameters, and material properties in both the
electromagnetic and thermal domain.

Table 1. Geometrical parameters and physical quantities of the benchmark.

Geometrical Parameters

Parameter Symbol Value Unit

Offset radius of the geometry Rx 1.00 pm
Outer radius of the shaft Rs 1.50 mm
Inner radius of the core Rr

1 1.61 mm
Inner radius of the coil area Rr

2 2.62 mm
Inner radius of the air gap Rr

3 4.13 mm
Outer radius of the coil area Rr

4 6.21 mm
Outer radius of the core Rr

5 7.30 mm
Inner radius of the housing Ri 7.50 mm
Radial thickness of the housing rh 1.00 mm
Inner radius of the 1st turn rs

1 2.92 mm
Inner radius of the 2nd turn rs

2 3.68 mm
Inner radius of the 3rd turn rp

3 4.95 mm
Inner radius of the 4th turn rp

4 5.74 mm
Radial thickness of the air gap rag 5.00 × 10−1 mm
Base height of the housing he 5.00 × 10−1 mm
Height of the surrounding air hb 5.79 mm
Base height of the core hc 1.02 mm
Total height of the coil area hw,t 4.38 mm
Height of the coil hw 4.18 mm
Thickness of the foil winding dw 1.00 × 10−1 mm
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Table 1. Cont.

Physical Quantities

Quantity Symbol Value Unit

Electrical frequency f 1.00 MHz
Electrical conductivity of the housing σh 3.77 × 107 S·m−1

Thermal conductivity of the housing kh 237 W·m−1·K−1

Electrical conductivity of the shaft σs 1.45 × 106 S·m−1

Thermal conductivity of the shaft ks 16.3 W·m−1·K−1

Relative permeability of the core µr,c 2.30 × 103 -
Thermal conductivity of the core kc 4.25 W·m−1·K−1

Electrical conductivity of the foil σf 5.81 × 107 S·m−1

Thermal conductivity of the foil k f 385 W·m−1·K−1

Thermal conductivity of the insulator kw 1.00 W·m−1·K−1

Thermal conductivity of air ka 2.57 × 10−2 W·m−1·K−1

Ambient temperature T0 293 K
Convection coefficient hcv 7.00 W·m2·K−1

Emissivity coefficient ε 4.00 × 10−1 -
Imposed current (primary side) Ip 4.95∠0.00° A
Imposed current (secondary side) Is 4.95∠90.0° A
Hysteresis-loss coefficient ch 10.6 W·sα·T−β·m−3

Hysteresis-loss coefficient α 1.30 -
Hysteresis-loss coefficient β 2.70 -

2.2. Global Overview of the SEM

In this paper, an electromagnetic and a thermal model are established based on
the SEM for axisymmetric WPT systems, such as the benchmark system, which consti-
tutes the multi-physical modeling framework. To that end, the equations governing
the electromagnetic and thermal behavior of the benchmark system are introduced in
Sections 2.3 and 2.4, respectively. Furthermore, in these sections, the numerical approxima-
tions of the governing equations using the SEM are discussed. Essentially, the SEM consists
of six main processes, which are summarized as follows:

1. An initialization step is performed, in which the nodes where the field variable is
approximated are derived. Furthermore, the matrices required to compute integrals
and derivatives are derived, which are essential components for the approximation of
the governing equations. These aspects are further detailed in Section 2.3.1.

2. The higher-order trial functions employed by the SEM to approximate the solution,
achieve the optimal convergence rate in a [−1, 1]2 square domain. The approximation
of the governing equations for such a domain is discussed in Section 2.3.2. In reality,
such a domain is scarcely ever observed. Therefore, a mapping is applied, such that
the convergence rate is maintained, while the geometrical flexibility of the method
is greatly enhanced. In Section 2.3.3, the mapping functions are presented and the
weak form of the governing equations under mapping is given for the electromagnetic
model. In the case of the thermal model, the latter is given in Section 2.4.1, whereas
the mapping functions are equivalent.

3. In order to solve the linear system of equations, the problem is expressed in its
equivalent matrix form, which is further detailed in Sections 2.3.4 and 2.4.1 for the
electromagnetic and thermal model, respectively.

4. The boundary conditions are applied, which is the last step before the system of
equations is solved. The various boundary conditions occurring in an axisymmetric
WPT system are discussed in Sections 2.3.5 and 2.4.2 for the electromagnetic and
thermal model, respectively.
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5. The linear system of equations is solved, yielding the solution of the field variable at
the nodes in the investigated domain.

6. Finally, various post-processing calculations are performed, e.g., to obtain the various
loss components or the average temperature. The post-processing calculations, rele-
vant to axisymmetric WPT systems, are discussed in Sections 2.3.6 and 2.4.3 for the
electromagnetic and thermal model, respectively.

A flowchart of the six main processes is shown in Figure 3. The flowchart and the
processes are further detailed in Section 2.5. The multi-physical modeling framework,
consisting of the electromagnetic and thermal model, is verified by comparing the solutions
from the benchmark system to a reference solution, which has been obtained with a
commercial FEM software package. The method of verification is further discussed in
Section 2.6, whereas the results are presented in Section 3.

Obtain essential components
for the approximation

Mapping between the physical-
and computational domain

Express the problem in its
equivalent matrix form

Application of boundary
conditions

Solve the linear system of
equations

Perform post-processing
calculations

1.

2.

3.

4.

5.

6.

Start

Figure 3. Flowchart of the six main processes in the SEM.

2.3. Electromagnetic Formulation

The benchmark system, shown in Figure 2, consists of three distinctive regions, which
are characterized according to either the electrical conductivity or imposed current source:

1. The electrically conductive source regions, i.e., the copper foil windings situated in
the primary and secondary core.

2. The electrically conductive non-source regions, i.e., the aluminum housing, which
surrounds the design space, and the stainless-steel shaft.
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3. The electrically non-conductive non-source regions, i.e., the ferrite cores and air gaps.

Consequently, the electromagnetic behavior of the benchmark system is governed
by three different partial differential equations (PDEs). The imposed current sources are
assumed to be sinusoidally time-varying, thus the PDEs are represented in the frequency
domain. The formulation and implementation of the SEM introduced in this paper is
based on [27,30,40], in which primarily 2D problems in the Cartesian coordinate-system of
various physical domains are considered, e.g., magneto and electro quasi-static. Therefore,
the transformation discussed in [41] is applied to all three PDEs, such that the Del oper-
ator acting on the field variable is evaluated as if the coordinate-system were Cartesian.
Consequently, the formulation and implementation of the SEM discussed in [27,30,40], is
conveniently modified to problems with axisymmetry. As a result of the transformation, a
change of the field variable is introduced, which is given by:

Ãθ(r, z)~eθ = rAθ(r, z)~eθ , (1)

where Aθ and Ãθ are the magnetic vector potential and the modified variant in the az-
imuthal direction, respectively, and r and z are the radial and axial coordinate, respectively.

In the first class of regions, an additional DoF must be incorporated, which forces the
average value of the eddy current density to be zero. The derivation of this additional DoF
for axisymmetric problems is discussed in [42,43]. In conjunction with the transformation
from [41], the governing PDE for the first class of regions is given by:

∇c ·
(ν

r
∇c Ãθ

)
= −Jθ,0 + jωσ

(
1
r

Ãθ − χ
(

Ãθ

))
, (2)

Jθ,0 =
σI

r
∫∫

Ω r−1σdrdz
, (3)

χ
(

Ãθ

)
=

∫∫
Ω

(
r−1σÃθ

)
drdz

r
∫∫

Ω r−1σdrdz
, (4)

where∇c is the Del operator in the Cartesian coordinate-system, where (r, z, θ) corresponds
to (x, y, z), ν is the magnetic reluctivity, i.e., the inverse of the permeability, Jθ,0 is the
imposed current density, ω and σ are the electrical frequency and conductivity, respectively,
χ
(

Ãθ

)
is the additional DoF, I is the imposed current, and Ω is the physical domain of the

respective source region. In the second class of regions, (3) and (4) are always equal to zero,
hence, in such a region, (2) reduces to:

∇c ·
(ν

r
∇c Ãθ

)
=

1
r

jωσÃθ . (5)

Finally, in the third class of region, neither a source nor an electrical conductivity are
assigned, thus (5) reduces to:

∇c ·
(ν

r
∇c Ãθ

)
= 0. (6)

Succinctly, the electromagnetic behavior of the benchmark system is governed by (2)–(6).
As a result of applying the transformation from [41], the inverse of the radial coordinate is
present in all three PDEs. Consequently, in order to avoid singularities at the symmetry
axis, i.e., r = 0, a negligible offset has to be added to the physical domain.

2.3.1. Spectral Approximation

In all spectral methods, the approximation is based on the expansion of a function in
terms of an infinite sequence of orthogonal trial functions, which is given by:

ψ(x) =
∞

∑
k=−∞

Φ̂k ϕk(x), (7)
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where ψ(x) is the function to approximate, k is the number of expansions, Φ̂k are the
expansion coefficients, and ϕk(x) is an orthogonal trial function. The accuracy of spectral
methods increases for an increasing number of trial functions applied to (7). The series
converges, i.e., N → ∞, in case the infinite set of trial functions, {ϕk(x)}∞

k=0, forms a basis
for the space of functions that are square integrable in the interval [a, b] with respect to a
weight w(x), which is typically represented by L2

w(a, b). The most common example is the
expansion of periodic functions in the Fourier series. The trial functions are periodic on the
interval [0, 2π] and are orthogonal with respect to the weight function w(x) = 1. Therefore,
a basis for L2(0, 2π) is obtained and any square integrable function can be represented
by (7) [40]. For the purpose of providing an approximate solution, the infinite series is
truncated. In case the function ψ is infinitely smooth and both the function and all its
derivatives are periodic, the discrepancy between ψ and the kth order truncated the Fourier
series decays faster than any inverse power of k. This behavior is referred to as spectral
accuracy of the Fourier method [29].

The characteristic of spectral accuracy is also achievable for smooth non-periodic
functions, on the condition that the trial functions are chosen properly. In non-periodic
problems, the trial functions are orthogonal polynomial series. Similar to Fourier based
methods, polynomial spectral methods start by the construction of an orthogonal basis
for square integrable functions, in which the functions to approximate are expanded.
Generally, these bases are generated using the Sturm–Liouville theorem [26,29,40]. The
series coefficients demonstrate spectral accuracy if the trial functions are eigenfunctions
of singular Sturm-Liouville problems. On the interval [−1, 1], polynomial solutions of
singular Sturm–Liouville problems are Jacobi polynomials, e.g., Chebyshev and Legendre
polynomials. A valuable property of the Legendre polynomials is that the weight function
is unity, i.e., w(x) = 1; thus, simplifying the evaluation of integrals [40]. Furthermore, the
unit weight function simplifies the integration by parts in Galerkin formulations of second
order differential equations [44]. Therefore, Legendre polynomials are adopted, which are
further detailed in the next paragraph.

Legendre Polynomials

Legendre polynomials satisfy the three-term recursion given by:

LN+1(ξ) =
2N + 1
N + 1

ξLN(ξ)−
N

N + 1
LN−1(ξ),

in which, L0 = 1 and L1 = ξ,
(8)

where LN is the Legendre polynomial with N expansions and ξ is the local coordinate in the
reference domain, i.e., the interval [−1, 1] [40]. The expansion of any function ψ ∈ L2[−1, 1]
in terms of the Legendre polynomials, is given by:

ψ(ξ) =
∞

∑
k=0

Φ̂k ϕk(ξ),

in which,

Φ̂k =

(
k +

1
2

) ∫ 1

−1
ψ(ξ)ϕk(ξ)dξ,

ϕk(ξ) = Lk(ξ).

(9)

The expansion coefficients Φ̂k are dependent on the values of the function ψ in the
physical domain. The expansion coefficients can seldom be calculated exactly. Alterna-
tively, a finite number of approximate expansion coefficients, {Φ̂k}N

k=0, can be calculated

using the values of the function at a finite number of selected points,
{

ψ
(
ξ j
)}N

j=0, typically

these points, {ξ j}N
j=0, are the nodes of a high-precision quadrature formula. This operation

defines a discrete transformation between the set of values of the function at the quadrature
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nodes and the set of approximate expansion coefficients, i.e., a discrete transformation be-
tween

{
ψ
(
ξ j
)}N

j=0 and {Φ̂k}N
k=0. In case the corresponding quadrature formula is properly

selected, the discrete transformation yields an interpolation of the values of the function at
the quadrature nodes. Moreover, if the characteristics of spectral accuracy are maintained
by the discrete transformation, the interpolant series can be used instead of the truncated
series in order to approximate a function [29]. These aspects are further detailed in the
paragraphs below and are essential to provide an approximation to the governing PDE.

Quadratures

A quadrature rule defines a formula for the approximation of the integral of a function,
which is given by:

Q[ψ] =
N

∑
j=0

ψ
(
ξ j
)
qj =

∫ b

a
ψ(ξ)dξ + ε, (10)

where ψ is the function to integrate, {ξ j}N
j=0 and {qj}N

j=0 are the set of nodes and quadrature
weights, respectively, and ε is the error. The Gauss quadrature rules are exact for the largest
order polynomials [40]. Furthermore, the Gauss quadrature rules retain the characteristics
of spectral accuracy [44]. As a result of the approximation by Jacobi polynomials, the Jacobi
Gauss Quadrature has to be employed. In this case, the nodes are calculated as the zeros,
i.e., roots, of the trial function [40]. However, the zeros of the Legendre polynomials, which
are employed in this paper, are not located at the end-points. This feature is particularly
disadvantageous for the implementation of boundary conditions, since the implementation
of a boundary condition involves an interpolation step. Alternatively, for problems with
Legendre weighted integrals, the Gauss–Lobatto rule can be applied, which includes the
end-points. In this case, the nodes are calculated from the zeros of the Legendre–Gauss–
Lobatto (LGL) polynomial, which results in:

ξ j = L′N(ξ) = 0, j = 0, 1, . . ., N, (11)

L′N(ξ) = LN+1(ξ)− LN−1(ξ), (12)

where L′N is the LGL polynomial. The nodes are calculated through an iterative process.
The zeros of the LGL polynomial are located at the end-points, regardless of the number of
expansions. The corresponding quadrature weights are calculated according to [40]:

qj =
2

N(N + 1)(LN(ξ j))2 . (13)

Interpolation

Spectral methods approximate a square integrable function as a finite expansion in
orthogonal trial functions by the application of either one of two different techniques.
The first technique is to truncate the infinite series. The second technique is to apply
interpolation of a function at a set of nodes by Lagrange interpolating polynomials [40]. In
this case, the characteristic of spectral accuracy is maintained in case the interpolation points
are Gauss-type quadrature points corresponding to Jacobi polynomials [44]. Consequently,
the approximation of a function is expressed as a Lagrange interpolant at the LGL nodes,
which is given by:

ψ(ξ) =
N

∑
j=0

ψj`j(ξ), (14)

where ψj is the value of the function to approximate at node ξ j and `j(ξ) are the Lagrange
interpolating polynomials, which are given by:

`j(ξ) =
wj(

ξ − ξ j
)

∑N
j=0

wj
ξ−ξ j

, (15)
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where wj are the weights, which are given by [40]:

wj =
1

∏N
n=0
n 6=j

(
ξ j − ξn

) . (16)

The expansion coefficients correspond exactly to the values of the function at the
nodes. Therefore, this approximation approach is referred to as a nodal basis, since each
basis function, i.e., trial function, reproduces the value of the polynomial at a single specific
node in the domain [29].

Differentiation

Similar to interpolation at a set of nodes, the derivative of a function at a set of nodes
is approximated in the Lagrange form according to:

ψ(ξi)
′ =

N

∑
j=0

ψj`
′
j(ξi) =

N

∑
j=0

Di,jψj, i = 0, 1, . . ., N, (17)

where Di,j is the derivative matrix, which is given by:

Di,j =
wj

wi

(
1

ξi − ξ j

)
, i 6= j, (18)

where the weights wj and wi are calculated according to (16). The diagonal elements are
equal to zero, since the derivative of a constant is zero. In order to enforce this condition,
the following condition is enforced on the diagonal:

Di,i = −
N−1

∑
j=0
j 6=i

Di,j, i = 0, 1, . . .N. (19)

The diagonal elements from (19) are not exactly equal to zero; however, the effect
of rounding errors is minimized [40]. The derivative matrix is an essential part for the
approximation of a partial differential equation by the SEM, as is demonstrated in the
next section.

2.3.2. Nodal Galerkin Approximation in the Reference Domain

Spectral methods are typically based on the Galerkin approximation, which shares a
lot of similarities with finite element methods based on the Galerkin approximation. The
main difference being the global nature of the approximation in the SEM, as opposed to
the localized approximation in the FEM. The nodal representation of the Galerkin method
is often preferred, since the expansion coefficient can rarely be computed exactly. In this
section, the nodal Galerkin approximation for the governing PDE of the first class of regions,
shown in (2), is presented in the reference domain, i.e., (ξ, η) ∈ [−1, 1]2. The nodal Galerkin
approximation provides an approximate solution to the governing partial differential
equation through the weak form. Furthermore, Green’s first identity is applied to the
weak form, such that the boundary and surface integrals are separated, which realizes the
implementation of the boundary conditions through the manipulation of the boundary
integral. Consequently, (2) is transformed into:
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−
∮

∂Ω

ν

r
∇c
(

Ãθ ·~n
)
φ(ξ, η)dl +

∫∫
Ω
(∇cφ(ξ, η)) ·

(ν

r
∇c Ãθ

)
dξdη

+ jω
∫∫

Ω
σ

(
1
r

Ãθ − χ
(

Ãθ

))
φ(ξ, η)dξdη

=
∫∫

Ω
Jθ,0φ(ξ, η)dξdη,

(20)

where Ω is the physical domain,~n is the unit vector normal to the boundary, and φ is the
test function. The test function is a function from the same set of basis functions that are
used to approximate the solution and satisfies the boundary conditions. In this case, the
physical domain coincides with the computational domain, thus, the radial coordinate r is
equivalent to the local coordinate ξ. In a nodal approximation, the test and trial function
are expressed in the Lagrange form, which is given by, respectively:

φ(ξ, η) =
N

∑
i,j=0

φi,j`i(ξ)`j(η), (21)

Ãθ(ξ, η) =
N

∑
n,m=0

ϕn,m`n(ξ)`m(η), (22)

where φi,j and ϕn,m are the values of the test and trial function at the nodes, respectively,
`(ξ) and `(η) are the Lagrange interpolating polynomials for the corresponding ξ and η
axis, respectively, which are calculated according to (15). Equations (21) and (22) apply
the same order, and thus, operate on the same set of grid points. The integrals in (20)
are evaluated by the Gauss–Lobatto quadratures of (13), whereas the derivatives of the
Lagrange interpolating polynomials are calculated according to (18) and (19). Under the
assumption that Dirichlet boundary conditions are applied, the boundary integral vanishes,
since the test function satisfies the boundary conditions, i.e., φi,j = 0 [40]; thus, (20) is
rewritten into:

N

∑
n=0

(
ϕn,jqj

ν

r
Dξ

ni

)
+

N

∑
m=0

(
ϕi,mqi

ν

r
Dη

jm

)
+jω

σ

r
ϕi,jqiqj − jωσχqiqj = qiqj Jθ,0, i, j = 1, 2, . . ., N − 1,

in which,

χ =
r−1σϕi,jqiqj

r ∑N
n,m=0 r−1σqnqm

,

Jθ,0 =
σI

r ∑N
n,m=0 r−1σqnqm

.

(23)

Equation (23) represents the nodal Galerkin approximation on the reference element
for the first class of regions in the benchmark system and describes a linear system for the
interior nodal values. By the omission of the imposed current density and additional DoF
terms, the description for the second class of regions is obtained. Similarly, by the omission
of all electrically conductive terms, the description for the third class of regions is obtained.

2.3.3. Mapping Functions for Non-Squared Elements

The derivation of the nodal Galerkin approximation discussed in the previous section
is valid if the physical domain coincides exactly with the computational domain, i.e., a
[−1, 1]2 square domain. However, in practice, electromagnetic and thermal problems con-
sist of a wide variety of dimensions and shapes. In order to incorporate these geometrical
variations, an algebraic map, i.e.,~r = (r, z) = ~M(ξ, η), between the coordinates in the
physical domain (r, z) and the coordinates in the computational domain (ξ, η) is employed.
The algebraic map transforms a point in the computational domain to a point in the physical
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domain. The most common method to perform a transformation between a quadrilateral
in the physical domain and the reference square in the computational domain is called
transfinite interpolation. The corresponding procedure is discussed in [40]. In this section,
a brief overview of the essential equations is provided.

The mapping function, which performs transfinite interpolation, is given by:

~M(ξ, η) =
1
2

[
(1− ξ)~Γ4(η) + (1 + ξ)~Γ2(η) + (1− η)~Γ1(ξ) + (1 + η)~Γ3(ξ)

]
−1

4

[
(1− ξ)

(
(1− η)~Γ1(−1) + (1 + η)~Γ3(−1)

)
+(1 + ξ)

(
(1− η)~Γ1(1) + (1 + η)~Γ3(1)

)]
,

(24)

where~Γ1–4 are the four sides of an arbitrary quadrilateral. In an axisymmetric WPT system,
such as the benchmark system, the physical domain typically consists of straight-lined
rectangular elements. However, the mapping function is valid for any smooth curved
quadrilateral. As a result of the mapping between the domains, the governing PDEs of the
formulation are transformed as well. Typically, the transformation from the computational
domain to the physical domain is known, whereas the inverse of the transformation often
yields an intractable task. In order to circumvent this complication, the covariant and
contravariant basis vectors, which are used to describe directions in the physical space,
are introduced. The covariant basis vector~ai is oriented tangentially to a coordinate line,
whereas the contravariant basis vector~ai is oriented normally to a coordinate line.

In an axisymmetric problem, the mapping between the domains is given by:

~M(ξ, η) = R(ξ, η)~er +Z(ξ, η)~ez, (25)

where R and Z are the mapping components corresponding to the r- and z-direction,
respectively. The covariant basis vectors are defined as:

~a1 =
∂ ~M
∂ξ

= Rξ~er +Zξ~ez, (26)

~a2 =
∂ ~M
∂η

= Rη~er +Zη~ez, (27)

~a3 = ~eθ , (28)

whereRξ , Zξ ,Rη , and Zη are the derivatives of the mapping components with respect to
the ξ and η coordinates. The derivatives are given by:

∂ ~M
∂ξ

=
1
2

[
~Γ2(η)−~Γ4(η) + (1− η)

∂~Γ1(ξ)

∂ξ
+ (1 + η)

∂~Γ3(ξ)

∂ξ

]

−1
4

[
(1− η)

(
~Γ1(1)−~Γ1(−1)

)
+ (1 + η)

(
~Γ3(1)−~Γ3(−1)

)]
,

∂ ~M
∂η

=
1
2

[
(1− ξ)

∂~Γ4(η)

∂η
+ (1 + ξ)

~Γ2(η)

∂η
+~Γ3(ξ)−~Γ1(ξ)

]

−1
4

[
(1− ξ)

(
~Γ3(−1)−~Γ1(−1)

)
+ (1 + ξ)

(
~Γ3(1)−~Γ1(1)

)]
.

(29)

The contravariant basis vectors are given by:

Jd~a1 = (~a2 ×~a3) =
(
Zη~er −Rη~ez

)
, (30)

Jd~a2 = (~a3 ×~a1) =
(
−Zξ~er +Rξ~ez

)
, (31)
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where Jd is the determinant of the Jacobian, which is given by:

Jd =~ai ·
(
~aj ×~ak

)
= RξZη −ZξRη . (32)

Furthermore, the gradient of a function under mapping is given by:

∇cψ =
1
Jd

[(
Zη

∂ψ

∂ξ
−Zξ

∂ψ

∂η

)
~er +

(
−Rη

∂ψ

∂ξ
+Rξ

∂ψ

∂η

)
~ez

]
, (33)

where ψ is an arbitrary function. The covariant flux components along the ξ- and η-axis are
distinguishable (33), which are given by the following expressions, respectively,

F1 =
1
Jd

(
Zη

∂ψ

∂ξ
−Zξ

∂ψ

∂η

)
, (34)

F2 =
1
Jd

(
−Rη

∂ψ

∂ξ
+Rξ

∂ψ

∂η

)
. (35)

The contravariant flux components are given by:

F1 =
Z2

η +R2
η

Jd

∂ψ

∂ξ
−
ZξZη +RξRη

Jd

∂ψ

∂η
, (36)

F2 = −
ZξZη +RξRη

Jd

∂ψ

∂ξ
+
Z2

ξ +R2
ξ

Jd

∂ψ

∂η
, (37)

in which the determinant of the Jacobian is derived from (32). The weak form of the
governing PDE in the reference domain, given by (20), consists of the dot product be-
tween the gradients of the test function and the solution. Under mapping, this term is
derived from (33) and can be expressed in terms of the contravariant flux components,
i.e., (36) and (37), which results in:

∇c Ãθ · ∇cφ =
1
Jd

(
F1 ∂φ

∂ξ
+ F2 ∂φ

∂η

)
. (38)

Furthermore, the governing PDE given in (20) contains the boundary normals, which,
under mapping, are given by:

~n1 =
|Jd|
Jd

Zη~er −Rη~ez√
Z2

η +R2
η

, (39)

~n2 =
|Jd|
Jd

−Zξ~er +Rξ~ez√
Z2

ξ +R2
ξ

. (40)

Consequently, from (33), (39) and (40), the dot product between the gradient and
the boundary normals is derived, which in terms of the contravariant flux components
results in:

∇c Ãθ ·~ni = Fn =


|Jd |
Jd

√
Z2

η +R2
η F1, for Γ2 and Γ4,

|Jd |
Jd

√
Z2

ξ +R2
ξ F2, for Γ1 and Γ3,

(41)

where Fn are the fluxes normal to the boundary. Subsequently, the governing PDE of the
nodal Galerkin approximation under mapping is derived by the substitution of (38) and (41)
into (20). Furthermore, the integration on the physical domain is modified according to
dΩ = Jddξdη, thus, the governing PDE yields:
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−
∮

∂Ω̂

ν

r
Fnφ(ξ, η)dl +

∫∫
Ω̂

ν

r

(
F1 ∂φ(ξ, η)

∂ξ
+ F2 ∂φ(ξ, η)

∂η

)
dξdη

+ jω
∫∫

Ω̂
σ

(
1
r

Ãθ − χ
(

Ãθ

))
φ(ξ, η)Jddξdη

=
∫∫

Ω̂
Jθ,0φ(ξ, η)Jddξdη,

in which,

Jθ,0 =
σI

r
∫∫

Ω̂ r−1σJddξdη
,

χ
(

Ãθ

)
=

∫∫
Ω̂ r−1σÃθ Jddξdη

r
∫∫

Ω̂ r−1σJddξdη
,

(42)

where Ω̂ is the computational domain.

2.3.4. Nodal Galerkin Approximation in Matrix Form

In order to obtain the electromagnetic field solution with the SEM, the investigated
domain is divided into multiple elements of matching material properties, as shown in
Figure 2. Furthermore, the boundary conditions are applied to each element, such that a
boundary-value problem is obtained, which is governed by (42). The boundary conditions
are imposed through the boundary integral of (42), which is discussed in the next section.
In order to solve the system of linear equations, the problem is expressed in its equivalent
matrix form, which is given by:

Eu = b,

in which,

E =

[
A + C K

WT Ik

]
, u =

[
ϕ
χk

]
, b =

[
y
0k

]
,

(43)

where A and C are the stiffness and mass matrix, respectively, K and W are the matrices
required to include the χ

(
Ãθ

)
term, Ik is a k× k identity matrix, k is the number of con-

ductors, i.e., regions having both an imposed current and electrical conductivity, ϕ is the
column vector containing the values of the electromagnetic field solution at the nodes, χk is
a column vector containing k values of the χ

(
Ãθ

)
term, y is the column vector containing

the source terms, and 0k is a column vector containing k zeros. The assembly of the various
sub-matrices of (43) is discussed in this section.

In each element, a 2D grid of nodes is created in which the electromagnetic field
solution is approximated. The grid consists of the roots of the LGL polynomial, which are
calculated by forcing (12) to zero. The nodes along the ξ and η axes (in the computational
domain) are stored in two separate vectors:

ξ = [ξ0 ξ1 . . . ξN ]
T , (44)

η = [η0 η1 . . . ηM]T . (45)

Hence, a [N + 1]× [M + 1] grid is created in each element, in which the solution is
approximated. Similarly, the quadratures, calculated from (13), are stored in vectors as well,
from which a quadrature matrix for each element is created, given by:

Q = qξqT
η , (46)

where qξ and qη are the column vectors of the quadratures corresponding to the ξ-
and η-axis, respectively. Furthermore, the derivative matrix is calculated according to
(18) and (19). In order to find the partial derivative of a 2D function with respect to ξ, each
row is multiplied with the derivative matrix. The partial derivative with respect to η is
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obtained by the multiplication of the rows with the derivative matrix. Therefore, the 2D
derivative matrices are constructed through the Kronecker multiplication between the
identity and derivative matrix, thus the partial derivatives with respect to ξ and η are given
by, respectively [27,30],

LDξ
= I ⊗D, (47)

LDη = D⊗ I, (48)

where I and D are the identity and derivative matrices, respectively. Subsequently, the
contravariant flux components and the determinant of the Jacobian, i.e., (36), (37) and (32),
respectively, are expressed in matrix form, which results in:

F1 = diag
(

vec
(

ν ◦
[
Z◦2η + R◦2η

]
◦ Jd

◦−1
))

LDξ

−diag
(

vec
(

ν ◦
[
Zξ ◦ Zη + Rξ ◦ Rη

]
◦ Jd

◦−1
))

LDη ,
(49)

F2 = −diag
(

vec
(

ν ◦
[
Zξ ◦ Zη + Rξ ◦ Rη

]
◦ Jd

◦−1
))

LDξ

+diag
(

vec
(

ν ◦
[
Z◦2ξ + R◦2ξ

]
◦ Jd

◦−1
))

LDη ,
(50)

Jd = Rξ ◦ Zη − Zξ ◦ Rη , (51)

where vec(. . .) is a vectorization operation, which returns a column vector of the input
matrix, diag(. . .) returns a diagonal matrix where the elements of the input vector are on
the diagonal of the output matrix, and ◦, ◦2, and ◦−1 are the Hadamard product, power,
and inverse, respectively, i.e., an element-wise matrix operation, ν is the reluctivity matrix,
Rξ and Rη are the derivative matrices of the mapping in the r-direction with respect to the
ξ- and η-coordinates, respectively. Similarly, Zξ and Zη correspond to the z-direction. By
the substitution of (46)–(51) into (42), the sub-matrices of (43) are derived, which results in:

A∗ =LT
Dξ

diag
(

vec
(

R◦−1
))

diag(vec(Q))F1

+LT
Dη

diag
(

vec
(

R◦−1
))

diag(vec(Q))F2,
(52)

C∗ =diag
(

vec
(

σ ◦ R◦−1 ◦ Jd ◦Q
))

jω, (53)

kk =vec
(

σ ◦ R◦−1 ◦ Jd ◦Q
sum(vec(σ ◦ R◦−1 ◦ Jd ◦Q))

)
, (54)

wk =vec
(

σ ◦ R◦−1 ◦ Jd ◦Q
)

jω (55)

y∗ =vec(Jθ,0 ◦ Jd ◦Q), (56)

in which,

Jθ,0 =
σ I

R sum(vec(σ ◦ R◦−1 ◦ Jd ◦Q))
, (57)

where R is a matrix containing the radial coordinates in the physical domain, σ is the
conductivity matrix, sum(. . .) calculates the sum of the elements in the input vector, the
subscript ∗ indicates a sub-matrix or vector for each element, i.e., the matrices A, and C, as
well as the vector y consist of the sub-matrices and sub-vector for each element. Similarly,
the subscript k refers to the sub-vector for each conductor, from which the matrices K and
W are constructed. By the substitution of (52)–(57) into (43), and the implementation of the
boundary conditions, the linear system of equations can be solved according to:

u = E−1b. (58)
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In case the problem is sufficiently small, a direct solver can be applied. Alternatively,
iterative solving methods, e.g., the generalized minimum residual method or the quasi-
minimal residual method, can be applied in order to solve the linear system of equations.

2.3.5. Boundary Conditions

In order to obtain the electromagnetic field solution at the nodes, boundary conditions
have to be considered. In an electromagnetic problem, three different types of boundary
conditions are identified, i.e., continuous, Dirichlet, and Neumann boundary conditions. In
this section, the application and implementation of the aforementioned boundary condi-
tions are discussed.

Continuous Boundary Condition

The continuous boundary condition is an important asset for the purpose of establish-
ing a multi-domain approach, since elements couple with each other in case the solution
and test functions are continuous at the nodes shared between elements [40]. Consequently,
the solution at the shared nodes has to be equal, as well as the values of the test functions.
In the equivalent matrix representation of (43), this continuity between elements is imple-
mented in the global matrix, i.e., E, by the summation of the matrix entries that have shared
nodes. Therefore, the shared boundary nodes of two neighboring elements are represented
by a single row or column, depending on the orientation of the boundary. Furthermore,
the continuity of the first normal derivative of the solution is established by equating the
boundary integral of (42) on the shared edges of neighboring elements.

Dirichlet Boundary Condition

The Dirichlet boundary condition defines the solution along a boundary. In order to
include the Dirichlet boundary condition in the equivalent matrix representation of (43),
the entries of the source vector yi, which correspond to the boundary nodes where the
condition is valid, are modified according to:

yi = Ãθ,0, (59)

where Ãθ,0 is the imposed solution. Subsequently, the entries in the global matrix E
corresponding to the boundary nodes are replaced by a diagonal filled with ones.

Neumann Boundary Condition

The Neumann boundary condition defines the first derivative of the potential normal
to the boundary. In order to implement the Neumann boundary condition, the boundary
integral of (42) is used. Consequently, the contravariant flux components from (41) are
replaced by the imposed value, which in the equivalent matrix representation yields:

fn(Fn,0) =

vec
(

sign(Jd)
√

Z◦2η + R◦2η F1,0
)

, for Γ2 and Γ4,

vec
(

sign(Jd)
√

Z◦2ξ + R◦2ξ F2,0
)

, for Γ1 and Γ3,
(60)

where Fn,0, F1,0, and F2,0 are the imposed values. Therefore, the corresponding entries of
the source vector yi are given by:

yi = r◦−1
i ◦ fn i(Fn,0) ◦ qi + vec(Jθ,0 ◦ Jd ◦Q)i, (61)

where r is a column vector containing the radial coordinates, q is the quadrature column
vector corresponding to either the ξ or η axis, depending on the orientation of the boundary
condition, and the subscript i refers to the entries corresponding to the boundary nodes
where the condition is imposed. As opposed to the Dirichlet boundary condition, the
global matrix E remains unchanged. In electromagnetic problems, the Neumann boundary
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condition is typically used to mimic axes of symmetry, or to represent a boundary with a
soft-magnetic material having an infinite relative permeability.

2.3.6. Post-Processing

Once the electromagnetic field solution at the nodes has been obtained, post-processing
calculations are performed, such that quantities like the magnetic flux density are accessible.
In this section, various post-processing calculations relevant to axisymmetric WPT systems,
including the equivalent matrix form, are discussed.

Magnetic Flux Density

The magnetic flux density for an axisymmetric problem in terms of the modified
magnetic vector potential is given by:

~B = −1
r

∂Ãθ

∂z
~er +

1
r

∂Ãθ

∂r
~ez. (62)

By the inclusion of the appropriate sign convention and the radial coordinate of (62)
into (33), the radial and axial components of the magnetic flux density are derived, which
in the equivalent matrix form yields, respectively,

Br = −R◦−1 ◦ Jd
◦−1
[
Zη ◦matM×N

(
LDξ

ϕ
)
− Zξ ◦matM×N

(
LDηϕ

)]
, (63)

Bz = R◦−1 ◦ Jd
◦−1
[
−Rη ◦matM×N

(
LDξ

ϕ
)
+ Rξ ◦matM×N

(
LDηϕ

)]
, (64)

where matM×N(. . .) reshapes the input vector into a matrix of dimension M×N, which
corresponds to (45) and (44), respectively. The post-processing calculation of the magnetic
flux density is performed for each element.

Hysteresis Effect Losses

In soft-magnetic materials, the magnetic flux density can be used to approximate
the iron losses. In a ferrite core, which is present in the benchmark system, these losses
are primarily caused by the hysteresis effect. The corresponding losses are empirically
determined according to Steinmetz’s equation, which is given by:

Pc =
∫

V
ch f α||~B||βdV, (65)

where ch, α, and β are empirical coefficients, f is the electrical frequency, and V is the
volume of the corresponding region [45]. In the equivalent matrix form, (65) yields:

Pc = sum
(

vec
(

ch f αB◦βm ◦ R ◦Q ◦ Jd

))
2π, (66)

where Bm is a matrix containing the values of the magnitude of the magnetic flux density
at the nodes. Similar to the calculation of the magnetic flux density, the hysteresis losses are
evaluated per element. Therefore, in case multiple soft-magnetic regions are present, the
individual results have to be summed in order to obtain the total losses within the domain.

Joule Effect Losses

In addition to the hysteresis effect, losses occur in an axisymmetric WPT system due
to the Joule effect. In this case, the losses are calculated according to:

Pj =
∫

V

|Jθ |2
σ

dV, (67)
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where Jθ is the total current density the azimuthal direction. In the equivalent matrix form,
the current density in a source region is written as:

Jθ = Jθ,0 + jωσ ◦ R◦−1 sum
(
vec
(
R◦−1 ◦ σ ◦matM×N(ϕ) ◦ Jd ◦Q

))
sum(vec(σ ◦ R◦−1 ◦ Jd ◦Q))

− jωσ ◦ R◦−1 ◦matM×N(ϕ),

(68)

where Jθ,0 is given by (57). Consequently, in the first class of regions, the losses due to the
Joule effect consist of the imposed and induced currents. In the second class of regions, the
first two terms of (68) vanish and only the induced current causes losses, hence, the current
density is given by:

Jθ = −jωσ ◦ R◦−1 ◦matM×N(ϕ). (69)

Subsequently, in the equivalent matrix form, Joule effect losses are calculated as:

Pj = sum
(

vec
(

σ◦−1|Jθ |◦2 ◦ R ◦ Jd ◦Q
))

2π. (70)

For multiple elements, the total losses due to the Joule effect are calculated as the sum
of the individual contributions of each element.

Flux-Linkage

Besides the magnetic flux density and the loss components, another essential post-
processing quantity is the flux-linkage. The various inductances defining the equivalent
circuit of a WPT system, are obtained from the flux-linkages. In a magnetically linear
system, the flux-linkage is given by:

Ψ =
Nt

A

∫
V

AθdV, (71)

where Nt is the number of turns and A is the surface area of the corresponding region.
Consequently, in the equivalent matrix form, the flux-linkage of a coil is obtained from:

Ψ = Nt
sum(vec(matM×N(ϕ) ◦ Jd ◦Q))2π

sum(vec(Jd ◦Q))
. (72)

In case a coil consists of foil windings, each turn is modeled as a separate element, as
shown in Figure 2; hence, the total flux-linkage is calculated as the sum of the individual
contributions of each element.

2.4. Thermal Formulation

Apart from electromagnetic modeling, the SEM is also applicable for the thermal
modeling of axisymmetric WPT system, such as the benchmark system. In steady-state
conditions, the temperature distribution is governed by the heat conduction equation,
which is given by:

∇ · (k∇T) = −qv, (73)

where k is the thermal conductivity, T is the temperature, and qv is the volumetric heat
source. Similar to Section 2.3, the governing PDE is modified according to the approach dis-
cussed in [41], such that the governing PDE is valid for an axisymmetric problem, whereas
the Del operator is evaluated as if the coordinate-system were Cartesian. Therefore, (73)
transforms into:

1
r
∇c · (rk∇cT) = −qv. (74)



Energies 2022, 15, 3145 20 of 30

2.4.1. Nodal Galerkin Approximation

The weak form of (74) is obtained by applying the same approach as is discussed in
Sections 2.3.2 and 2.3.3. Consequently, the weak form of (74) is given by:

−
∮

∂Ω̂
rkFnφ(ξ, η)dl +

∫∫
Ω̂

rk
(

F1 ∂φ(ξ, η)

∂ξ
+ F2 ∂φ(ξ, η)

∂η

)
dξdη

=
∫∫

Ω̂
rqvφ(ξ, η)Jddξdη.

(75)

Similar to Section 2.3.4, the system of linear equations governed by (75) is expressed
in the equivalent matrix form according to:

Eu = b, (76)

where E is the global matrix, u is the column vector containing the values of the temperature
at the nodes, and b is the column vector containing the source terms. The boundary integral
of (75) is again used to apply the boundary conditions, the implementation of which for
thermal problems is discussed in the next section. The global matrix and source vector
of (76) have a sub-matrix and sub-vector for each element, respectively, which are given by:

E∗ =LT
Dξ

diag(vec(R))diag(vec(Q))F1

+LT
Dη

diag(vec(R))diag(vec(Q))F2,
(77)

b∗ =vec(R ◦ S ◦ Jd ◦Q), (78)

where S is a matrix containing the volumetric heat source values in the corresponding
element. The matrices of the contravariant flux components, i.e., F1 and F2, are given by (49)
and (50), respectively, with the exception that the reluctivity matrix ν is replaced by the
thermal conductivity matrix Kth.

2.4.2. Boundary Conditions

The temperature at the nodes is obtained by solving the boundary-value problem
governed by (75) in conjunction with the boundary conditions. In thermal problems,
similar to Section 2.3.5, continuous, Dirichlet, and Neumann boundary conditions occur.
Furthermore, the effects of convection and radiation can be included on a boundary through
the Robin boundary condition, which is also present in the benchmark system. In this
section, the application and implementation of boundary conditions occurring in thermal
problems is discussed. The implementation of the continuous and Dirichlet boundary
conditions is analogous to Section 2.3.5, and thus, are not repeated in this section.

Neumann Boundary Condition

Equivalent to electromagnetic problems, the Neumann boundary condition is imple-
mented through the boundary integral of (75). Consequently, the corresponding entries of
the source vector bi are given by:

bi = ri ◦ fn i(Fn,0) ◦ qi + vec(R ◦ S ◦ Jd ◦Q)i, (79)

where fn is given by (60). Additionally, the global matrix E remains unchanged. An
adiabatic boundary condition is imposed by forcing the first derivative of the temperature
normal to the boundary to zero.

Robin Boundary Condition

In case both convection and radiation are present on a boundary, the Robin boundary
condition is applied. In order to implement the condition, the corresponding entries of the
source vector bi are modified according to:
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bi = −ri ◦ fn i

(
hcvTf

)
◦ qi + vec(R ◦ S ◦ Jd ◦Q)i

+ri ◦ fn i

(
εσsb

(
u4

i − T4
0

))
◦ qi,

(80)

where hcv is the convection coefficient, Tf and T0 are the fluid and ambient temperature,
respectively, ε is the emissivity coefficient, σsb is the Stefan–Boltzmann constant, and ui
is a column vector containing the temperature values at the boundary nodes where the
condition is imposed. Consequently, in case radiation is present, an iterative or non-linear
solver is required to solve the system of equations. In the context of this paper, an iterative
solver is included, which, from an initial temperature rise, iterates until the temperature
difference with respect to the previous iteration has converged to a value below a specified
tolerance. Furthermore, in order to fully include convection on the boundary, the global
matrix is summed with a diagonal matrix, which is given by:

Hcv = −diag(ri ◦ fn i(hcv) ◦ qi). (81)

2.4.3. Post-Processing

Once the temperature distribution in the domain has been obtained, a post-processing
calculation is performed, such that the heat flux density is accessible, which, for an axisym-
metric problem, is given by:

~q = −k
(

∂T
∂r
~er +

∂T
∂z

~ez

)
. (82)

Similar to the calculation of the magnetic flux density, the thermal flux density is obtained
by including the sign convention and material properties of (82) into (33). Consequently,
the radial and axial components of the thermal flux density are given by, respectively,

Qq,r = −Kth ◦ Jd
◦−1
[
Zη ◦matM×N

(
LDξ

u
)
− Zξ ◦matM×N

(
LDη u

)]
, (83)

Qq,z = −Kth ◦ Jd
◦−1
[
−Rη ◦matM×N

(
LDξ

u
)
+ Rξ ◦matM×N

(
LDη u

)]
. (84)

Furthermore, the average temperature within an element is an important post-processing
quantity, e.g., for the estimation of a uniform value for a temperature-dependent material
property, which is given by:

Ta =
1
A

∫
A

TdA, (85)

where A is the surface area of the corresponding element. In the equivalent matrix form,
the average temperature in an element is calculated according to:

Ta =
sum(vec(matM×N(u) ◦ Jd ◦Q))

sum(vec(Jd ◦Q))
. (86)

2.5. Detailed Overview of the SEM Implementation

The formulation of the SEM presented in Sections 2.3 and 2.4 has been implemented in
MATLAB. A flowchart of the main processes executed in the software for an electromagnetic
problem is shown in Figure 4, which is a detailed version of the flowchart shown in Figure 3.
The processes shown in the figure are described as follows:

1. The nodes and quadratures are generated for each element in the domain according
to (11) and (13), respectively. Furthermore, the derivative matrices are constructed for
each element according to (18) and (19).

2. The mapping function and the corresponding derivatives are evaluated for each
element according to (25) and (29), respectively.

3. The sub-matrices and sub-vectors are constructed for each element in the domain
according to (52)–(57). To that end, the quadrature matrix, partial derivative matrices,
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contravariant flux components, and the determinant of the Jacobian are obtained
according to (46)–(51).

4. The sub-matrices and sub-vector are assembled into the global matrix, E, and source
vector, b, of (43). Furthermore, the boundary conditions are imposed according to the
approach discussed in Section 2.3.5.

5. The system of equations is solved to obtain the approximate solution at the nodes.
In the context of this paper, a direct solver is applied. Alternatively, for problems
having a high number of non-zero elements, an iterative solver can be applied. In
case the problem is non-linear, a non-linear solver, e.g., the Newton–Raphson or JFNK
methods, has to be included to solve the non-linear state.

6. After the solution has been obtained, the post-processing computations of Section 2.3.6
are executed. However, depending on the problem, additional quantities, e.g., the
electromagnetic torque, can be added.

Generate nodes, quadratures,
and derivative matrices

{ξj}Nj=0

{ηj}Mj=0

{qξ,j}Nj=0

{qη,j}Mj=0

D (ξj)

D (ηj)

Evaluate mapping function
and obtain its derivative

M⃗ (ξ, η)
∂M⃗(ξ,η)

∂ξ
∂M⃗(η,η)

∂ξ

Generate sub-matrices and
sub-vectors

A∗ C∗ kk wk y∗

Assemble system of equations,
including boundary conditions

Eu = b

Solve system of equations to
obtain approximate soltuion

u = E−1b

Obtain requested
post-processing quantities

1.

2.

3.

4.

5.

6.

Br Bz Pc Pj Ψ

Start

Figure 4. Flowchart of the main processes in the SEM implementation for an electromagnetic problem.

For the purpose of solving a thermal problem, the main processes are similar, unless
radiation is present. In that case, an iterative solving approach is included, which iterates
the fourth and fifth processes until the difference between the current and previous iteration
is less than a specified tolerance.
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2.6. Verification

In this section, the method for verification of the multi-physical modeling framework
based on the SEM is introduced. The verification is carried out on the benchmark system
from Section 2.1. The magnetic vector potential and temperature distribution in the domain
are compared to a reference solution, which has been obtained with the FEM from a
commercial software package. Furthermore, the discrepancies in the approximation of
various key post-processing quantities, e.g., electromagnetic losses and the average coil
temperature, are calculated with respect to the FEM. Additionally, the computational effort
is assessed for both the SEM and FEM in terms of the number of DoF, number of non-zero
elements, and the sparsity of the global matrices.

2.6.1. SEM Model

In order to obtain the solution at the nodes using the SEM, i.e., magnetic vector
potential and temperature distribution, the domain is discretized into rectangular elements
of matching material properties, as shown in Figure 2. The polynomial degree of the
approximation is discretized into two different parameters. The first parameter is assigned
along the axial direction of the foil windings and the adjacent elements, since the magnetic
vector potential is expected to have a high gradient in these elements. The second parameter
is assigned to the remainder of the model. In the magnetic model, the values are set to fifteen
and ten, respectively, such that an accurate approximation of the magnetic vector potential
is obtained. In the thermal model, the value is reduced to seven for both parameters, as a
result of skin-depth effects being absent. In order to assess the computational effort, the
number of DoF, number of non-zero elements, and the sparsity of the global matrices are
stored for both the electromagnetic and thermal model.

Once the electromagnetic field solution at the LGL nodes has been obtained with the
SEM, the post-processing computations are executed. The hysteresis losses in the magnetic
cores, Joule losses in the electrically conductive materials, and the flux-linkage in the coils
are calculated according to (66), (70) and (72), respectively. The individual loss component
in each element is divided by the corresponding volume, such that the volumetric heat
sources are obtained, which serve as the input for the thermal model. In the thermal model,
the average coil temperature is post-processed from the temperature distribution at the
nodes according to (86).

2.6.2. FEM Model

The FEM model is divided into rectangular elements equivalently to the SEM model,
where in each element, a rectangular mesh is applied. At least two mesh layers per skin-
depth layer are ensured in electrically conductive materials, such that the second order
elements are able to provide a sufficiently accurate approximation of the field variable.
The mesh elements in the remainder of the model are tailored such that well-proportioned
mesh elements are achieved in the entire domain, thus yielding a high mesh quality [46].
The same mesh is used for both the magnetic and thermal FEM models. Equivalent to the
SEM magnetic model, the various losses and flux-linkages are obtained from the solution
by performing post-processing operations. In the thermal model, the volumetric heat
sources, which were obtained with SEM, are used as the input, such that the temperature
distributions are compared using the same sources. The average coil temperature is post-
processed from the temperature distribution. The FEM model is solved using commercial
software, i.e., Altair Flux [46]. Furthermore, the number of DoF, number of non-zero
elements, and sparsity are stored for both models.

2.6.3. Method of Comparison

The rectangular FEM mesh in each element serves as the grid of nodes in which the
solutions are compared. Firstly, the SEM solution at the LGL nodes is interpolated to the
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FEM grid according to (14). At each node in the FEM grid, the difference between the
solutions is calculated as:

∆x = xs − x f , (87)

where x is either the magnetic vector potential or the temperature, and the subscripts s
and f refer to the SEM and FEM solution, respectively. Secondly, the absolute value of
the relative discrepancy in the post-processing quantities, i.e., flux-linkages, Joule, and
hysteresis effect losses, and average coil temperature, is calculated according to:

ε =
| fs − f f |

f f
, (88)

where fs and f f are the post-processing quantities obtained with either the SEM or the
FEM, respectively. The discrepancy in the losses is calculated per region, i.e., the primary
and secondary coil, the stainless-steel shaft, the aluminum housing, and the primary and
secondary ferrite core. Thirdly, the computational efforts of the SEM and FEM benchmark
models are assessed in terms of the number of DoF, number of non-zero elements, and the
sparsity of the global matrices. Additionally, the sparsity patterns of the SEM are shown. In
the case of the FEM, these details are not accessible, since commercial software is applied.

3. Results

The magnetic vector potential obtained with the SEM and the difference with respect
to the FEM are shown in Figure 5. The modulus, real, and imaginary part of the magnetic
vector potential in the investigated domain are shown in the figure. In all three cases,
an accurate match between the methods is obtained. Negligible differences between
the methods are situated on the edges of the elements, which are caused by Runge’s
phenomenon, i.e., oscillations that occur at the edges of the interval when using higher
order polynomial interpolation over a set of equally spaced interpolation points [28].

The magnitude of the magnetic flux density obtained with the SEM, which is post-
processed from the magnetic vector potential, including the difference with respect to the
FEM is shown in Figure 6. In this case, an accurate match is obtained within the elements;
however, relatively large differences are observed on the edges, in particular at the corner
points inside the secondary transformer core. These differences are, apart from Runge’s
phenomenon, caused by singularities that appear due to the abruptly changing line that
describes the corner geometry. As a result, the derivative of the magnetic vector potential
is discontinuous at the corner points. The singularities at the corner points can be averted
by applying a rounded corner [27].

The resulting values of the post-processing quantities for both methods, as well as
the absolute value of the relative discrepancy, are shown in Table 2. As a result of the
accurate approximation of the magnetic vector potential, the flux-linkages and Joule losses
are accurately approximated as well, a maximum discrepancy of 0.078% with respect to the
FEM is observed. The impact of the corner singularities on the losses due to the hysteresis
effect is limited, a discrepancy of less than 0.15% with respect to the FEM is observed.

The temperature distribution obtained with the SEM and the difference with respect to
the FEM is shown in Figure 7. Similar to Figure 5, an accurate match between the methods
is obtained and negligible differences due to Runge’s phenomenon are observed on the
edges. Consequently, the average primary and secondary coil temperatures, the results of
which are included in Table 2, are accurately calculated, a maximum discrepancy of 0.081%
with respect to the FEM is observed.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 5. Magnetic vector potential in the investigated domain obtained with the SEM: (a) mod-
ulus, (b) real, and (c) imaginary part. The difference with respect to the FEM solution is shown
in (d–f), respectively.

The computational effort indices for both methods and models are given in Table 3. In
the case of the electromagnetic model, the SEM reduces the number of DoF and non-zero
elements by 88.3% and 83.0%, respectively. The sparsity is slightly reduced by the SEM
model, i.e., 0.121%. In the case of the thermal model, the application of the SEM, with
respect to the FEM, reduces the number of DoF and non-zero elements by 94.6% and 94.2%,
respectively. In the case of the thermal model, the reductions are more significant as a result
of the SEM applying a decreased order for the approximation, whereas the FEM mesh
density is unchanged. The sparsity is again slightly reduced by the SEM model, i.e., 0.197%.
Additionally, the sparsity patterns of the SEM global matrices are shown in Figure 8. For
this type of matrix structure, i.e., sparse, square, unsymmetric, and with non-zero entries
that are not confined in a narrow band, the MATLAB-based SEM framework applies the
UMFPACK direct solver [47].



Energies 2022, 15, 3145 26 of 30

(a) (b)
Figure 6. Magnitude of the magnetic flux density (a) obtained with the SEM. The difference with
respect to the FEM solution is shown in (b).

Table 2. Post-processing quantities obtained with both the FEM and the SEM, including the absolute
value of the relative discrepancy.

Quantity Symbol FEM SEM Unit Discrepancy [%]

Flux-linkage primary coil Ψp 1.271 1.270 µWb-t 5.540 × 10−2

Flux-linkage secondary coil Ψs 1.248 1.248 µWb-t 5.616 × 10−2

Joule losses primary coil Pj,p 189.0 189.0 mW 2.159 × 10−4

Joule losses secondary coil Pj,s 156.3 156.3 mW 1.160 × 10−2

Hysteresis losses primary core Pc,p 7.072 7.063 mW 1.387 × 10−1

Hysteresis losses secondary core Pc,s 37.87 37.82 mW 1.494 × 10−1

Eddy current losses shaft Pj,s 55.41 55.39 mW 3.216 × 10−2

Eddy current losses housing Pj,h 14.87 14.86 mW 7.786 × 10−2

Temperature primary coil Ta,p 61.64 61.63 °C 2.240 × 10−2

Temperature secondary coil Ta,s 68.22 68.17 °C 8.050 × 10−2

Table 3. Computational effort of both the electromagnetic and thermal model of the benchmark
system for both the SEM and FEM.

Electromagnetic

Quantity Unit SEM FEM

Number of DoF - 1.738 × 104 1.488 × 105

Number of non-zero elements - 3.999 × 105 2.347 × 106

Sparsity % 99.87 99.99

Thermal

Quantity Unit SEM FEM

Number of DoF - 8.128 × 103 1.507 × 105

Number of non-zero elements - 1.367 × 105 2.350 × 106

Sparsity % 99.79 99.99
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(a) (b)
Figure 7. Temperature distribution (a) obtained with the SEM. The difference with respect to the FEM
solution is shown in (b).

(a) (b)
Figure 8. Sparsity patterns of the global matrices in the (a) electromagnetic and (b) thermal SEM
model of the benchmark system.

4. Conclusions

In this paper, a multi-physical modeling framework based on the SEM for axisym-
metric WPT systems has been discussed. The framework consists of an electromagnetic
and a thermal model, of which the former incorporates eddy currents in both source and
non-source regions. The thermal formulation is based on the steady-state heat conduction
equation, where heat transfer by means of convection and radiation can be applied on the
boundaries of the domain.

The SEM introduced in this paper is a multi-domain method, which is based on the
nodal Galerkin approximation with numerical integration. The nodal representation of
the Galerkin method has been selected, since the expansion coefficients of a trial function
can rarely be computed exactly. In order to attain the property of spectral accuracy, the
trial functions are the Legendre polynomials in the [−1, 1]2 domain; thus, a mapping
between the physical and computational domain is employed. Furthermore, as a result
of the Legendre polynomials being selected, the weight function is unity throughout the
domain. The integration is performed by the application of Gauss quadrature rules, which
retain the property of spectral accuracy and are exact for the largest order polynomials. The
Gauss quadrature rules approximate an integral at a set of nodes, which are the zeros of
the trial function. In order to include the end-points to the set of nodes, the Gauss–Lobatto
quadrature rule is applied, which calculates the nodes from the zeros of the LGL polyno-
mial. In the nodal form, the trial function is expressed in terms of Lagrange interpolating
polynomials, where the interpolation points are the Gauss–Lobatto quadrature nodes, such
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that spectral accuracy is maintained. In order to solve the linear system of equations, the
matrix form of the nodal Galerkin approximation has been introduced.

The implementation of the multi-physical modeling framework has been verified by
the FEM. A benchmark system, which is representative of an axisymmetric WPT system, has
been modeled using both the SEM and FEM. The resulting solutions, i.e., magnetic vector
potential and temperature distribution, have been compared to each other. An accurate
match between the methods, with the exception of negligible differences caused by the
interpolation of the SEM solution to an equally spaced grid, i.e., Runge’s phenomenon, has
been observed for both solutions. Consequently, the post-processing quantities, i.e., flux-
linkage, the losses due the Joule effect, and the average coil temperature, are calculated with
a maximum discrepancy of 0.081% with respect to the FEM. A slightly larger discrepancy
with respect to the FEM of 0.15% is observed in the losses due to the hysteresis effect in the
ferrite transformer core, which is caused by corner singularities. Therefore, the results of
the comparison have verified the modeling framework. Additionally, the computational
effort in terms of the number of DoF, number of non-zero elements, and the sparsity has
been assessed for both methods and models of the benchmark system. The results have
demonstrated that, in the case of the electromagnetic model, the SEM reduces the number
of DoF and non-zero elements by 88.3% and 83.0% with respect to the FEM, respectively. In
the case of the thermal model, reductions by 94.6% and 94.2% are observed. In both cases,
the sparsity is slightly reduced, i.e., 0.121% and 0.197% for the electromagnetic- and thermal
model, respectively. However, as a result of the significant reductions in the number of
DoF and non-zero elements, the multi-physical modeling framework based on the SEM is
expected to significantly reduce the computation time for this type of problem.
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