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Abstract: Photovoltaic (PV) electricity is widely used because of its positive environmental impact.
To properly feed this energy into the grid, an electronic power converter, known as a PV inverter, is
needed, which may or may not use a transformer. This article details the analysis and design of a
transformerless photovoltaic inverter topology for grid-connected applications. This converter offers
high efficiency, a low number of elements, and negligible leakage current, which makes it a good
alternative for this application. The converter has been validated through an experimental prototype
and compared with other topologies with similar characteristics.

Keywords: common-mode (CM); leakage current; photovoltaic systems; transformerless inverter

1. Introduction

Currently, the use of renewable energy has gradually increased due to the environmen-
tal problems present nowadays [1]. One of the solutions to help care for the environment
is the use of renewable energy, being photovoltaic (PV) energy one of the most used [2],
which requires the use of power converters to use the energy produced by photovoltaic
panels. These systems may or may not be connected to the AC grid [3].

For the use of PV modules as electrical power generation systems, a power converter
is needed, known as a PV inverter, that has the function to produce an AC output voltage
of controlled magnitude and frequency from a fixed or variable DC power source [4].

Galvanic isolation is a method of protection required in PV systems for both functional
and safety purposes. It can be found on the DC side in the form of a high-frequency
transformer, or on the AC grid side in the form of a large heavy AC transformer [5]. Both
solutions offer personal safety and functional advantages for the PV inverter and the grid,
but the efficiency of the entire system is diminished due to its losses. If the transformer is
omitted, the efficiency of the entire PV system can be increased by an extra 1% to 2% [6].
However, when a transformer is not employed, there is no galvanic isolation between the
grid and the PV modules, which may produce a leakage current that flows through the
parasitic capacitors, which is illustrated in Figure 1 [7–9].

Leakage current results in problems including low system efficiency, output current
distortion, electromagnetic interference (EMI), safety issues, and eventually shortens the
life of the PV module [10]. This current can be avoided, or at least limited, by considering
techniques to keep the total common-mode voltage (VCM) unchanged. These techniques
can be used individually or in combination with others [11,12].
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Figure 1. Leakage current in a photovoltaic system. 
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Sometimes the magnitude of the leakage current can exceed the permissible values,
such as 300 mA stated in the German VDE 0126-1-1 grid standard, due to the variable
behavior of the parasitic capacitance depending on the atmospheric conditions [13].

Many solutions have been proposed to reduce the leakage current. They can be
classified into four types [7,14–22]. The first one is using bipolar SPWM modulation,
which reduces the leakage current by not generating variations in VCM [7]; the second
technique is based on the disconnection of the PV modules from the grid when VCM
varies [14–18]; the third technique, instead of disconnecting the PV modules upon varia-
tions of VCM, connect them to the mean voltage of the input voltage through a capacitive
divider [7,19,20]. The last technique clamps the PV module negative terminal to the neutral
point of the grid [16,21,22].

The latter technique results in the so-called common-mode topologies, offering good
characteristics since the leakage current is theoretically eliminated. Different topologies
have been proposed. In [21], the charge pump concept is employed, resulting in a topology
with four active elements, two diodes, and two additional capacitors, in which always
two or more devices are conducting at the same time, penalizing the efficiency. On the
other hand, [15] proposes a variation of the flying inductor topology, which has a low
semiconductor count; however, it also includes two devices that are always conducting at
the same time. In [22], they propose a common-mode topology to eliminate the leakage
current problem in addition to having high efficiency, however, no experimental results
were provided.

In this paper, a variation of the topology seen in [22] is presented, which offers a low
number of active elements in each mode of operation, resulting in improved efficiency,
but keeping the common-mode connection and then theoretically eliminating the leakage
current. The converter is composed of five switches and a capacitor additional to an
LCL output filter. High efficiency is achieved due to low conduction losses, while no
leakage current is obtained through the common-mode strategy, and low current harmonic
distortion is achieved (% THD).

The paper is organized as follows: in Section 2, the operation principle of the topology
is presented, as well as its dynamic equations; in Section 3, the design methodology is
presented, both for the topology and the filter used; in Section 4, the control strategy
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is discussed; in Section 5, the experimental results obtained are illustrated; in Section 6,
the topology is compared against other existing topologies; and finally, in Section 7, a
conclusion of the work is given.

2. Studied Inverter

To reduce the leakage current in grid-connected PV systems and improve efficiency, a
transformerless PV inverter is analyzed and designed. The topology is shown in Figure 2.
The scheme considers a direct connection between the negative terminal of the PV module
and the neutral of the AC grid, this is keeping the common-mode voltage Vcm constant,
thus reducing the possibility of leakage currents appearing.
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Figure 2. Studied transformerless inverter topology.

It can be seen in Figure 2 that the topology consists of: five switches (MOSFETs), in
which S4 and S5 are in anti-series configuration; one diode (D), which prevents misconduc-
tion; a capacitor (C) which will provide the negative output voltage; and an output filter
(LCL). The converter has switching states in which only one device is conducting, then
the efficiency is improved by reducing the conduction losses. The operating principle is
discussed in the next lines.

2.1. Operating Principles and Topology Modeling

The switching strategy and working principle of the topology are discussed in this
section. The switching scheme of the inverter is illustrated in Figure 3. A unipolar sinu-
soidal pulse width modulation (SPWM) is employed [14,23,24]. This SPWM modulation
compares a carrier signal against two modulating signals. Even though the unipolar SPWM
modulations generate the necessary levels to charge and discharge the capacitor C, the
bipolar modulation could not permit to charge the capacitor C, which prevents its use in
this topology.

Figure 3 also shows the inverter control signals (P, Q, and R), the signals of each switch
(S1, S2, S3, S4, and S5), the voltage node signal (VAn), and finally, the operating mode that
determines each level in the output VAn, all represented at a low frequency.
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Figure 3. Ideal waveforms of the inverter with a unipolar SPWM.

Through the control signals P and Q, the level of the VAn signal can be inferred; when
signals P and Q are equal, zero level is generated for signal VAn. When signals P and Q
are different, signal VAn can be positive or negative, depending on the positive or negative
half-cycle of the AC grid (determined by control signal R).

It can be seen that the control signals for the switches S1, S2, and S3 commute in
a hybrid way, only during one half-cycle, while the switches S4 and S5 operate at high
frequency. This allows a reduction in switching losses since only two devices are operating
at this high frequency during the whole time, achieving better efficiency in the system. Also
notice that there are two switching states in which only one device is conducting instead of
two as other topologies usually do, reducing the conduction losses.

The different switching states of the inverter are displayed in Figure 4a–d. For the
explanation of the modes of operation, it is assumed that all active and passive elements
are ideal devices.
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Mode 1 (S1 is ON, and S2, S3, S4, and S5 are OFF). This mode generates the voltage
for the positive half-cycle (VPV), and the capacitor voltage VC remains unchanged. The
voltage level before the filter (VAn) in this mode is equal to VPV. The state equations for
this mode are:

d
dt

vC = 0 (1)

d
dt

vC f =
iL1 − igrid

C f
(2)

d
dt

iL1 =
vPV − vC f

L1
(3)

d
dt

iL2 =
vC f − vgrid

L2
(4)

where:
C → The capacitance of the capacitor C
C f → LCL Filter Capacitance
L1 → The inductance of the filter inductor one
L2 → The inductance of the filter inductor two
iL1 → The current of filter inductor one
iL2 → The current of filter inductor two
iPV → The output current of the PV inverter
igrid → The grid current
vC → The voltage of the inverter capacitor
vC f → The voltage of the filter capacitor
vPV → The voltage of the PV inverter before the LCL filter
vgrid → The grid voltage
Mode 2 (S4 and S5 are ON, and S1, S2, and S3 are OFF). A zero voltage is produced in

the output voltage VAn, this mode operates in the positive half-cycle of the output voltage.
The state equations for this mode are (1), (2), (4) and:

d
dt

iL1 = −
vC f

L1
(5)

Mode 3 (S3 is ON, and S1, S2, S4, and S5 are OFF). The voltage for the negative half-
cycle is generated in this mode, and the capacitor (C) provides the energy. In this mode, the
PV module is disconnected. The state equations now are (2), (4) and:

d
dt

vC =
iL1

C
(6)

d
dt

iL1 = −
vC + vC f

L1
(7)

Mode 4 (S2, S4, and S5 are ON, and S1 and S3 are OFF). Switches S4 and S5 generate a
zero voltage in the output voltage VAn. while the capacitor (C) is charged through S2. The
capacitor charges in a short time, then the capacitor stops conducting current through it
so that switches S4 and S5 are the only ones that remain active. This allows a reduction in
conduction losses in the topology.

As in this stage the capacitor must be charged (mode 4), some non-idealities for the
devices must be considered, adding in series to the capacitor C a resistance Req equivalent
to the sum of all the parasitic resistances of each element. The equations for this mode are
(2), (4), (5) and:

d
dt

vC =
vPV − vD − vC

ReqC
(8)
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where the equivalent resistance, Req, is described by:

Req = 3RDS(ON) (9)

where:
vD → Diode forward voltage
RDS(ON) → MOSFET on resistor
The four switching states of the proposed inverter are summarized in Table 1, along

with other aspects related to the switching state.

Table 1. Switching states.

State
Switching States Voltages of Interest

S1 S2 S3 S4 S5 VC [V] Inverter
output [V]

1 ON OFF OFF OFF OFF Without changes VPV

2 OFF OFF OFF ON ON Without changes Zero
3 OFF OFF ON OFF OFF Discharge −VC = −VPV

4 OFF ON OFF ON ON Charge Zero

Since the topology has a four-quadrant switch (S4 and S5), it is necessary to carry out
a commutation following the four-step rule, performing a combination of blanking times
and overlapping times [25].

It is important to mention that a switching sequence must be followed during the
transitions between switching states. This is since a four-quadrant switch is employed (S4
and S5). This depends on the operating mode, for example:

In the positive half cycle (R = 1), and a change from operation mode 1 (P 6= Q) to
2 (P = Q), follow the following switching sequence must be followed:

• At first S4 = 1;
• Then S1 = 0;
• To end S5 = 1.

To change from operating mode 2 to mode 1, the sequence must be carried out in the
opposite direction.

On the other hand, when the negative half-cycle (R = 0) happens, and a change from
operating mode 3 (P 6= Q) to 4 (P = Q), the following switching sequence must be followed:

• Initially S5 = 1;
• Then S3 = 0;
• To end S2 = S4 = 1.

To change from operating mode 4 to mode 3, the sequence must be carried out in the
opposite direction.

The sequence of the switches is illustrated below in Figure 5, all represented at a low
frequency.
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3. Topology Design

The design criteria for the different components of the converter are detailed in this
section. To properly operate the topology, a unipolar SPWM modulation is carried out as
already discussed in Section 2 [26–28]. Considering the above, we proceed to calculate the
passive elements of the converter.

3.1. Capacitor C

It is desirable to have capacitor C as small as possible, but large enough to store
energy and maintain a constant voltage to produce the negative level of the corresponding
half-cycle. The positive half-cycle does not use the capacitor C.

The design was made considering the worst case, corresponding to a change from
mode 3 to mode 4, in which the capacitor discharges for a longer time (Figure 6, in red).
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The next equation determines the behavior of the capacitance, which is derived from
Equation (6):

C3 =
iL1∆t3

∆vC
(10)

where ∆t3 is the operating time of the mode 3 subcircuit.
Considering an RMS current of iL1 = 2.8 A, a modulation index of 0.75; a switching

frequency of 30 kHz, and ∆VC = 12 V (5% of VC), results in capacitance of approximately
of 5 µF.

3.2. LCL Filter

The LCL filter has the particularity of reducing the switching frequency ripple, having
a good reduction of the total harmonic distortion (THD) and greatly reducing the emission
of conducted electromagnetic interference (EMI) [29]. The LCL filter has better results
in THD than an L or LC filter, as well as being of a smaller implementation volume and
therefore a higher energy density, contributes to the useful life of the inverter, allowing a
lower probability of failures in the devices in constant use [30].

For these reasons, the LCL filter has been chosen and has been designed to provide
third-order filtering due to its 60 dB/decade attenuation. The filter ensures high power
quality by eliminating voltage and current harmonics, which is composed of two induc-
tors (Lf1 and Lf2) and a capacitor (Cf); the resonance frequency (fres) of the LCL filter is
given as [31,32]:

fres =
1

2π

√
L f 1 + L f 2

L f 1 · L f 2 · C f
(11)

The resonance frequency is selected between [30].

10 fg < fres < 0.5 fs (12)

where fg is the system output frequency and fs is the inverter switching frequency.
The base impedance (Zb) and base capacitance (Cb) are expressed by [31,33]:

Zb =
Vorms

2

P
(13)

Cb =
1

2 · π · fg · Zb
(14)

where Vorms is the root mean square (RMS) of the system output voltage (Vgrid).
The filter capacitor is calculated with:

C f ≤ 0.05Cb (15)

The first inductor is given by [33]:

L f 1 =
VPV

6 · fs · ∆Imax
(16)

where VPV is the inverter input voltage.
The maximum current ripple (∆Imax) of the output inverter is obtained with:

∆Imax = 0.1
P
√

2
Vorms

(17)

The second inductor is expressed by:

L f 2 = 0.6 · L f 1 (18)
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The designed LCL filter parameters are given in Table 2.

Table 2. Filter Parameters.

System Parameter Values

System output frequency, fg 60 Hz
Inverter switching frequency, fs 30 kHz
Inverter input voltage DC, VPV 240 V

System output voltage (RMS), Vorms 170 V
System Power, P 700 W

LCL filter and Internal Capacitor Values

Internal capacitor, C 5 µF
Inverter side inductor, Lf1 2.36 mH

Load side inductor, Lf2 1.42 mH
Filter capacitance, Cf 3.13 µF
Cut off frequency, fres 3 kHz

3.3. Semiconductors and Sensors

According to the values of Table 2, the MUR860 was chosen as the power diode for
its peak voltage and peak current values, 600 V and 16 A respectively, fast recovery time
(75 ns), and low forward voltage (1.5 V) [34].

C3M0065090D was chosen as silicon carbide (SiC) MOSFET, which has a drain-source
voltage of 900 V, a maximum gate-source voltage of 15 V, a drain current of 36 A, a
drain-source on-state resistance of 65 mΩ, and a rise and fall time of 11 ns and 9 ns
respectively [35].

The current sensor used is the LA 25-NP, which is a hall effect sensor that operates
using a variable transformer depending on the configuration of its pins [36].

The voltage sensor used is the LV 25-P, which is also a hall effect sensor that senses the
voltage through a current relationship using Ohm’s law. An external resistor is necessary
to obtain a nominal current of 10 mA [37].

Both sensors need a current to voltage conversion stage because the transducer output
is in current. After that, a conditioning stage is used, which is recommended to match
impedances with the following stage, which usually is the digital stage.

4. Control Strategy

In this section, the controller employed is described in detail. A current control loop is
employed, but also other circuitries.

4.1. Combinational Logic Circuit

As mentioned in Section 2.1, a unipolar SPWM was used, where two symmetrical
sinusoidal signals are compared against a triangular carrier signal, as illustrated in Figure 3.
When comparing the blue sinusoidal signal of Figure 3 against the triangular signal, control
signal P is obtained; while comparing the symmetrical sinusoidal signal (the red one in
Figure 3) against the triangular signal, results in the control signal Q. The control signal R
indicates the polarity of the positive and negative half-cycle of the sinusoidal signal.

A combinational logic circuit is employed to determine the activating signals of the
switches. The truth tables for each switch are shown in Figure 7.
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)
; (c) switching logic for S3: S3 = PQR; (d) switching

logic for S4 and S5: S4 = PQ + PQ.

4.2. Controller Stage

The control strategy employed is a Proportional-Resonant (PR) [38], as shown in
Figure 8. The proportional-resonant (PR) controller is widely used in grid-connected
voltage-source converters [39] because it offers good accuracy and a considerably fast speed
when tracking sinusoidal signals in steady state compared to other control strategies [40].
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Figure 8. Control diagram for the inverter topology.

This PR controller must be synchronized with the AC grid, which is achieved using
a SOGI-FLL. Its dynamic response depends mainly on an appropriate selection of the
parameters p and k, where p is the FLL gain and k is the SOGI gain [41]. The block diagram
of the SOGI-FLL controller is shown in Figure 9.
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The proposed values for k and p were 2 and 1, respectively.
On the other hand, the transfer function of the proportional-resonant (PR) controller is:

HPR = Kp +
Kis

s2 + ω02 (19)

Equation (19) can be seen to be an ideal PR controller which achieves infinite gain at
the AC frequency ω0, where ω0 = 2πfg is the resonant frequency and Kp and Ki represent
proportional and resonant gains respectively. Kp mainly determines the bandwidth and
the phase and gain margins of the system, while Ki can be tuned for shifting the magni-
tude response vertically [42]. The block diagram of the PR controller loop is shown in
Figure 10. In this case, the value for ω0 = es 376.9911 rad/s, for Kp and Ki are equal to 1.2
and 22, respectively.
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Figure 10. Block diagram of PR controller.

Output current and voltage are obtained by the LA25-NP and LV25-P sensors, respec-
tively, as mentioned in Section 3.3, which provide the necessary signals for the SOGI-FLL
control as well as the PR control.

The SOGI-FLL control as the PR control has been programmed in the LabView 2015b
platform, and downloaded in the National Instrument GPIC board hardware, which has a
sampling frequency of 100,000 samples per second.

This limits the execution time of each block to 10µs, having an integration step of
0.0037699s for each integral within the SOGI-FLL controller and the PR controller.

5. Simulated and Experimental Results

To verify the operation of the controller and topology, PSIM simulations were made
and an experimental prototype was built. Several tests were carried out. Parameters for
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the simulation and experimental system are shown in Table 3. The photograph of the
experimental prototype is shown in Figure 11.

Table 3. Parameters used for the simulation of the proposed topology.

System Parameter Values

System output frequency, fg 60 Hz
Inverter switching frequency, fs 30 kHz
Inverter input voltage DC, VPV 240 V

System output voltage (RMS), Vorms 170 V
System Power, P 300 W

LCL filter and Internal Capacitor Values

Internal capacitor, C 5 µF
Inverter side inductor, Lf1 2.36 mH

Load side inductor, Lf2 1.42 mH
Filter capacitance, Cf 3.13 µF
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Figure 11. Experimental setup for the proposed inverter. (a) Inverter with measurement equipment
and GPIC board, (b) inverter with LCL filter.

For the experiments, the AC grid was replaced by a programmable AC Source Agilent
6812B, and the PV was replaced by a PV panel simulator Keysight N8937 APV. The equiva-
lent parasitic capacitor between the negative terminal of the DC bus and the ground was
replaced by an external capacitor. As mentioned in the previous section, the controller was
implemented in a National Instrument GPIC board which can be seen in Figure 11a.

All the tests were carried out over 1 year in which the topology was operating daily for
a minimum of 1 h and a maximum of 3 h without presenting any problem in its operation.

The first test was to obtain the steady-state waveforms. The voltage and current signals
after the LCL filter are obtained, as well as the signal VAn. As it can be observed, all signals
are in phase with Vgrid. This is illustrated in Figure 12a,b, for simulation and experimental
results, respectively.
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Figure 12. Simulated and experimental results. (a) Simulated waveforms Vgrid, VAn, Vout, and
iout. (b) Experimental waveforms Vgrid, VAn, Vout, and iout. (c) Simulated waveforms Vgrid and iout.
(d) Experimental waveforms Vgrid, and iout. (e) Simulated waveforms Vout and iout. (f) Experimental
waveforms Vout and iout.

The second test illustrates the implemented soft start. It is graphed the output current
and the grid voltage. It can be observed that around three cycles were taken to reach the
steady state, once it started the system. This is observed in Figure 12c,d, for simulation and
experimental results, respectively.

As the third test, an amplitude variation of the current reference was made. As can be
observed in Figure 12e,f (simulation and experiment, respectively), the system has a good
dynamic response.

As a fourth test, the inverter was tested with an RL load of 50 Ω and 50 mH, given
by Chroma programmable AC/DC Electronic Load model 63802, the output voltage
and current signal are illustrated below in Figure 13, it is clear that there is a phase lag
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between the signals generating reactive power, the converter operates properly and no
effect on it appears.
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Figure 13. Output voltage and current signals under inductive load.

In Figure 14, the VAn signal and the measured leakage current are illustrated. One
can observe that the current is less than 10 mA, fully complying with the VDE 0126-1-1
standard, which indicates that the leakage current must be less than 300 mA.
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Once these tests were carried out, the efficiency and the THD at different powers
were obtained. Maximum efficiency of 98.2% was achieved at the nominal power of 300 W.
However, a sweep of efficiencies was carried out at different percentages of power with
respect to the nominal power that allows us to calculate the CEC and EE efficiencies [14,43],
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through the Equations (20) and (21), which are 96.973% and 96.227%, respectively. All
efficiencies were obtained using Chroma Digital Power Meter 66,204 device.

E fEE = 0.03E f5% + 0.06E f10% + 0.13E f20% + 0.1E f30% + 0.48E f50% + 0.2E f100% (20)

E fEE = 0.04E f10% + 0.05E f20% + 0.12E f30% + 0.21E f50% + 0.53E f75% + 0.05E f100% (21)

where the percentage that each efficiency has corresponds to the value of the efficiency
obtained at that percentage of the power with respect to the nominal value of power [44].

THD measurements of the output current of the topology were made also at different
powers using a Fluke1735 device, the same as in the analysis of efficiencies, the THD at
300 W resulted in a THD value of 0.1%, while in the worst of the conditions at 15 W with a
value of 0.9% was obtained, in all cases the THD value measured is lower than the IEEE
1547 standard [45]. Figure 15 illustrates the efficiency and the THD.
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The useful life of the system will depend on the useful life of each element sepa-
rately, which are affected by different factors, such as the environment where it operates,
the temperature, the implementation and operation parameters [46]. The devices that
present the highest percentage of failures found in the proposed topology are MOSFETs,
followed by diodes [30,46]. Table 4 shows the percentage of failures in 1000 h of use for the
various elements [47]:

Table 4. Some typical component failure rates (% per 1000 h).

Component % per 1000 h

Capacitors 0.01
Inductors 0.05

Transistors 0.01–0.1
Diodes 0.05

The useful life of an inverter varies depending on the factors mentioned, as well as the
number of elements that the topology contains and the stress to which they are subjected,
and to a large extent the THD that the topology presents. In general, the useful life of
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the inverter system can be guaranteed in 106 h, where the active components (MOSFETs)
feature the highest failure probability among the elements in the topology [46].

Based on this, temperature measurements in degrees Celsius were made on the compo-
nents within the topology every minute for 1 h, when temperatures have already stabilized
(Figure 16). The converter was operating at 300 W.
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Figure 16. Temperature of each component as a function of time (min).

The temperature measurement was carried out on each of the devices utilizing digital
thermometers. The average, minimum, and maximum increase of the temperature value
of each device is shown below in Table 5, with which, in support of Figure 16, it can be
concluded that the device that could present failures first would be MOSFETs S4 and S5.

Table 5. Average, maximum, and minimum temperature in degrees Celsius.

Average Maximum Minimum Increase

S1 32.89 36 30 6
S2, S3 36.82 41.3 30.5 10.8
S4, S5 38.75 42.8 31.4 11.4

C 35.57 39.4 31 8.4
Lf1 33.85 36.2 29 7.2
Lf2 30.14 31.5 28.5 3
Cf 28.62 30.3 27.9 2.4

It must be considered that these temperatures contemplate the temperature of the
environment at the moment of being measured, which at the beginning of the measurement
was 29 ◦C and at the end of the test it was 26 ◦C.

6. Comparison with Other Schemes

Several characteristics of the converter have been compared with other topologies
(Table 6), where, in addition to comparing in terms of efficiency, THD and leakage current,
the number of devices used has also been compared; these include semiconductor devices
and also internal passive devices in each inverter, and the elements that are used in the
proposed filter in each topology, since they directly affect the THD, the efficiency and the
lifetime of each one of them.
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Table 6. Comparison with other schemes.

Topology

Semiconductor
Devices

Passive
Elements Filter

Semiconductors
Operating at the

Same Time
Leakage
Current

[mA]

Maximum
Efficiency [%]

THD
[%]

Switches Diodes C L C L Minimum Maximum

Proposed inverter 5 1 1 0 1 2 1 3 ≈0 98.2 @ 300 VA 0.1
HBVS [7] 5 1 1 2 1 2 3 3 <77 94.5 @ 1 kVA 11.6

H6 DC side [14] 6 0 2 0 1 2 2 4 <200 95.9 @ 300 VA 2.54
CH6 [15] 6 0 0 2 1 2 2 3 <140 NM @ 720 VA 3.77

Topology in [16] 5 0 2 1 1 1 2 2 ≈0 92.5 @ 200 VA –
qZSI Modified

[17] 6 3 2 2 1 2 3 7 ≈0 91.4 @ 500 kVA 6.2

Heric parallel AC
switch [18] 6 2 0 0 1 2 2 2 <20 98.7% @ 9 kVA –

Heric
back-to-back [18] 6 0 0 0 1 2 2 2 <20 97.5%@ 9 kVA –

H5 [18] 5 0 0 0 1 2 2 3 <35 98.1 @ 300 VA –
H6 [18] 6 2 0 0 1 2 2 4 <40 96.35 @ 200 VA –

Hybrid bridge
[19] 6 2 1 0 1 2 2 3 <17.4 94.75 @ 1 kVA –

H5-D [20] 5 1 2 0 0 2 3 3 ≈60 96 @ 650 VA –
S4 Topology [21] 4 2 3 0 1 1 1 3 ≈0 97.2 @ 500 VA 2.1
Inverter in [22] 5 1 1 1 1 1 1 3 ≈0 – 0.14

In terms of efficiency, a good value is achieved. The efficiency depends on the switch-
ing and conduction losses. This proposal has low conduction losses due to the reduction
of active semiconductors in each operation mode. A single semiconductor is turned on
in two of the operating modes. In Table 6 the number of semiconductors operating at the
same time for each topology is indicated. The proposed topology, as in [21,22], only uses
one semiconductor used in an operation mode, while the others consider more elements,
penalizing efficiency, except for the HERIC parallel AC switch topology [18] which presents
better efficiency. However, the analyzed topology is expected to improve its efficiency at
higher power, matching or surpassing also the HERIC parallel AC switch topology [18]. It
is worth mentioning that [18] is a review with the maximum efficiency reported for each
topology so far according to the reference.

In addition, a low THD was obtained compared to other topologies.
The leakage current was also considered. Considering that this proposal is a common

mode converter, the leakage current is close to zero. Not all the topologies eliminate it,
some of them only reduce it, as is the case of [7,14,15,18–20]. All the topologies presented
in [17] do not manage to eliminate the leakage current in its entirety.

Regarding the number of semiconductor devices, only the topology presented in [16]
and the H5 topology [18] use fewer components than the proposed topology. However, the
topology in [16] has one extra passive element. The topologies in [7,14,15,20–22] have the
same number of semiconductors, however, the number of passive elements in each of them
is greater than in the proposed topology, except [22]. However, that work does not address
many details concerning the analysis and calculation of the elements, and no experiments
were provided. The topologies reported in [17,19] have a higher number of semiconductors
than the proposed topology.

The main difference with [22] is the filter used, which improves the results obtained
by reducing THD and EMI, which would extend the life of the system, and a better power
density is obtained.

7. Conclusions

A topology for transformerless PV inverters is analyzed and experimentally evaluated
in this paper, which can effectively suppress the leakage current, but also have high
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efficiency due to the reduced conduction losses. The topology comprises five switches and
a diode, with only one semiconductor operating during two of the operating modes. The
LCL output filter increases efficiency, lifetime, THD and EMI reduction of the converter.

The results obtained verify the operation of the topology, where a zero-leakage current
is measured, complying with the VDE 0126-1-1 standard where it must be less than 300 mA.

An efficiency study was performed, having a maximum efficiency of 98.2% at a power
of 300 VA. In the same way, a very low THD was obtained, 0.1% in the best of cases and
0.9% for the worst.

A temperature measurement of the devices used in the implementation over an hour
of operation without interruptions at nominal value was made, as well as an estimation of
failures for the useful life of the system was given.

Simulation and experimental results allow validating the operation of the converter
and the controller, resulting in a good choice for single-phase transformerless PV inverters
due to its simplicity and practicality.
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