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Abstract: This paper illustrates the development of a recursive QR technique for the analysis of
transient events, such as disruptions or scenario evolution, in fusion devices with three-dimensional
conducting structures using an integral eddy current formulation. An integral formulation involves
the solution, at each time step, of a large full linear system. For this reason, a direct solution is
impractical in terms of time and memory consumption. Moreover, typical fusion devices show a
symmetric/periodic structure. This can be properly exploited when the plasma and other sources
possess the same symmetry/periodicity of the structure. Indeed, in this case, the computation can be
reduced to only a single sector of the overall structure. In this work the periodicity and the symmetries
are merged in the recursive QR technique, exhibiting a huge decrease in the computational cost.
Finally, the proposed technique is applied to a realistic large-scale problem related to the International
Thermonuclear Experimental Reactor (ITER).

Keywords: plasma fusion; integral formulations; fast methods; eddy current; QR-MGS sparsification;
H-matrix

1. Introduction

The working principle of magnetic confinement fusion devices is fundamentally based
on the electromagnetic interaction of the plasma, where fusion reactions occur with the
conducting structures surrounding the plasma, and where external currents circulate. Such
conductors can be both actively fed (e.g., poloidal field, PF, coils and toroidal field, TF, and
coils) and passive (e.g., the vacuum vessel). The currents flowing in the former set are
responsible for the magnetic field needed to keep the plasma in equilibrium, hence giving
rise to the nominal desired plasma configuration. Conversely, passive conductors play a
fundamental role in the stability of such an equilibrium configuration. In fact, assuming the
plasma is described as a current-carrying fluid using the Magneto-Hydro-Dynamics (MHD)
model, it can be demonstrated that there exist unstable modes of evolution—the so-called
MHD instabilities. A huge number of such unstable modes may exist, whose triggering
depends on several physical and geometrical plasma parameters, such as pressure, current,
position, and shape. They are usually classified in terms of the toroidal and poloidal number,
i.e., the Fourier decomposition in the toroidal and poloidal direction of the dominant
plasma perturbation. In the present paper, we consider situations in which the plasma
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evolves in an axisymmetric way, although this is not an intrinsic limitation of the proposed
approach, as we will clarify below. Practically, this means that the plasma geometrical
descriptors (e.g., the centroid vertical position, gaps with respect to the first wall, and the
displacement with respect to the nominal configuration) may grow exponentially in time,
after an initial perturbation takes place. The time scale of such phenomenon—the so-called
growth rate of the instability—may be as fast as microseconds in typical fusion devices,
in the absence of passive conducting structures, being related to the inertial dynamics of
the plasma, which is very fast due to its very small mass. Such abrupt movements and
deformations of the current-carrying plasma induce eddy currents in surrounding passive
conductors; such eddy currents, in turn, tend to counteract the plasma movement, thanks
to the Lenz rule, hence slowing down the instability to the time scale over which eddy
currents decay—tens or hundreds of milliseconds for typical devices. This allows an active
control of the instability to be practically feasible [1].

The discussion reported above demonstrates clearly that numerical modelling of the
conducting structures surrounding the plasma is of paramount importance for a macro-
scopic description of the behaviour of a fusion device. A comprehensive, modern, and
rigorous presentation of the theory leading to the numerical modelling of such complex
electromagnetic problems can be found in the book of Bossavit [2]. In its exposition,
Bossavit limits the attention to the variational formulation of the field problems. In this
case, the quasi-stationary approximation of the Maxwell equations are discretized by the
Finite Element Method (FEM). Here, the computational domain in principle also includes
the air. This approach is very well diffused (see for instance [3]) and it is at the basis
of many general-purpose commercial codes. For avoiding the discretization of the air, a
boundary integral equation can be coupled to the differential equations on the boundary of
the conducting domain, leading to the so-called FEM-BEM (Boundary Element Method), as
described for instance in [2,4,5]. The thermonuclear fusion devices present very complex
geometries in which massive structures and thin shells coexist and ferromagnetic effects
are usually negligible. In this respect, integral formulations are usually quite advantageous,
because they allow (i) to mesh the conductors only and (ii) to implicitly take into account
regularity conditions at infinity. For this reason, in the first generation of tokamaks, made
almost completely of thin conducting structures, the finite element eddy current integral for-
mulation for nonmagnetic shells proposed by Kameari [6], Bossavit [7], and Blum et al. [8]
resulted in being particularly efficient, from the computational point of view. The main
obstacle to the treatment of fully three-dimensional massive conductors was the lack of a
general method for generating a complete set of independent, solenoidal shape functions
for the current density. The proposal [9] of a numerical formulation for modelling in an
efficient way these 3D massive structures was the main step leading to the implementation
of the CARIDDI code [9,10], and indeed it has been extensively used for the modelling of
fusion devices, such as for instance JET, EAST, COMPASS, RFX, JT-60SA, ITER, and DEMO.
On the other hand, general purpose commercial codes based on differential formulations
substantially improved in the course of the years [11–14]. Nowadays, they represent a
valid alternative in many cases where the presence of the plasma does not pose specific
challenges in the modelling.

One drawback of integral formulations—and of course CARIDDI is no exception—is
that they give rise to fully populated matrices to be inverted to find the solution. This
inevitably poses a limitation to the maximum number of discrete unknowns—the Degrees
Of Freedom, DOF—that can be practically handled. On the other hand, the complexity
of devices and the accuracy required for the analyses require very detailed models and
hence huge numerical models to be considered. To tackle this problem, so-called “fast meth-
ods” can be used, ranging from FFT (Fast Fourier Transform)-based approaches [15–17] to
multipole approximations [18,19], to QR-recursive compression [20,21]. Although all such
methods have been successfully implemented in the CARIDDI code, our previous experi-
ence clearly show that for fusion devices, the most effective technique is the QR-recursive
(see [22] for the definition of QR matrix factorization). This is the reason why, in the present
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paper, we focus on a number of significant extensions of such a technique, which computes
the effective numerical solution of the problem with a very high efficiency, hence allowing
an unprecedented level of detail in the description of fusion devices.

In the present paper, the authors starting from the previous version of the QR-recursive
method, face some important numerical issues, adding new efficient enhancements. We
can summarize the new features addressed by the paper in the following:

• The extension of the method when both the structure and the sources exhibit the
same symmetries. This is quite important because symmetry is typical in devices for
fusion applications.

• A new approach (namely the DOF-based method) is introduced for the QR-recursive
method, which compared to the old one (ELEMENT-based method) is numerically
more effective.

• An efficient numerical approach is used in solving the system in order to handle the
“electrodes” case. This case is very usual for practical fusion device application.

• We tackle the problem of the “small boxes” in QR-recursive, which could degrade the
performances of the overall method.

Finally, we applied the method to a relevant application case of the International
Thermonuclear Experimental Reactor (ITER) [23].

2. Mathematical Formulation
2.1. Integral Formulation

Here we summarize the Magneto-Quasi-Static volume integral formulation at the
basis of the numerical model. We refer to a conducting three-dimensional domain Vc
excited by a time varying magnetic field and by a set of current/voltage sources applied at
a subset SE of its boundary made by a set of equipotential electrodes.

Faraday’s law is automatically satisfied by assuming

E = −∂A
∂t
−∇ϕ , in R3. (1)

The magnetic vector potential is uniquely defined by ∇×A = B with the Coulomb
gauge and the regularity conditions at infinity. Consequently, it is possible to express A in
terms of the unknown solenoidal current density, by using the Biot–Savart law:

A(r, t) =
µ0
4π

∫
Vc

J
(

r
′
, t
)

∣∣r− r′
∣∣dV′ + As(r, t) , in R3, (2)

where

As(r, t) =
µ0
4π

∫
R3−Vc

Js

(
r
′
, t
)

∣∣r− r′
∣∣ dV′ , in R3, (3)

and Js is the (known) current density due to the external sources.
The constitutive equation

J = σ E , in Vc , (4)

where σ is the electric conductivity tensor, can be verified in an average sense by adopting
a weighted residual approach. It results in the following weak form

∫
Vc

w ·

σ−1J +
∂

∂t

µ0
4π

∫
Vc

J
(

r
′
, t
)

∣∣r− r′
∣∣dV′

+
∂As

∂t

dV + ∑
h=1, NE

∫
SE

φh w · ^
n dS = 0 (5)
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for any w ∈ S and with J ∈ S. Here S is the set of solenoidal vector functions with zero

normal component on ∂Vc\SE, being
^
n the unit normal pointing outward Vc:

S =

{
w ∈ H(div; Vc)

∣∣∣∣ div w = 0 in Vc and w · ^
n = 0 on ∂Vc\SE

}
. (6)

NE is the number of electrodes (they are part of the boundary of the conducting
domain), identified by the surface SE. At each electrode h, there is an unknown potential
φh and a prescribed current Ih(t).

In Figure 1 we report a schematic sketch showing the geometrical objects involved in
Equation (5). Note that, being an integral formulation, only the sources in the conducting
domain are involved in the computation of the integrals. The air regions do not bring any
additional unknowns.
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2.2. Numerical Model

A numerical solution is obtained by applying Galerkin’s method to Equation (5). The
unknown is the current density vector J, which we represent as the linear combination of
N basis functions Ji ∈ S:

J(r, t) = ∑
i=1:N

Ii(t) Ji(r). (7)

According to the Galerkin’s method, we choose N independent weighting functions
as Wi = Ji. Condition Ji ∈ S can be satisfied by introducing the electric vector potential
T (J = ∇ × T) and adopting edge element shape functions for T. The uniqueness of
the vector potential is assured by the tree-cotree gauge [10]. This gauge is conveniently
imposed directly on the basis functions, introducing the tree-cotree decomposition of the
mesh and eliminating the degrees of freedom associated to the tree edges. Condition

Ji ·
^
n = 0 on ∂Vc\SE can also be imposed on the shape functions using the approach

described in [10,24,25]. The shape functions Ji are therefore derived from the Ni edge
element functions for the gauged vector potential:

Ji = ∇×Ni. (8)

In this way, Galerkin’s method applied to (5) gives the following linear dynamical
system, for t ≥ 0:

L
dI
dt

+ RI + FTΦ = −dVS

dt
, (9)
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with I(0) = I0, where I0 is the prescribed initial condition.
In (9) the unknowns are

• I(t) is a column vector discretizing the unknown density current J(r, t)(i.e., I(t) = [Ii(t)] )
• Φ(t) is a column vector representing the unknown voltages at the electrodes (i.e.,

Φ(t) = [φh(t)])

In the RHS of (9) appears the source term VS(t) = [Vsk(t)] given by

Vsk(t) =
∫

Vc
∇×Nk(r) ·As(r, t) dV (10)

The matrices in (9) are R =
[
Rij
]
, L =

[
Lij
]
, F =

[
Fij
]
. They are defined as

Rij =
∫

Vc
∇×Ni(r) · σ−1∇×Nj(r) dV, (11)

Lij =
µ0

4π

∫
Vc

∫
Vc

∇×Ni(r) · ∇ ×Nj

(
r
′
)

∣∣r− r′
∣∣ dVdV′, (12)

Fij =
∫

Si

∇×Nj(r) ·
^
n dS. (13)

The dimension of the matrix F is NE × N. It is worth noticing that

• Fij is the contribution to the current flowing in the electrode i due to the DOF j

The current Ci flowing in the i-th electrode, is the product of the i-th row (Fi) of
F times I. That is:

Ci = FiI. (14)

Rewriting the condition (14) for each electrode we have

FI = Ih, (15)

• Fij is zero for those DOF j, which do not belong to the boundary.

Hence F is sparse due to the local interaction of the electrodes.
Matrices R and L (whose dimensions are N × N) represent the discrete counterparts

of the electric constitutive relationship (Ohm’s law) and of the vector potential operator,
respectively. Matrices R and L are symmetric and positive definite. In addition, matrix R is
sparse, since it arises from a local operator, whereas matrix L is fully populated, because it
arises from the Biot–Savart integral operator.

Applying implicit time step integration to Equation (9), and keeping into account
constrain (15) and the initial condition, the algebrical system to be solved is:

(L + ∆t R)I(k+1) + ∆t FTφ(k+1) = LI(k) + V(k+1)
S −V(k)

S

F I(k+1) = I(k+1)
h

I(0) = I0
k ≥ 1

(16)

where

• ∆t is the time step
• I(k) = I(k∆t) and φ(k) = φ(k∆t) are the unknowns at integration instant k∆t

• I(k+1)
h = Ih((k + 1)∆t) are the prescribed currents flowing in the electrodes at integra-

tion instant k∆t
• and V(k)

s = Vs(k∆t) are source terms at integration instant k∆t
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2.3. Symmetric Periodic Boundary Condition

In many relevant situations, two proper conditions are satisfied. First, the plasma
discharge is axisymmetric. Therefore, the plasma discharge can also be retained periodically,
with the same period of the nuclear fusion reactor. Second, the electrodes present on each
sector and used to inject electrical energy into the system, may be driven by the same
waveforms. Under these two conditions, the electromagnetic fields are periodic with the
period of the nuclear fusion reactor. Similar arguments can be used in the presence of other
symmetries, other than rotations.

For the sake of clarity, in Figure 2 we report a simple case in which a periodic boundary
condition should be set at ϕ = −20◦ and ϕ = +20◦ on a symmetry mesh. We should
force the density current J(r, t), at each boundary point at ϕ = −20◦, to be equal to the
correspondent point at ϕ = +20◦.
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Let α be defined as the semi-angular width of the sector. For each pair of facets f 1
and f 2 lying, respectively, at ϕ = +α and ϕ = −α and coupled by the condition imposed
by the periodicity, we force the current flowing through f 1 to be equal to the one flowing
through f 2. This can be easily done by the means of the matrix F. Keeping into account
definition (15) we should have

C f 1 = C f 2, (17)

and hence
(F f 1 − F f 2)I = 0 (18)

Therefore, the periodic boundary conditions act like the electrode’s conditions, adding
an equation such as (18) for each corresponding pair of facets.

Summing up, in the presence of both electrode currents and periodic boundary condi-
tions, the second equation in (16) is generalized as:

B I(k+1) = M(k+1), (19)

where

B =

[
FE

Fα − F−α

]
, (20)
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M(k+1) =

[
I(k+1)

h
0

]
(21)

FE
def
=
{

Fij
∣∣ i ∈ SE, j ∈ 1, N

}
Fα

def
=
{

Fij
∣∣ i ∈ πα, j ∈ 1, N

}
F−α

def
=
{

Fij
∣∣ i ∈ π−α, j ∈ 1, N

}
where πα and π−α are the planes at ϕ = +α and ϕ = −α, respectively.

In accordance with the two different constrains, the matrix B has a number of row
equal to NE + Np, where

NE is the number of electrodes on SE where the current should be prescribed.
Np is the number of faces at ϕ = +α (or at ϕ = −α).
Finally, in place of the (16), the overall numerical system to be solved is:

(L + ∆t R)I(k+1) + ∆t BTφ(k+1) = LI(k) + V(k+1)
S −V(k)

S
B I(k+1) = M(k+1)

I(0) = I0
k ≥ 1

(22)

At the discrete level, the dynamical matrix is:

A = R ∆t + L. (23)

The solution of large-scale problems involving a fully populated matrix poses a rele-
vant challenge both in the assembly and in the solution of the dynamical system (22) [26].

Indeed

(i) The assembly of L has a cost of O
(

N2).
(ii) The inversion (usually factorization) of the matrix A, using a direct method, as well

know, requires O
(

N3) operations.

The authors developed a parallel implementation of the direct method to solve system
(22) [26,27], based on the Scalapack library [28].

3. QR-Recursive Method
3.1. Summary of QR-Recursive Approach

As explained in the previous section, the solution of (22) cost is prohibitively large
when the mesh of the structure is very detailed. The compression of the stiffness matrix is
recommended only for large scale problems, otherwise a direct method is preferred. When
working on large scale problems, the compression of such large matrices as a whole is too
expensive, from the computational point of view. Therefore, we are obliged to resort to
recursive approaches, such as the QR-recursive method proposed in the present work.

In iterative methods, the matrix-vector product is the fundamental building block of
the solution, and the QR-recursive method [20,21] is actually a way to evaluate efficiently
the matrix-vector product.

The direct computation of the matrix-vector product Ax (see [29]) is actually too costly,
from the numerical point of view (it costs O

(
N2) operations); QR-based methods [30],

compress the matrix and recast the product evaluation in a cheap cost (which scales O(N))
by the means of separation between the near and far interactions. The near interactions
should be computed without approximation; on the contrary, the far interaction could
be approximated.
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The relevant steps of the QR-recursive algorithm are:

(1) Boxes generation
(2) Definition of DOFs associated to the boxes
(3) Definition of interaction matrix between two boxes
(4) Setting Lnear, Lfar
(5) Overall compressed operator optimization and practical considerations

3.1.1. Boxes Generation

The first step is grouping the mesh “objects” into clusters (boxes). The structure is
recursively generated by subdividing the domain in cubic cells, halving the edge length at
each subdivision. This procedure starts from the smallest cube containing the whole mesh
(b0) and ends when a prescribed minimum number (smin1) of “objects” is left in the box.
The resulting boxes, which should not require further division, are called childless boxes.
In the Appendix A, we report the full algorithm used, and in Figure 3 we show an example
of an application.
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Here, we use the elements as mesh “objects”. Hence, we refer to this method as the
ELEMENT-based method.

As a final remark, we highlight that the shape of the elementary cell, the cube in this
work, has to satisfy the following three properties:

(a) The cell is able to tessellate the 3D space.
(b) The cell can be exactly subdivided in eight smaller replicas.
(c) The cell should present an aspect ratio of the order of unity. In other words, the cell

should not be either flattened or elongated.

These conditions, bring naturally to cubic cells.

3.1.2. Definition of DOFs Associated to the Boxes

Once the boxes are created, we can define the DOFs to insert into the boxes.
Let E and D be defined as

E(b) def
= is the set of the all elements mesh belonging to the box b

D(b) def
= is the set of all DOFs ∈ E(b) (24)

Note that the support of a given DOF ∈ D(b), could not necessarily belong to E(b).
This actually occurs if the DOF lies on the boundary of the box. So, we label the DOFs as
the internal DOF or boundary DOF (see Figure 4).
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3.1.3. Definition of the Interaction Matrix between Two Boxes

Using the definition in (24), we are able to define the interactions matrix between a
field b and source box c.

The matrix interaction, namely Lbc, is defined as

Lbc =
{

L∗ij
}

, i ∈ D(b), j ∈ D(c), (25)

where
L∗ij = ∑

r∈E(b)
∑

s∈E(c)
Li,j,r,s. (26)

The terms Li,j,r,s represent the element–element contribution to the computation of Lij
(see (12)). It is easy to understand that

• L∗ij 6= Lij for each matrix entry of Lbc for which i or j is a boundary DOF.
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This is because some element–element interactions are missing.

• L∗ij = Lij for each matrix entry of Lbc for which both i and j are internal DOFs.

Hence, in the ELEMENT-based approach, the box–box interaction matrix Lbc could
not be a submatrix of the full matrix L (see Figure 4).

Nevertheless, the L matrix will be consistently reconstructed by superposition of all
the Lbc contributions.

3.1.4. Setting Lnear, Lfar

The last step is the identification of the near and far box–box interactions.
For each box–box interaction (namely b, c) in which b is field and c is the source box,

we define:

• Lfar(b)
def
= is the set of sources boxes c, such that the box b is in far zone of the box c.

• Lnear(b)
def
= is the set of sources boxes c, such that the box b is in the near of the box c.

The analytic definition of Lfar(b),Lnear(b) is explained in Appendix B.
In Figure 5, we report the near and far zone generated by box b acting as source.
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Using such a box–box repartition, the L matrix is written as follows:

L = Lnear + Lfar. (27)

Lnear accounts for the box–box interactions, which should be computed exactly without
approximation. There are two kinds of direct interactions:

• When the two boxes are classified as near, hence, they have a large rank and cannot be
efficiently compressed.

• The interactions arising from non-local DOFs. These DOFs could not be compressed
because they are related to nonlocal shape functions.

We call the Ladd matrix the sparse matrix arising from these non-local shape functions
(see [31,32]).

Let Nnbox be defined as the number of the boxes, the Lnear is

Lnear = Ladd +
Nnbox

∑
b=1

Lnear(b)

∑
c=1

Lbc. (28)

Lfar keeps into account the far distance box–box interactions. These kinds of interac-
tions are low rank and, hence, they can be conveniently compressed. The compression
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technique adopted is the modified Gram–Schmidt (MGS [22,33].). This algorithm returns
an approximated QR-MGS factorization for each Lbc.

Lbc ∼= QbcRbc (29)

Hence the matrix Lfar is approximated as follows:

Lfar =
Nnbox

∑
b=1

Lfar(b)

∑
c=1

Lbc ∼=
Nnbox

∑
b=1

Lfar(b)

∑
c=1

QbcRbc. (30)

Doing this way, it is easy to show that both the computational cost and memory
occupation are reduced. Indeed, let us consider two far boxes b and c having m and n
objects, respectively. The matrix without compression (i.e., Lbc) has dimension m × n,
whereas in its compressed matrix Qbc has dimension m× r, and Rbc has dimension r× n,
being r the rank of the interaction. Please note that for far interactions

r << m, n. (31)

Let xc be the vector representing the sources in box c, the direct evaluation of the
product Lbcxc has a computational cost

Cdir = m× n, (32)

whereas its approximated version Qbc
(

Rbcxc

)
costs

Capp = (m + n)× r. (33)

In force of the (31) it results in that for the far interactions Capp � Cdir. This is the
heart of the compression method.

For sake of clarity, in Figure 6 we report the rank distribution of the matrix Lbc, where
b is a given field box and c represents all the other source boxes. As expected, the rank
reduces as distance increases.
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Moreover, we stress that the computational cost of Lbcxc ∼= QbcRbcxc is exactly equal
to the memory required to store the compressed version of the interaction. Hence, all the
considerations done for the memory hold for the computational cost. This is a key feature
of the QR-recursive method.

Using (28) and (30), the dynamic matrix appearing in (23), can be approximated as

A ≈ Aqr = Anear + Afar, (34)

where
Afar = Lfar, (35)

Anear = ∆tRadd + Ladd +
Nnbox

∑
b=1

Lnear(b)

∑
c=1

(
Rbc∆t + Lbc

)
. (36)

where Radd is the matrix R evaluated in the same sparsity pattern as for Ladd.
Moreover, note that the matrix R, being a local sparse matrix, appears only in the

near part.
We should remark that in implementation of CARIDDI code, in order to face huge

cases, the parallelization is fully applied by the means of MPI (Message Passing Interface)
library [34]. Indeed, the computation burden

(i) assembling of Lnear and Lfar
(ii) product evaluation of Aqrx (i.e., pnear = Lnearx, pfar = Lfarx)

Is approximatively equally distributed among processes used in computation.
As a matter of fact, this means that performances of the QR method scale linearly

versus the number of processes used in computation.
Indeed, we will show (see Section 3.2) that the computational cost of the QR-recursive

method, is directly connected to the time required to evaluate the compressed product Aqrx.
In turn, this time, as aforementioned, depends on the memory used. When this memory is
equally redistributed among Np processes, the computation cost is reduced by a factor one
over Np

In the numerical sections, we will report some results about the numerical perfor-
mances of the parallelization [28,35].

3.2. The Preconditioner and the Initial Guess Estimation

As said in previous paragraphs, the QR-recursive method uses an iterative solver for
the solution of the algebraic system, which takes advantage from the compressed version of
the matrix-vector product. In present work, the iterative solver adopted is GMRES [36]. As
it is well known, the main operations required by an iterative solver are: (i) the computation
of the matrix-by-vector product Ax and, (ii) the preconditioning. The computational cost of
an iterative solver, then, is proportional to the number of multiplications required for the
product and to the number of iterations required to achieve convergence, assuming that
the preconditioning has a cheaper evaluation. The role of the preconditioner is to reduce
the number of iterations and, ultimately, the computational cost. In order to understand
how this preconditioner works, we apply the left preconditioner to the first equation in (22).
Assuming for sake of simplicity, the system is without electrodes, we have

P−1AI(k) = P−1
(

LI(k−1) + V(k+1)
S −V(k)

S

)
. (37)

The role of the preconditioner P is to reduce the condition number of the stiffness
matrix P−1A. The “ideal” preconditioner gets this number close to unity and it is a kind
of inverse of A. A critical issue in this framework is the dependence of matrix A on ∆t.
In fast transient analysis, ∆t has to be small enough to model properly the underlying
dynamics. On the other hand, in slow transients ∆t has to be large enough to reduce the
computational cost. Therefore, the dependence of A on ∆t yields the dependence of P on
∆t. Specifically, for small ∆t the preconditioner should be tailored on L, whereas for large
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∆t the preconditioner should be tailored on R, as follows from (23). In all remaining cases
(∆t not too small nor too large) the preconditioner depends on R and L. The appropriate
value of ∆t depends on the underlying dynamics that are caused by the source, i.e., by the
rate of change of VS(t) defined in (16) and appearing in (9).

It should be stressed that a preconditioner based on the L matrix is still an open
problem. From our knowledge and experience any attempt to insert a “light” modified
version of L in the preconditioner poorly fails.

In this work we set P = R. As we have said, R is a sparse, symmetric, and positive
definite matrix. Its factorization and application are numerically very effective [37]:

• The computational cost (memory and time) of the factorization is linear versus the
number of unknowns. Actually, it uses Cholesky decomposition (tailored for sparse
matrix).

• The back/forward substitution (involved in the Cholesky method) is also very cheap.

The R preconditioner is not very effective starting from a null initial value, for the
initial guess of the iterative method.

Extensive numerical experiments performed on typical meshes used in fusion devices,
have shown that, if we use an estimation for the initial value of the iterative solver, the R
preconditioner works quite fine, at least when the time variations are slow. Degradation
of the preconditioner will appear only in limited time slots when abrupt transitions occur.
The simple time estimation scheme that we use for the initial value is

I(k)0 = 2I(k−1) − I(k−2), (38)

where I(k)0 is the initial guess for GMRES at the current instant k and I(k−1) and I(k−2) are
the solutions at one and two previous time steps, respectively.

In the numerical results section, we report the GMRES number of iterations, proving
the efficiency of the proposed strategy.

Note that, being very effective with the preconditioner, the performance of the iterative
solver depends only by the computational cost of the approximated product Aqrx.

3.3. Extension of Compression to Symmetries

In the present work, we introduce a simple approach in order to apply compression
whenever symmetries are present in the structure.

Hereafter we assume that (i) the nuclear fusion reactor is a periodic structure, (ii)
the plasma discharge is axisymmetric, and (iii) the electrodes present on each sector are
driven by the same waveform (see Section 2.3). Assumption (i) is typical in nuclear fusion
machines. Assumptions (ii) and (iii) are not restrictive at all. Indeed, if not satisfied, the
approach proposed in this paper can be extended to these cases by exploiting the framework
of [38]. Hereafter, for the sake of simplicity, we present the compression in the presence of
symmetries, under assumptions (i)–(iii).

To describe the approach, we briefly recall how they are handled in the CARIDDI code.
Two classes of symmetries are handled. One is the symmetry of reflection with respect to a
co-ordinate plane; the other one is the symmetry with respect to a given rotation around
the axis z. The underlying idea, in order implement such a symmetry condition, is based
on two considerations:

1. Reducing the solution domain Vc only to an elementary part of the whole structure.
In the following, this part of the domain is called the main sector.

2. Assuming that basis functions ∇×Ni(r) automatically verify the symmetry condi-
tions, by two suitable operators: reflection and rotation.



Energies 2022, 15, 3214 14 of 31

For instance, with reference to a system of rectangular coordinates with unit vectors
^
tx,

^
ty, and

^
nz, with

^
nz perpendicular to the plane of symmetry, we define the following

reflection operator:

Sn =

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 −1

∣∣∣∣∣∣, (39)

such that the components of Jk at the reflected point rr = Snr are given by

Ji(rr) = ε Sn Ji(r), (40)

where r = x
^
tx + y

^
ty + z

^
nz is in the integration domain Vc, rr is in the reflected domain, the

3D vectors are represented as column vectors made of their Cartesian components, and ε is
+1 or −1, depending on the type of symmetry. It should be noticed that the continuity of

J · ^
nz has to be assured on the symmetry planes. Therefore, for instance, when applying

a reflection with ε = +1, the condition J× ^
nz = 0 is automatically guaranteed on the

symmetry plane.
Similarly, the rotation of an angle α around the z axis can be represented by the usual

operator of rotation Rα:

Rα =

∣∣∣∣∣∣
cos α − sin α 0
sin α cos α 0

0 0 1

∣∣∣∣∣∣ , (41)

such that the components of Ji at the rotated point rr = Rαr are given by:

Ji(rr) = Rα Ji(r). (42)

Doing it in such a way, the solution in the main sector, along with the operators defined
in (40) and (42), ensures the knowledge of the solution in the rest of the structure (that is in
the whole 360◦ torus).

At this point, the calculation of the coefficients of L, R, and V is straightforward, and
the evaluation of the matrices L, R, V are reduced only to the DOFs in main sector. Indeed,
using a number of symmetries equal to Nsym and a number of rotations equal to Nrot,
they have the following form:

Lij = 2Nα

Nnrot

∑
m=0

Nsym

∑
j=0

µ0
4π

∫
Vc

∫
Vv

∇×Ni(r) ·Rα
m εj Sn

j∇×Nj

(
r
′
)

∣∣r−Rα
mSn

jr′
∣∣ dr′dr , (43)

Rij = −2Nα

∫
Vc
∇×Ni(r) · ×∇×Nj(r) dr, (44)

Vij = −2Nα

∫
Vc
∇×Ni(r) ·

∂

∂t
As(r, t) dr, (45)

where Nα = 2π
α .

Limiting the computation to the main sector has two obvious advantages:

(i) The number of DOFs is reduced by a factor of ntot = Nsym×Nrot. This gives a huge
gain in matrix storing, factorizing, and inverting.

(ii) The integration (43) can be seen as limiting the outer integral defined in (12) only to
the main sector. Clearly, this reduces the matrix L assembly time.

We can summarize the symmetry approach, saying that the matrix L can be seen
as the mutual inductance between DOFs. Without symmetry the field and source DOFs
are the same. Using the symmetry approach, the field DOFs are only in the main sector,
whereas the sources DOFs should be considered distributed all over the 360◦, but they are
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implemented (by the means of the operator (40) and (42)) using only the solution contained
in the main sector. Expanding (43) we have

L = L(1) + L(2) + . . . + L(ntot), (46)

where L(i−th) can be seen as the effect on main sector DOFs due to the DOFs contained in
the i− th source rotated sector.

Now that we have explained how symmetry/rotation are implemented in CARIDDI
code, we are ready to face the symmetry/rotation regarding the compression of the
matrix L.

Let Lbc be the interaction matrix between two far boxes, b (field box) and c (source
box). We denote with m and n the number of DOFs in the field and source box, respectively.
In order to evaluate Lbc, as said before, we need to consider the sources boxes c for all
rotations and symmetry sectors. The resulting matrix will be obtained as superposition of

Lbc = Lbc (1) + Lbc (2) + . . . + Lbc (ntot), (47)

where Lbc (j) with j = 1 to ntot represents the partial contribute of each sector/symmetry.
We have now two ways to apply the compression to Lbc:

(1) Compressing each single interaction matrix Lbc (j) appearing in (47).
(2) Summing the interactions matrices Lbc (j) and after compressing the resulting matrix

Lbc.

In the first approach, being each term Lbc (j) a low rank matrix, we can be applying to
it the QR-MGS factorization. So, we can approximate equation (47) as:

Lbc ≈
ntot

∑
j=1

Qbc(j)Rbc(j), (48)

where Qbc(j) and Rbc(j) have dimensions m× rj, and rj × n, respectively.
Keeping into account the (29), the computational cost (and memory) of the product

Qbc(j)Rbc(j)x, is (m + n)× rj. Hence, the overall cost of the product y = Lbcx is equal to:

c1 =
ntot

∑
j=1

(m + n)× rj = (m + n)× ntot × rm, (49)

where rm = 1
ntot

ntot
∑

j=1
rj is the medium rank.

The second approach is much simpler. The low rank nature of each Lbc (j) implies that
the overall matrix summation Lbc is low rank too. Although, it must be said that its rank
generally could be greater than the Lbc (j) rank in the sum. Hence, in the second proposed
approach, we evaluate directly the QR-MGS factorization:

Lbc ≈ QR. (50)

Its computational cost is:
c2 = (m + n)× rall . (51)

In order to compare the two approaches, we simply compute the ratio between (49)
and (51) and we have

c1
c2

=
ntot × rm

rall
(52)

Extensive numerical experiments carried out on typical cases used in practical fusion
devices, show that rm ≈ rall . So as a matter of fact, c2/c1 results to be of the order of ntot,
and hence, the second approach is to be preferred.
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For the sake of clarity, in the following, we report a simple example in which nrot = 9,
nsym = 1 and, hence ntot = 9. The main mesh sector is contained in −20◦ < ϕ < 20◦.

In Figure 7, we show the mesh used, and we focus on a single far interaction between
two boxes: the source (red) and field box (green). The number of DOFs in the source box m
is equal 427, the number of the DOFs in the field box n is equal to 418. Hence the matrix
interaction Lbc size is equal to 418× 427. To compute this matrix, we need to evaluate the
interactions matrix between the nine replicated sources boxes (which are located in the
nine sectors of the whole torus) and the field box (which is located in main sector). The
rank of each box–box interaction is reported besides in Figure 7, next to the correspondent
replicated mesh.
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(b) For each sector (j = 1,9) we show the replicated mesh, and we report besides the rank of the matrix
Lbc(j) between the source box (red) and the field box (green).

Using the first approach, we compress each single matrix Lbc (j). It is worth noticing
that, as expected, the rank decreases as the distance increases. Doing this in such a way, we
obtain a computation cost equal to

c1 = (418 + 427)× (139 + 128 + 116 + 105 + 95 + 95 + 103 + 116 + 128) = 866, 125.

Using the second approach (i.e., making compression of overall matrix Lbc) we obtain
a rank equal to 134 and hence the computational cost is equal to

c2 = (418 + 427)× 134 = 113, 230.

Summing up, the computation gain using the second approach, defined as c2/c1,
is equal to 7.6, proving the higher performance of the latter method with respect to the
first one.

3.4. DOF-Based Approach

Another strategy we implemented is based on assuming the individual DOFs as the
fundamental “objects” in Section 3.1.1.

We remark that in the ELEMENT-based approach, where the fundamental objects were
the individual elements of the FEM (Finite Element Method), and the box–box interaction
matrix is not a submatrix of the whole matrix L. Therefore, interaction L∗ij for boundary
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edges will involve more than one box–box interaction matrices. When the number of
this boundary DOFs is quite large, as for complex meshes of irregular shapes, we have a
reduced efficiency of the overall compression method.

This loss of efficiency calls for a different approach, based on the DOFs rather than
the individual elements of the FEM. Specifically, in the DOFs-based strategy, we assign an
individual DOFs to a box, if its barycenter belongs to the box. Hereafter, we refer to this
method as DOF-based method.

The specific changes in the QR-recursive algorithm are:

(1) In the Boxes Generation Algorithm, we assume the object to be individual DOFs.
(2) In Equation (24) we change the definition of the set E as follows:

E(b) def
= is the set of elements having their DOFs support in the box b. (53)

The rest of the algorithm is unchanged.
In force of the new definition of E, all element–element interactions are kept into

account and, hence, matrix Lbc, defined in (26), is a submatrix of the complete matrix L.
This will result in a higher efficiency on compression of the matrix, if compared to the
ELEMENT-based approach. Figure 8 shows an example of subdivision of DOFs between
two adjacent boxes. It is worth noting that the yellow elements are shared among DOFs
in different boxes and hence, the related calculation is duplicated in the two different
box–box interactions.
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Figure 8. The DOF-based approach. Each box contains its own DOFs, here marked in red and blue.
The elements belonging to the interface between the two boxes, require to be replicated in the box–box
matrix assembly.

From a general perspective, the QR-recursive method requires the recursive subdivi-
sion of the elementary sources, i.e., the objects, which may be the DOFs, as a whole or the
elements of the FEM.

The performances for these two choices will be compared in terms of:

• time required to assembly the compressed operator L,
• the compression versus accuracy, signature.

Specifically, we expect the DOF-based approach to be more effective in term of Com-
pression/Accuracy signature. Indeed, as previously explained, in the DOF-based strategy
we have no replication of the L∗ij evaluating the box–box interaction matrices, whereas it
does in the ELEMENT-based approach. Therefore, for a given accuracy, we expect the Com-
pression of the DOF-based approach larger than one obtained using the ELEMENT-based
approach. Consequently, for a prescribed accuracy, the DOF-based strategy will result in a
shorter computational time when solving an individual time-step of the transient.
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Summing up, in choosing the proper strategy, we have to consider two aspects:
(i) the time required to assembly the compress operator and, (ii) the time needed for the
solution of the transient. Regarding (i) the ELEMENT-based approach outperforms the
DOF-based one, and vice versa, concerning (ii) the DOF-based approach outperforms
the ELEMENT-based one. Therefore, in short-transients the assembly time is dominant
and ELEMENT-based approach is more efficient. On the contrary, in long-transients the
DOF-based approach is more effective.

3.5. Handling Small Size Boxes

In the present work, a relevant modification of boxes construction has been developed
with respect to the previous work, which will result in increasing efficiency of the overall
QR-recursive method.

As explained in (see Appendix A), the boxes subdivision is carried out until the
number of objects (element or edge) in each box is smaller than a chosen threshold (smin1).
During this process, a small number of objects may occur in the resulting childless boxes.

This is obvious and due to the fact that (i) we use a cube which is recursively equally
subdivided in eight children and, (ii) the shape of the mesh (which is quite arbitrary) does
not match the cube. As matter of fact, a fragmented number of objects could result in the
childless, which might be very different from prescribed smin1.

These “small” childless have a drawback for all the interactions between and with the
other boxes. Indeed, the QR factorization is quite inefficient, because the resulting rank will
be approximately equal to the minimum matrix dimension (which is linked to the number
of objects in the underlying box). So, for this kind of interaction matrix, no compression is
achieved, and the overall efficiency of the method will be degraded.

To face the problem, one could think of changing the shape of the boxes, trying to
match somehow the box shape with the one of the current meshes. This approach is not
viable, because the cube is the simplest shape which is able to tessellate the 3D space and
ensures well-separate box interactions. This is due to the underlying integral operator
which is 1/r decaying, being r the distance between the source and field point.

In order to overcome this limitation, we fuse the childless boxes having a number
of objects (elements or DOFs) smaller than a prescribed threshold, into larger boxes. The
larger box for this fusion is selected by considering both the geometrical distance from the
small box and the total number of resulting objects. The latter criterion is to better balance
the computational load among processes. The detail of the fusion algorithm is provided
in Appendix C.

3.6. Handling Electrodes

Electrodes are of great interest in fusion application devices (e.g., in computing the
halo currents [29]). As explained in Section 2.3, the CARIDDI code makes use of electrodes
to impose simultaneously symmetric periodic boundaries and prescribed currents at the
boundaries. So, it is important to understand the impact, from the numerical point of view,
of the electrodes on the solution of the overall algebraic system.

As we have shown in Section 2.3, in presence of electrodes, the resulting algebraic
system is given by (9) and discretized in time domain as in (22).

As a matter of principle, two simple approaches could be used to solve such an
algebraic system:

1. Apply an iterative method to solve the augmeted system

[
L + ∆t R ∆t BT

B 0

][
I(k+1)

φ(k+1)

]
=

[
LI(k) + V(k+1)

S −V(k)
S

M(k+1)

]
. (54)

2. Elimining I(k+1) by substituing the first equation of the system (22) into the second
one. This subsitution yields the resulting linear system
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−∆t B (L + ∆t R)−1BTφ(k+1) = M(k+1) − (L + ∆t R)−1
(

LI(k) + V(k+1)
S −V(k)

S

)
. (55)

Both these methods have heavy limitations.
In the first approach, the main problem is related to the preconditioner. Indeed, it is

not possible to use the resistive preconditioner P =

[
R 0
0 0

]
, since it is trivially singular.

Other choices for preconditioners are not trivial.
In the second approach, the evaluation of the matrix (L + ∆t R)−1BT results in a large

computational burden because it requires a number of inversions equal to the number
of columns of BT, i.e., equal to NE + Np. Indeed, in practical fusion device applications,
this number is of the order of ten thousand. In addition, (L + ∆t R)−1BT is definitively
computed by means of iterative inversion, introducing an error on the resulting matrix,
which may badly affect the accuracy of the overall solution.

We implement an efficient method that guarantees both low computation costs and
accuracy, described in the following. We make use of the following change of variable

I = KZ + I0, (56)

where the columns of K span the null space of the matrix B, It can be shown that is possible
to obtain a K sparse matrix. I0 is an arbitrary solution of the second equation in (22). For
instance, one can chose for each instant

I(k+1)
0 = B+I(k+1)

h , (57)

where B+ is the Moore–Penrose pseudoinverse of B. Moreover, the computational cost for
evaluating (57) is low, because B+ can be computed once and for all.

Using (56), system (22) can conveniently be rewritten as

KT(L + ∆tR)KZ(k+1) = N(k+1), (58)

where N(k+1) is the known term:

N(k+1) = KT
(

LZ(k) + V(k+1)
S −V(k)

S

)
K. (59)

By setting
A
′
= KT(L + ∆tR)K, (60)

the resulting system is
A
′
Z(k+1) = N(k+1)

Z(0) = 0, I(0)0 = B+I(0)h
k ≥ 1

(61)

where the second equation in (61) condition matches the initial prescribed current distribu-
tion at the electrodes.

We note that the matrix KTRK is sparse and positively defined. This matrix can be
used as new preconditioner and, similar to R, can be easily factorized and applied.

For the solution of Equation (61) we can still make use of the QR-recursive method,
in the same form developed without the electrodes. Indeed, the matrix product A

′
X can

be easily obtained by the same ordinary product (namely Ax) using a pre- and post-
multiplication for the sparse matrix K.



Energies 2022, 15, 3214 20 of 31

4. Results
4.1. Testcase #1

The system consists of a sector (one-ninth) of the ITER magnet system structures,
which is composed by 18 Nb3Sn Toroidal Field (TF) coils, 6 Poloidal Field (PF) NbTi coils,
6 Central Solenoid (CS) Nb3Sn Coils, and by their supporting structures [39–41]. There
are also 18 superconducting Correction Coils located between the TF and PF coils whose
aim is to correct field errors due to manufacturing tolerances. All the coils are made of
superconducting strands cooled with supercritical Helium flowing at a temperature of 4.5 K.
During the ITER operation, the superconducting coils shall work at a temperature lower
than their critical temperature in order not to lose their superconducting state; therefore, it
is very important to assess the thermal loads acting on the structures and make sure they
are not compromising the functioning of the system.

The thermal loads on the superconducting coils are mainly due to the neutron heating
coming from the plasma. AC loss in the superconducting cables and eddy currents in the
surrounding metallic structures are due to a changing magnetic field. Several analyses
have been done in the past with the direct method of the code CARIDDI to compute eddy
currents and Joule losses in the cold metallic structures during normal operation plasma
scenarios and during instability events such as disruptions.

A 40-degree Finite Element Model of the ITER magnet system has been built, the
model includes the metallic structure of two TF coils (TF Stainless Steel case and cover and
radial plates), the supports of the PF coils, the Correction coil Rails and supports, as well as
the vacuum vessel thermal shield, cryostat, and vacuum vessel (see Figure 9). The mesh
has 117,371 elements and 203,084 nodes. The mesh number of DOFs is 154,514. In this
testcase no injected currents are present, hence NE is equal to zero, and periodic symmetric
boundaries are applied: the number of boundary faces (i.e., Np) present at πα are 2304
(see Section 2.3). All the components are made of Stainless Steel 316 LN working at 4.5 K,
except the supports of the CC coils where some copper (Cu) sheets used as a thermal sink
are present; the electrical resistivity is assigned to each component as a constant value
evaluated at its working temperature.
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During normal operation, eddy currents can develop in the metallic structures due
mainly to ramp ups and ramp downs of the plasma current. The TF coils are fed with a
constant current; therefore, they do not contribute to the changing magnetic field. The other
coils such as the PF coils, the CS, and the plasma itself are axisymmetric sources that are
not meshed but they are represented as external sources.

The scenario that has been analyzed is identified as DINA-2016 (DINA is the ITER
reference plasma equilibrium and evolution code used to analyze the plasma behavior
during normal operation and instabilities [42]).

The currents flowing in the each of the six PF and CS coils during the DINA 2016
scenario is shown in the following Figure 10.
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As an example of results obtained with the CARIDDI code, the power and the energy 
dissipation in the TF coil case system is shown in Figure 12. As can be noted, the energy 
is also increasing during the plasma flat top (time interval from 300 s to 1000 s) due to the 
mentioned control noise. 

Figure 10. Testcase#1. The PF (a) and CS (b) excitation current during the plasma event (different
colors are used for different coils).

In Figure 11, we report the evolution of plasma currents (Figure 11a), the radius
(Figure 11b), and the height (Figure 11c) of the barycenter of the plasma during the scenario.
It can be already noted from these signals that the plasma height is affected by a high-
frequency noise due to the plasma control.
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the plasma during the scenario.

As an example of results obtained with the CARIDDI code, the power and the energy
dissipation in the TF coil case system is shown in Figure 12. As can be noted, the energy is
also increasing during the plasma flat top (time interval from 300 s to 1000 s) due to the
mentioned control noise.
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Figure 12. Testcase#1: The power (a) and the energy dissipation (b) in the TF coil case system. 

We use this case to check the performances of the new features introduced for the 
QR-recursive method. The number of DOFs is limited, to allow the validation of the accu-
racy of the method against the direct solution. 

The finite element mesh uses both hexahedral and pentahedral elements: mixed ele-
ment types are very usual in meshing generators. To prove the accuracy of the QR-recur-
sive method, we show in Figure 13 the ohmic loss dissipated in all the passive structures 
during the event. 
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tom) the relative error of the QR-recursive based method with respect to the Direct computation. 

In order to evaluate the efficiency of the preconditioner R together with the interpo-
lation scheme (see Section 3.2), in Figure 14 we show the number of iterations required to 
converge to the relative error equal to 1 × 10−5, versus time. Please note that the initial 
guess is effective: indeed, the total number of iterations is reduced by a factor of about 
four compared to the approach without initial guess estimation. 

Figure 12. Testcase#1: The power (a) and the energy dissipation (b) in the TF coil case system.

We use this case to check the performances of the new features introduced for the QR-
recursive method. The number of DOFs is limited, to allow the validation of the accuracy
of the method against the direct solution.

The finite element mesh uses both hexahedral and pentahedral elements: mixed
element types are very usual in meshing generators. To prove the accuracy of the QR-
recursive method, we show in Figure 13 the ohmic loss dissipated in all the passive
structures during the event.
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Figure 13. Testcase#1: (Top) the power dissipated during the transient in all passive structures.
(Bottom) the relative error of the QR-recursive based method with respect to the Direct computation.

In order to evaluate the efficiency of the preconditioner R together with the interpola-
tion scheme (see Section 3.2), in Figure 14 we show the number of iterations required to
converge to the relative error equal to 1 × 10−5, versus time. Please note that the initial
guess is effective: indeed, the total number of iterations is reduced by a factor of about four
compared to the approach without initial guess estimation.
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In order to evaluate the performances of the iterative method, we plot the achieved
compression versus the accuracy. Specifically, the compression is defined as:

Compression =
Dimension of full matrix (A)

Dimension of the compressed matrix
(
Aqr
) . (62)

It measures the efficiency of the overall compression method.
The memory required to store either the compressed or the original matrices is propor-

tional to the number of required multiplications to evaluate the matrix-by-vector product.
Hence, this parameter is indeed the gain of computational cost.

The accuracy is defined as follows. First, we compute the fully populated matrix L
and, hence, the dynamical matrix A

A = R ∆t + L. (63)

By setting vector x equal to all one’s, we compute the product without error

Pc = Ax . (64)

Using the QR-recursive method we compute the approximated product:

Pa = Aqrx . (65)

The accuracy is defined as

Accuracy =
‖Pc − Pa‖
‖Pc‖

. (66)

Figure 15 highlights the overall performances of the various proposed techniques
for the QR-recursive method. Moreover, it proposes a comparison with a state-of-the-art
method based on the hierarchical matrices (H-matrices) [25,43–45] and implemented in
the state-of-the-art library. To this end, we made for the CARIDDI code the interface for
Hlibpro, which is a library implementing H-matrix algorithms for the approximation of a
dense matrix arising from an integral formulation. See [46].
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Figure 15. Testcase#1. The Compression versus the Accuracy for various proposed techniques.

Figure 15 clearly proves that DOF-based with fusion is the most effective compression
method among those proposed in this paper and that it is in line with the state-of-the-art
one (H-matrices). Moreover, the boxes’ small size fusion is effective both for DOF-based
and for ELEMENT-based techniques.

From a computational point of view, to improve the efficiency, it is also mandatory to
balance the load among the processes in parallel computation. The coding strategy imple-
mented with these recursive QR-recursive approaches is in line with this goal. In Figure 16
we report the Memory/Computation (Lnear + Lfar) load versus the MPI processes involved
in the computation. Figure 16 reports proper balancing among different MPI processes.

Energies 2022, 15, 3214 24 of 32 
 

 

 
Figure 15. Testcase#1. The Compression versus the Accuracy for various proposed techniques. 

From a computational point of view, to improve the efficiency, it is also mandatory 
to balance the load among the processes in parallel computation. The coding strategy im-
plemented with these recursive QR-recursive approaches is in line with this goal. In Fig-
ure 16 we report the Memory/Computation (𝐋୬ୣୟ୰ + 𝐋୤ୟ୰) load versus the MPI processes 
involved in the computation. Figure 16 reports proper balancing among different MPI 
processes. 

 
Figure 16. Testcase#1. The Memory/Computation load versus MPI processors used in computa-
tion. 

4.2. Testcase #2 
The second test case we present is again related to the ITER device. In particular, we 

analyse a fast transient due to an abrupt loss of plasma magnetic and kinetic energy—a 
so-called disruption. In particular, following the loss of vertical position control, the plasma 
drifts downwards with its physical parameters largely unchanged, until at the time instant 
0.28 s the Thermal Quench (TQ) takes place, i.e., the loss of kinetic energy of the plasma 
in 1 ms. Immediately after, the Current Quench (CQ) occurs, i.e., the loss of plasma current 
and magnetic energy exponentially with a time constant of 16 ms, hence up to around 0.4 
s, when the plasma current is negligible [29]. It is assumed that the plasma keeps axisym-
metry throughout the whole time evolution; however, this is not an intrinsic limitation of 

Figure 16. Testcase#1. The Memory/Computation load versus MPI processors used in computation.

4.2. Testcase #2

The second test case we present is again related to the ITER device. In particular, we
analyse a fast transient due to an abrupt loss of plasma magnetic and kinetic energy—a
so-called disruption. In particular, following the loss of vertical position control, the plasma
drifts downwards with its physical parameters largely unchanged, until at the time instant
0.28 s the Thermal Quench (TQ) takes place, i.e., the loss of kinetic energy of the plasma in
1 ms. Immediately after, the Current Quench (CQ) occurs, i.e., the loss of plasma current
and magnetic energy exponentially with a time constant of 16 ms, hence up to around 0.4 s,
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when the plasma current is negligible [29]. It is assumed that the plasma keeps axisymmetry
throughout the whole time evolution; however, this is not an intrinsic limitation of the
proposed numerical approach, which can easily deal also with non-axisymmetric plasmas.
The consequences of disruptions may be particularly challenging for both the plasma facing
components and for the conducting structures, hence requiring a careful numerical analysis
of such events. In particular, the interaction of current density induced in the structures
with the magnetic field present in the device gives rise to electromagnetic loads (Lorentz
force density), whose effects must be carefully evaluated through a dedicated subsequent
mechanical and structural analysis. In the case of an axisymmetric plasma event, the main
net force is usually in the vertical direction, but in non-axisymmetric cases horizontal
(sideways) forces may also be present and may pose a specific threat to the integrity of the
structures. In addition, direct plasma-wall contact may give rise to additional problems,
mainly on plasma-facing components, such as the injection of halo currents, the possibility
of electric arches between adjacent structures, the occurrence of significant heat and particle
loads, and the damage produced by the impact of suprathermal (runaway) electrons.

The number of mesh nodes is 504,879, and the number of elements is 346,160. In
addition, in this testcase no injected currents are present, hence NE is equal to zero, and
periodic symmetric boundaries are applied; the number of boundary faces (i.e., Np) present
at πα are 4563 (see Section 2.3). The resulting number of DOFs is 559,574 (see Figure 17).
The present test case is hence complementary to the previous one. First of all, it allows
us to evaluate the performances of the QR-recursive compression on a very fast transient
occurring on the milliseconds time scale, as opposed to the previous case, where the time
scale is of the order of thousands of seconds. Secondly, the number of DOFs is so high that
other methods, used for reference in the previous test case (direct, non-parallel Hlibpro),
cannot be applied. As a consequence, no detailed analyses on the numerical performances
of the method are reported. To have a term of reference also in this case, a coarse mesh,
featuring eight times less elements on exactly the same geometry, has been developed and
solved with the direct method.
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Figure 17. Testcase#2. Mesh (a) and pictorial representation of the current density (b).

Our approach also provides satisfactory results on this very challenging test case,
hence showing the potential of our methods on cases out of reach for other techniques.
Specifically, Figure 17 shows some pictorial representations of the current density patterns
on specific components of the tokamak, while Figure 18 reports a good agreement with the
reference coarse mesh.
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Figure 18. Testcase#2. The overall ohmic loss (a) and the total toroidal current (b) versus time.

From the numerical point of view, the compression gain achieved is about 15 and,
using 64 MPI processes, the time required to assemble the compressed operator is 10 h and
20 min. The total transient time required to simulate the transient is about 4 days. The
Server used in computation in our lab is based on 2 × AMD Epyc 32-Core 7452, 1 TB RAM.

The number of GMRES iterations required is reported in Figure 19. The number always
keeps very low with respect to the number of unknowns, hence showing a satisfactory
behaviour of the preconditioner, even in the time window around 0.3–0.4 s, where the fast
transient occurs.
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Figure 19. Testcase#2. The number of iterations required by GMRES to converge to a relative tolerance
is 1 × 10−5, versus time.

Finally, in Figure 20, we report the Memory/Computation load versus the MPI pro-
cesses involved in the computation. The good load balancing proves the efficency of the
overall code parallelization.
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5. Discussion and Conclusions

In this paper we have presented a comprehensive extension of a QR-recursive compres-
sion technique applied to the CARIDDI code. A number of improvements (the treatment
of rotations and symmetries, and the introduction of electrodes for halo current injections)
and optimizations (DOF-based algorithm, small boxes treatment) have been implemented
with respect to the past.

The numerical performances of the proposed technique are remarkably in line with
those of state-of-the-art methods such as Hlibpro, and the results are successfully com-
pared with exact (direct) methods. In addition, the features of the proposed QR-recursive
compression technique allow the favourable scaling of its properties to cases where direct
methods and other state-of-the-art techniques such as Hlibpro cannot be applied, due
to the high number of discrete unknowns. The test cases reported in the paper clearly
demonstrate this point.

With the implementation of this QR-recursive technique, CARIDDI can be hence
considered as one of the reference codes for the numerical electromagnetic analysis of
fusion devices with realistic geometries.
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Appendix A

Algorithm A1. Boxes Generation

Input
Choose the “objects” (elements or DOF)
smin1 is the minimum number of objects in a box

Output
BoxSet, FatherSet, ChildrenSet

BoxSet def
= is the set of all not empty boxes

ChildlessSet def
= is the set of all box having a number of objects number of objects less equal to

smin1
FatherSet(b) returns the father of the box b
ChildrenSet(b, 1 : 8) returns the eight children of the box b
Create first box b0 // the smallest cube containing the mesh ChildLessSet = {∅}
ChildrenSet = {∅}
BoxSet = {b0}

level = 0 // current level starting from 0
ParentBoxesList = {b0} // temporary
ChildrenList = {b0} // temporary
While ParentBoxesList 6= {∅} // Loop util there are still fathers

level = level + 1 // current level
ChildrenList = {∅} //current level children list
For F ∈ ParentBoxesList // loop over previous level father box F
NumObjectsF = #(F) // set the number of objects in box F
If (NumObjectsF > smin1)

// Subdivide father F in eight children C
For i = 1,8

C = subdivide(F, i) // get i-th children C
NumObjects = #(B) // get the number of objects in box B
If (NumObjects > 0)

// Update Sets
Children(F, i) = C // C is the son of F
FatherSet(Box) = F // F is the father of C
BoxSet = {BoxSet ∪ C}// C will be next level fathers
ChildrenList = {ChildrenList ∪ C}

End if
End for

Else
// father F is childless
ChildLessSet = {ChildLessSet ∪ F}

End if
End while
// Generation Update: current sons will be next level fathers
ParentBoxesList = ChildrenSet
End Algorithm

Appendix B

Lnear(b), Lfar(b) analytic definition
Given a field box b, in [20] we define four lists. Here we reported their definition for

completeness.

• L1(b) is the set of boxes made by b and all childless boxes adjacent to b.
• L2(b) is the set of boxes not adjacent to b at the same level of b and are well separated

by b.
• L3(b), for a childless box b, is the set of descendent of b’s colleagues that are not

adjacent to b, but whose parent boxes are adjacent to b.
• L4(b) is the set of c such that b ∈ L3(c).
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Using these four lists, we can define

Lnear(b) = L1(b) ∪ L4(b)

Lfar(b) = L2(b) ∪ L3(b)

In Figure A1, for a given field box b, we give two examples showing how these various
lists are shaped.
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Figure A1. The four lists used to define Lnear(b), Lfar(b) associated for a given field box b. The
sources boxes are depicted as: (i) pink and yellow for near interactions, and (ii) green and violet for
the far interactions. Note that in left figure there are some empty source boxes. These boxes refer
to the previous level far box–box interaction (indeed with the father of b). So actually, they are not
present in Lfar(b) list.

Appendix C

Algorithm A2. Small Boxes Fusion

Input
smin2 is the minimum number of objects
f smin (> 1) is a parameter controlling maximum distance

ChildLessSet def
= is the set of the childless boxes

Output

ListObject(b) def
= is the set of objects in the box b

ListRetain = {∅} // def
= is the set of the boxes to be retained

ListToFuse = {∅} // def
= is the set of the boxes to be fused

For b ∈ ChildLessSet // loop over all childless boxes
ObjectsNumber = #ListObject(b) // get number of objects in the box b
If ObjectsNumber > smin2

ListRetain = {ListRetain ∪ b} // put b in list of boxes to be retained
Else

ListToFuse = {ListToFuse ∪ b} // put b into list of boxes to be fused
End if

End for
For b ∈ ListToFuse // loop over the boxes to be fused

//compute the distance from b
For x ∈ ListRetain

d(x) = distance(b,x) // distance between b and x
End
// Compute the minimum distance
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Algorithm A2. Cont.

min_d = min
x

d(x)

// set the maximum allowed distance

max_d = fsmin def
= min _d

// Create the set of all boxes whose distance from b is less than max_d
Nearest = {s ∈ ListRetain : d(s) ≤ max_d}
// get the number of objects for this set
For g ∈ Nearest

NumObjectsNearest(g) = #Nearest(g)
End for
// Choose in the set Nearest, the one having the minimum number of objects
z = min

g
NumObjectsNearest(g)

// fuse all objects of the box b into the z box
ListObject(z) = {ListObject(z) ∪ ListObject(b)}
// the objects of the box b must be deleted
ListObject(b) = {∅}

End for
End of the algorithm
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