Design Optimization of Tubular Heat Exchangers for a Free-Piston Stirling Engine Based on Improved Quasi-Steady Flow Thermodynamic Model Predictions
Abstract
:1. Introduction
2. Description of the Developed FPSE
3. Range of the Design Parameters
3.1. Tubular Heat Exchanger Literature Review
3.2. Design Constraints
4. Improved Quasi-Steady Flow (iQSF) Model
4.1. Modeling Procedure
- The working fluid is considered an ideal gas.
- Changes in the kinetic and potential energies are negligible.
- The incompressible effect of the working fluid is negligible.
- The mass of the working fluid inside the engine is constant.
- All flows of the working fluid inside the engine are assumed to be periodic steady-state flows.
- The motion of DP and PP follows a sinusoidal waveform with a constant velocity, amplitude, and phase.
- The temperature distribution of the working fluid along the radial direction of the engine space is negligible.
4.2. Validity of the Model
5. Regression Analysis
6. Analysis of the Influence of Variables
7. Loss Analysis for the Tube Design Parameters
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Symbols | |
A | area [m2] |
Awt | wetted area [m2] |
a | length difference between the inner and outer tubes [m] |
b | straight length of the inner tube [m] |
cp | specific heat at constant pressure [J/kg·K] |
cv | specific heat at constant volume [J/kg·K] |
d | hydraulic diameter [m] |
di | tube inner diameter [m] |
do | tube outer diameter [m] |
f | operating frequency [Hz] |
ff | fanning friction factor |
g | mass flux [kg/m2·s] |
H | enthalpy [J] |
h | convective heat transfer coefficient [W/m2·K] |
k | thermal conductivity [W/m·K] |
L | length [m] |
lt | tube length [m] |
m | mass [kg] |
Nu | Nusselt number |
nt | Number of tubes |
P | power [W] |
p | pressure [Pa] |
Q | heat [J] |
R | gas constant [J/kg·K] |
Re | Reynolds number |
rb | radius of the bent tube [m] |
St | Stanton number |
T | temperature [K] |
Tw | wall temperature [K] |
t | time [s] |
u | gas velocity [m/s] |
V | volume [m3] |
W | work [J] |
X | amplitude [m] |
Greek letters | |
γ | specific heat ratio |
ε | effectiveness |
η | efficiency |
θ | crank angle [°] |
κ | thermal conductivity [W/m·K] |
μ | viscosity [Pa·s] |
Subscripts | |
app | appendix gap |
b | bounce space |
c | compression space |
ck | compression space to cooler space |
cond | conduction |
cyl | cylinder |
d | displacer |
e | expansion space |
fr | free flow |
gsh | gas spring hysteresis |
h | heater |
he | heater space to expansion space |
hx | heat exchanger friction |
ind | indicated |
k | cooler |
kr | cooler space to regenerator space |
p | power piston |
r | regenerator |
reh | reheat |
sh | shuttle |
sl | seal leakage |
wh | heater wall |
wk | cooler wall |
References
- Jackson, J. Ensuring emergency power for critical municipal services with natural gas-fired combined heat and power (CHP) systems: A cost–benefit analysis of a preemptive strategy. Energy Policy 2007, 35, 5931–5937. [Google Scholar] [CrossRef]
- Beale, W.T. Free Piston Stirling Engines-Some Model Tests and Simulations; 0148-7191, SAE Technical Paper; SAE: Warrendale, PA, USA, 1969. [Google Scholar]
- Beale, W.T. Stirling Cycle Type Thermal Device. U.S. Patent US3552120A, 5 January 1971. [Google Scholar]
- Dyson, R.; Wilson, S.; Tew, R. Review of computational stirling analysis methods. In Proceedings of the 2nd International Energy Conversion Engineering Conference, Providence, RI, USA, 16–19 August 2004; p. 5582. [Google Scholar]
- Walker, G.; Senft, J.R. Free Piston Stirling Engines; Springer: Berlin/Heidelberg, Germany, 1985. [Google Scholar]
- Schmidt, G. The theory of Lehmann’s calorimetric machine. Z. Des Ver. Dtsch. Ing. 1871, 15, 98–112. [Google Scholar]
- Finkelstein, T. Generalized Thermodynamic Analysis of Stirling Engines; 0148-7191, SAE Technical Paper; SAE: Warrendale, PA, USA, 1960. [Google Scholar]
- Urieli, I.; Berchowitz, D.M. Stirling Cycle Engine Analysis; Taylor & Francis: Boca Raton, FL, USA, 1984. [Google Scholar]
- Parlak, N.; Wagner, A.; Elsner, M.; Soyhan, H.S. Thermodynamic analysis of a gamma type Stirling engine in non-ideal adiabatic conditions. Renew. Energy 2009, 34, 266–273. [Google Scholar] [CrossRef]
- Babaelahi, M.; Sayyaadi, H. Simple-II: A new numerical thermal model for predicting thermal performance of Stirling engines. Energy 2014, 69, 873–890. [Google Scholar] [CrossRef]
- Hosseinzade, H.; Sayyaadi, H. CAFS: The Combined Adiabatic–Finite Speed thermal model for simulation and optimization of Stirling engines. Energy Convers. Manag. 2015, 91, 32–53. [Google Scholar] [CrossRef]
- Sowale, A.; Anthony, E.J.; Kolios, A.J. Optimisation of a quasi-steady model of a free-piston stirling engine. Energies 2019, 12, 72. [Google Scholar] [CrossRef] [Green Version]
- Torres García, M.; Carvajal Trujillo, E.; Vélez Godiño, J.A.; Sánchez Martínez, D. Thermodynamic model for performance analysis of a Stirling engine prototype. Energies 2018, 11, 2655. [Google Scholar] [CrossRef] [Green Version]
- Finkelstein, T. Computer analysis of Stirling engines. Advances in Cryogenic Engineering. Adv. Cryogenic Eng. 1975, 20, 269–282. [Google Scholar]
- Urieli, I.; Rallis, C.J.; Berchowitz, D.M. Computer simulation of Stirling cycle machines. In Proceedings of the 12th Intersociety Energy Conversion Engineering Conference, Washington, DC, USA, 28 August–2 September 1977; pp. 1512–1521. [Google Scholar]
- Berchowitz, D.M.; Rallis, C. A computer and experimental simulation of stirling cycle machines. In Proceedings of the 13th Intersociety Energy Conversion Engineering Conference, San Diego, CA, USA, 20–25 August 1978; pp. 1730–1738. [Google Scholar]
- Gedeon, D. Sage-Object-oriented software for Stirling machine design. In Proceedings of the Intersociety Energy Conversion Engineering Conference, Monterey, CA, USA, 7–12 August 1994; p. 4106. [Google Scholar]
- Gedeon, D. Sage Stirling-Cycle Model-Class Reference Guide; Gedeon Associates: Athens, OH, USA, 1999; p. 16922. [Google Scholar]
- Gedeon, D. Sage User’s Guide; Gedeon Associates: Athens, OH, USA, 2009; p. 16922. [Google Scholar]
- Mahkamov, K.; Djumanov, D. Three-dimensional CFD modeling of a Stirling engine. In Proceedings of the 11th International Stirling Engine Conference, Rome, Italy, 19–21 November 2003; pp. 97–107. [Google Scholar]
- Ibrahim, M.B.; Zhang, Z.-G.; Tew, R.C., Jr.; Gedeon, D.; Simon, T.W. CFD modeling of free-piston Stirling engines. In Proceedings of the 36th Intersociety Energy Conversion Engineering Conference, Savannah, GA, USA, 29 July–2 August 2001. [Google Scholar]
- Wilson, S.; Dyson, R.; Tew, R.; Ibrahim, M. Multi-D CFD Modeling of Free-Piston Stirling Convertor at NASA GRC. In Proceedings of the 2nd International Energy Conversion Engineering Conference, Providence, RI, USA, 16–19 August 2004; p. 5673. [Google Scholar]
- Lee, K.-S.; Lee, S.-H.; Park, J.-H.; Choi, J.-Y.; Sim, K.-H. Design and experimental analysis of a 3 kW single-phase linear permanent magnet generator for stirling engines. IEEE Trans. Magn. 2018, 54, 1–5. [Google Scholar] [CrossRef]
- Schreiber, J.G.; Geng, S.M.; Lorenz, G.V. Re-1000 Free-Piston Stirling Engine Sensitivity Test Results; National Aeronautics and Space Administration Report; National Aeronautics and Space Administration: Washinton, DC, USA, 1986. [Google Scholar]
- Khamneh, M.E.; Askari-Paykani, M.; Shahverdi, H.; Hadavi, S.M.M.; Emami, M. Optimization of spring-back in creep age forming process of 7075 Al-Alclad alloy using D-optimal design of experiment method. Measurement 2016, 88, 278–286. [Google Scholar] [CrossRef]
- Kanlayasiri, K.; Boonmung, S. Effects of wire-EDM machining variables on surface roughness of newly developed DC 53 die steel: Design of experiments and regression model. J. Mater. Process. Technol. 2007, 192, 459–464. [Google Scholar] [CrossRef]
- Lee, C.-W.; Kim, D.-J.; Kim, S.-K.; Sim, K.-H. Design Optimization of Flexure Springs for Free-Piston Stirling Engines and Experimental Evaluations with Fatigue Testing. Energies 2021, 14, 5156. [Google Scholar] [CrossRef]
- Lane, N.; Berchowitz, D.; Shade, D.; Karandikar, A. Development of a high frequency Stirling engine-powered 3 kW (e) generator set. In Proceedings of the 24th Intersociety Energy Conversion Engineering Conference, Washington, DC, USA, 6–11 August 1989; pp. 2213–2218. [Google Scholar]
- Thorsen, J.E.; Bovin, J.; Carlsen, H. 3 kW Stirling engine for power and heat production. In Proceedings of the IECEC 96—31st Intersociety Energy Conversion Engineering Conference, Washington, DC, USA, 11–16 August 1996; Volume 1282, pp. 1289–1294. [Google Scholar]
- Carlsen, H. Operating experience with a 10 kW hermetic Stirling Engine. In Proceedings of the Intersociety Energy Conversion Engineering Conference, Monterey, CA, USA, 7–12 August 1994; p. 3802. [Google Scholar]
- Timoumi, Y.; Tlili, I.; Nasrallah, S.B. Design and performance optimization of GPU-3 Stirling engines. Energy 2008, 33, 1100–1114. [Google Scholar] [CrossRef]
- Formosa, F.; Despesse, G. Analytical model for Stirling cycle machine design. Energy Convers. Manag. 2010, 51, 1855–1863. [Google Scholar] [CrossRef] [Green Version]
- Babaelahi, M.; Sayyaadi, H. Analytical closed-form model for predicting the power and efficiency of Stirling engines based on a comprehensive numerical model and the genetic programming. Energy 2016, 98, 324–339. [Google Scholar] [CrossRef]
- Ahmed, F.; Hulin, H.; Khan, A.M. Numerical modeling and optimization of beta-type Stirling engine. Appl. Therm. Eng. 2019, 149, 385–400. [Google Scholar] [CrossRef]
- Augenblick, J.E.; McFadden, G.D.; Peterson, A.A.; Rink, K.K. Tubular Heat Exchange. U.S. Patent US206355A, 15 August 2013. [Google Scholar]
- Rogers, G.F.C.; Mayhew, Y.R. Engineering Thermodynamics, Work and Heat Transfer; Longman Scientific: Harlow, UK, 1992. [Google Scholar]
- Incropera, F.P.; DeWitt, D.P.; Bergman, T.L.; Lavine, A.S. Fundamentals of Heat and Mass Transfer; Wiley: New York, NY, USA, 1996; Volume 6. [Google Scholar]
- Geankoplis, C.J. Transport Processes and Separation Process Principles, 4th ed.; Person Education: London, UK, 2003. [Google Scholar]
- Tanaka, M.; Yamashita, I.; Chisaka, F. Flow and heat transfer characteristics of the Stirling engine regenerator in an oscillating flow. Ser. 2, Fluids engineering, heat transfer, power, combustion, thermophysical properties. JSME Int. J. 1990, 33, 283–289. [Google Scholar]
- Formosa, F. Coupled thermodynamic–dynamic semi-analytical model of free piston Stirling engines. Energy Convers. Manag. 2011, 52, 2098–2109. [Google Scholar] [CrossRef] [Green Version]
Parameter | Value | Unit | |
---|---|---|---|
Operating conditions | Working gas | Helium | |
Charge pressure | 22 | bar | |
Heater wall temp. | 600 | °C | |
Cooler reject temp. | 25 | °C | |
Operating frequency | 52 | Hz | |
DP and PP amplitude | 11.6 | mm | |
Heat exchanger geometry | Number of CHX tubes | 600 | ea. |
Inner diameter of CHX tubes | 1.75 | mm | |
Length of the CHX tube | 75 | mm | |
Regenerator geometry | Regenerator type | Woven mesh | |
Fiber diameter | 150 | μM | |
Porosity | 88 | % | |
Working space geometry | Expansion space length | 15 | mm |
Compression space length | 25 | mm | |
Driving part geometry | PP and DP diameter | 170 | mm |
DP rod diameter | 40 | mm | |
DP-liner clearance | 140 | μM | |
PP-liner clearance | 19 | μM |
Model or Author | #1. RE-1000 [24] | #2. SHARP [24] | #3. Thorsen [29] | #4. GPU-3 [31] | #5. QB-80 [35] | #6. Carlsen [30] | |
---|---|---|---|---|---|---|---|
Figure | |||||||
Power output, kW | 1 | 2 | 3 | 4 | 7 | 10 | |
Type | free-piston | free-piston | kinematic | kinematic | free-piston | kinematic | |
HHX para meter | Number of tubes | 34 | 60 | 24 | 40 | 80 | 24 |
Tube inner diameter, mm | 2.36 | 2.2 | 3 | 3.02 | 3 | 8 | |
Tube length, mm | 183 | 140 | 140 | 245.3 | 300 | 365 |
Factor | Codes | Level Value | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
Tube inner diameter (mm) | di | 3 | 6 | 9 |
Tube length (mm) | lt | 100 | 200 | 300 |
Number of tubes | nt | 30 | 80 | 130 |
Case | Tube Inner Diameter (mm) | Tube Length (mm) | Tube Number | Case | Tube Inner Diameter (mm) | Tube Length (mm) | Tube Number |
---|---|---|---|---|---|---|---|
case 1 | 3 | 100 | 30 | case 9 | 6 | 300 | 80 |
case 2 | 3 | 300 | 30 | case 10 | 6 | 200 | 130 |
case 3 | 3 | 200 | 80 | case 11 | 9 | 100 | 30 |
case 4 | 3 | 100 | 130 | case 12 | 9 | 300 | 30 |
case 5 | 3 | 300 | 130 | case 13 | 9 | 200 | 80 |
case 6 | 6 | 200 | 30 | case 14 | 9 | 100 | 130 |
case 7 | 6 | 100 | 80 | case 15 | 9 | 300 | 130 |
case 8 | 6 | 200 | 80 |
Space Cell | Governing Equations |
---|---|
Compression space | |
Expansion space | |
Heater | |
Regenerator | ⁝ |
Cooler |
Losses | Equations | |
---|---|---|
External heat losses | Structure conduction loss | |
Internal heat losses | Regenerator efficiency loss | |
Appendix gap loss | ||
leakage loss | ||
Power losses | Seal friction loss | |
Flow friction loss | ||
Gas spring hysteresis loss |
Model | Correlation | |
---|---|---|
Rogers and Mayhew [36] | Re ≤ 2000, 2000 < Re ≤ 4000, Re > 4000, | |
Reynolds analogy [37,38] (Re ≤ 4000) | ||
Chilton-Colburn J-factor analogy [37,38] (Re > 4000) |
Flow Type | Oscillating Flow |
---|---|
Regenerator type | Woven wire (Stainless steel) |
Wire diameter | 0.05–0.23 mm |
Porosity | 0.645–0.754 |
Friction factor | |
Heat transfer coefficient |
Design Parameter | Value | Unit | Design Parameter | Value | Unit | ||
---|---|---|---|---|---|---|---|
Heater (tube type) | Number of tubes | 34 | DP | Diameter | 56.4 | mm | |
Tube inner diameter | 2.36 | mm | Appendix gap clearance | 0.381 | mm | ||
Heater volume | 27.33 | cm3 | Seal clearance | 0.033 | mm | ||
Cooler (fin type) | Fin number | 135 | DP rod | Diameter | 16.7 | mm | |
Cooler volume | 20.43 | cm3 | Seal clearance | 0.03 | mm | ||
Regenerator (woven mesh type) | Porosity | 75.9 | % | PP | Diameter | 57.2 | mm |
Wire diameter | 0.0889 | mm | Seal clearance | 0.033 | mm | ||
Void volume | 56.37 | cm3 | Operating condition | Heater temperature | 600 | °C | |
Space | Expansion space volume | 27.74 | cm3 | Cooler temperature | 25 | °C | |
Compression space volume | 54.8 | cm3 | Charge pressure | 70.6 | bar | ||
DP bounce volume | 30.79 | cm3 | Frequency | 30 | Hz | ||
PP bounce volume | 2615 | cm3 | DP stroke | 24.5 | mm | ||
Displacer | Diameter | 56.4 | mm | PP stroke | 28 | mm | |
Appendix gap clearance | 0.381 | mm | DP-PP phase angle | 57.5 | ° | ||
Seal clearance | 0.033 | mm |
Formosa Model [40] | QSF Model [8] | iQSF Model | Experiment (#1011) [24] | |
---|---|---|---|---|
Heat in (W) | 3777 (−6.46%) | 4949.0 (22.6%) | 4614.7 (14.3%) | 4038 |
Heat rejection (W) | −2107 (−30.5%) | −2742.4 (−9.5%) | −3329.2 (9.8%) | −3032 |
Indicated power (W) | 1100 (15.6%) | 1717.4 (66.9%) | 1286.8 (24.9%) | 1030 |
Indicated efficiency (%) | 29.2 (23.3%) | 34.5 (35.3%) | 27.9 (9.4%) | 25.5 |
Case | Brake Power (W) | Brake Efficiency (%) | Case | Brake Power (W) | Brake Efficiency (%) |
---|---|---|---|---|---|
case 1 | 4639 | 22.71 | case 9 | 7559 | 35.92 |
case 2 | 1350 | 7.53 | case 10 | 7424 | 35.4 |
case 3 | 7157 | 33.4 | case 11 | 6678 | 36.04 |
case 4 | 7967 | 38.7 | case 12 | 7443 | 36.18 |
case 5 | 7543 | 35.52 | case 13 | 6999 | 34.87 |
case 6 | 7691 | 37.44 | case 14 | 6527 | 33.62 |
case 7 | 7446 | 38.24 | case 15 | 6269 | 28.45 |
case 8 | 7657 | 36.86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.-J.; Park, Y.; Kim, T.Y.; Sim, K. Design Optimization of Tubular Heat Exchangers for a Free-Piston Stirling Engine Based on Improved Quasi-Steady Flow Thermodynamic Model Predictions. Energies 2022, 15, 3326. https://doi.org/10.3390/en15093326
Kim D-J, Park Y, Kim TY, Sim K. Design Optimization of Tubular Heat Exchangers for a Free-Piston Stirling Engine Based on Improved Quasi-Steady Flow Thermodynamic Model Predictions. Energies. 2022; 15(9):3326. https://doi.org/10.3390/en15093326
Chicago/Turabian StyleKim, Dong-Jun, Yeongchae Park, Tae Young Kim, and Kyuho Sim. 2022. "Design Optimization of Tubular Heat Exchangers for a Free-Piston Stirling Engine Based on Improved Quasi-Steady Flow Thermodynamic Model Predictions" Energies 15, no. 9: 3326. https://doi.org/10.3390/en15093326
APA StyleKim, D. -J., Park, Y., Kim, T. Y., & Sim, K. (2022). Design Optimization of Tubular Heat Exchangers for a Free-Piston Stirling Engine Based on Improved Quasi-Steady Flow Thermodynamic Model Predictions. Energies, 15(9), 3326. https://doi.org/10.3390/en15093326