A Backwards Induction Framework for Quantifying the Option Value of Smart Charging of Electric Vehicles and the Risk of Stranded Assets under Uncertainty
Abstract
:1. Introduction
2. Planning under Uncertainty
- Demonstration of the application of the BIF, for the first time in the context of power system investment planning under uncertainty.
- Quantification of the Option Value of Smart Charging of EV, for the first time, through the BIF.
- Quantification of the risk of stranded assets, for the first time through the BIF.
- Comparison of BIF and SOF, for the first time in the literature.
- Sensitivity analyses on key factors that are driving the Option Value of Smart Charging of EV, for the first time in the literature via the BIF.
3. The Backwards Induction Framework
4. Case Study
4.1. Description
4.2. Results
4.2.1. Decision
4.2.2. Decision
4.2.3. Decision
4.2.4. Decision
5. Sensitivity Analysis
5.1. Sensitivity Analysis on Flexibility of Smart Charging
5.2. Sensitivity Analysis on Social Cost
5.3. Sensitivity Analysis on Scenario Probabilities
6. Comparison of the Backwards Induction Framework (BIF) with the Stochastic Optimization Framework (SOF)
6.1. Basic Case Study
6.2. Sensitivity Analysis
7. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Strbac, G.; Konstantelos, I.; Pollitt, M.; Green, R. Report for the UK National Infrastructure Commission: Delivering Future-Proof Energy Infrastructure. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/507256/Future-proof_energy_infrastructure_Imp_Cam_Feb_2016.pdf (accessed on 30 October 2020).
- Giannelos, S.; Konstantelos, I.; Strbac, G. Option Value of Demand-Side Response Schemes under Decision-Dependent Uncertainty. IEEE Trans. Power Syst. 2018, 33, 5103–5113. [Google Scholar] [CrossRef]
- Conejo, A.J.; Carrion, M.; Morales, J.M. Decision Making under Uncertainty in Electricity Markets; Springer: New York, NY, USA, 2010. [Google Scholar]
- Robert, A.; Grossman, I. Models and computational strategies for multistage stochastic programming under endogenous and exogenous uncertainties. Comput. Chem. Eng. 2017, 103, 233–274. [Google Scholar]
- Giannelos, S.; Konstantelos, I.; Strbac, G. Investment Model for Cost-effective Integration of Solar PV Capacity under Uncertainty using a Portfolio of Energy Storage and Soft Open Points. In Proceedings of the 2019 IEEE Milan PowerTech, Milan, Italy, 23–27 June 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Epstein, L.G. Decision making and the temporal resolution of uncertainty. Int. Econ. Rev. 1980, 21, 269–283. [Google Scholar] [CrossRef]
- Signorino, C.; Taehee, W. Uncertainty and learning in statistical strategic models. Work. Pap. 2007. [Google Scholar]
- Mohtashami, S.; Pudjianto, D.; Strbac, G. Strategic Distribution Network Planning With Smart Grid Technologies. In IEEE Transactions on Smart Grid; IEEE: Piscataway, NJ, USA, 2017. [Google Scholar]
- Kitapbayev, Y.; Moriarty, J.; Mancarella, P. Stochastic control and real options valuation of thermal storage-enabled demand response from flexible district energy systems. Appl. Energy 2015, 137, 823–831. [Google Scholar] [CrossRef]
- Keane, A.; Ochoa, L.F.; Borges, C.L.T.; Ault, G.W.; Alarcon-Rodriguez, A.D.; Currie, R.A.F.; Dent, C.; Harrison, G.P. State of-the-art techniques and challenges ahead for distributed generation planning and optimization. IEEE Trans. Power Syst. 2013, 28, 1493–15012. [Google Scholar] [CrossRef]
- You, S.; Bindner, H.W.; Hu, J.; Douglass, P.J. An overview of trends in distribution network planning: A movement towards smart planning. In Proceedings of the T&D Conference and Exposition, 2014 IEEE PES, Chicago, IL, USA, 14–16 April 2014; pp. 1–5. [Google Scholar]
- Paiva, P.C.; Khodr, H.M.; Dominguez-Navarro, J.A.; Yusta, J.M.; Urdaneta, A.J. Integral planning of primary-secondary distribution systems using mixed integer linear programming. IEEE Trans. Power Syst. 2005, 20, 1134–1143. [Google Scholar] [CrossRef]
- Konstantelos, I.; Giannelos, S.; Strbac, G. Strategic Valuation of Smart Grid Technology Options in Distribution Networks. In IEEE Transactions on Power Systems; IEEE: Piscataway, NJ, USA, 2016. [Google Scholar]
- Konstantelos, I.; Strbac, G. Valuation of flexible investment options under uncertainty. IEEE Trans. Power Syst. 2015, 30, 1047–1055. [Google Scholar] [CrossRef]
- Miranda, V.; Proenca, L.M. Why risk analysis outperforms probabilistic choice as the effective decision support paradigm for power system planning. IEEE Trans. Power Syst. 1998, 13, 643–648. [Google Scholar] [CrossRef]
- Trigeorgis, L.; Mason, S.P. Valuing Managerial Flexibility. Midl. Corp. Financ. J. 1987, 5, 14–21. [Google Scholar]
- Buzarquis, E.; Blanco, G.A.; Olsina, F.; Garces, F.F. Valuing investments in distribution networks with DG under uncertainty. In Proceedings of the Transmission and Distribution Conference and Exposition: Latin America (T&D-LA), 2010 IEEE/PES, Sao Paulo, CA, USA, 8–10 November 2010; pp. 341–348. [Google Scholar]
- Luehman, T.A. Strategy as a portfolio of real options. Harv. Bus. Rev. 1998, 76, 89–99. [Google Scholar]
- Triantis, A.J. Real Options in Handbook of Modern Finance; American Institutes for Research: New York, NY, USA, 2003; pp. D1–D32. [Google Scholar]
- Blanco, G.; Olsina, F.; Garces, F.; Rehtanz, C. Real option valuation of FACTS investments based on the least square Monte Carlo Method. IEEE Trans. Power Syst. 2011, 26, 1389–1398. [Google Scholar] [CrossRef]
- Borison, A.; Hamm, G.; Narodick, P.; Whitfield, A. A Practical Application of Real Options under the Regulatory Investment Test for Transmission. NERA Econ. Consult. 2011. [Google Scholar]
- Moreira, A.; Strbac, G.; Moreno, R.; Street, A.; Konstantelos, I. A Five-Level MILP Model for Flexible Transmission Network Planning Under Uncertainty: A Min–Max Regret Approach. IEEE Trans. Power Syst. 2017, 33, 486–501. [Google Scholar] [CrossRef]
- Bustamante-Cedeno, E.; Arora, S. Stochastic and Minimum Regret Formulations for Transmission Network Expansion Planning under Uncertainties. J. Oper. Res. Soc. 2008, 59, 1547–1556. [Google Scholar]
- Alvarez, J.; Ponnambalam, K.; Quintana, V.H.; Victor, H. Transmission Expansion under Risk using Stochastic Programming. In Proceedings of the International Conference on Probabilistic Methods Applied to Power Systems, Stockholm, Sweden, 11–15 June 2006; pp. 1–7. [Google Scholar]
- Carrion, M.; Arroyo, J.M.; Alguacil, N. Vulnerability-Constrained Transmission Expansion Planning: A Stochastic Programming Approach. IEEE Trans. Power Syst. 2007, 22, 1436–1445. [Google Scholar] [CrossRef]
- Giannelos, S.; Konstantelos, I.; Strbac, G. A new class of planning models for option valuation of storage technologies under decision-dependent innovation uncertainty. In Proceedings of the IEEE Manchester PowerTech, Manchester, UK, 18–22 June 2017; pp. 1–6. [Google Scholar]
- von Neumann, J.; Morgenstern, O. Theory of Games and Economic Behavior, 3rd ed.; Section 15.3.1.; Princeton University Press: Princeton, NJ, USA, 1953. [Google Scholar]
- Fudenberg, D.; Tirole, J. Game Theory; Section 3.5; MIT Press: Cambridge, MA, USA, 1991; p. 52. [Google Scholar]
- Kaminski Marek, M. Backward Induction: Merits and Flaws. Stud. Log. Gramm. Rhetoric. 2017, 50, 9–24. [Google Scholar] [CrossRef]
- Camerer, C.F. Progress in Behavioral Game Theory. J. Econ. Perspect. 1997, 11, 167–188, ISSN 0895-3309; JSTOR 2138470. [Google Scholar] [CrossRef]
- Rust, J. Dynamic Programming. In The New Palgrave Dictionary of Economics; Palgrave Macmillan: London, UK, 2008. [Google Scholar]
- London Economics. The Value of Lost Load (VoLL) for Electricity in Great Britain; London Economics: London, UK, 2013. [Google Scholar]
- Borozan, S.; Giannelos, S.; Strbac, G. Strategic Network Expansion Planning with Electric Vehicle Smart Charging Concepts as Investment Options. Adv. Appl. Energy 2021, 5, 100077, ISSN 2666-7924. [Google Scholar] [CrossRef]
- Bloemink, J.M.; Green, T.C. Benefits of distribution-level power electronics for supporting distributed generation growth. IEEE Trans. Power Del. 2013, 28, 911–919. [Google Scholar] [CrossRef]
- Bloemink, J.M.; Green, T.C. Increasing distributed generation penetration using soft normally open points. In Proceedings of the IEEE PES General Meeting, Minneapolis, MN, USA, 25–29 July 2010; pp. 1–8. [Google Scholar]
- Giannelos, S.; Konstantelos, I.; Strbac, G. Option value of Soft Open Points in distribution networks. In PowerTech; IEEE: Eindhoven, The Netherlands, 2015; pp. 1–6. [Google Scholar]
- Giannelos, S.; Konstantelos, I.; Strbac, G. Option Value of dynamic line rating and storage. In Proceedings of the 2018 IEEE International Energy Conference (ENERGYCON), Limassol, Cyprus, 3–7 June 2018; pp. 1–6. [Google Scholar]
- Borozan, S.; Giannelos, S.; Aunedi, M.; Strbac, G. Option Value of EV Smart Charging Concepts in Transmission Expansion Planning under Uncertainty. In Proceedings of the 2022 21th IEEE Mediterranean Electrotechnical Conference (MELECON), Palermo, Italy, 14–16 June 2022. [Google Scholar]
Source of Uncertainty | Scenarios | Probabilities | |
---|---|---|---|
Future EV penetration growth | High (i.e., 100% load growth per bus) | 40% | |
Medium (i.e., 50% load growth per bus) | 35% | ||
No change | 25% |
Conventional network reinforcement is the only technology available to the planner. | |
The planner does not make any investments at all (Do-nothing approach). | |
Smart Charging of EV is the only technology available to the planner. | |
Both conventional network reinforcement and Smart Charging of EV are available to the planner. |
Flexibility of Smart Charging | Optimal Decision | Option Value of Smart Charging (£) | |
---|---|---|---|
10% | 166,225 | 1 | 0 |
20% | 165,844 | 4 | 381 |
40% | 131,344 | 4 | 34,881 |
60% | 84,571 | 3 | 81,654 |
80% | 52,571 | 3 | 113,654 |
100% | 52,571 | 3 | 113,654 |
Social Cost (£/MWh) | Optimal Decision | Option Value of Smart Charging (£) | |
---|---|---|---|
1000 | 5600 | 2 | 0 |
10,000 | 56,000 | 2 | 0 |
25,000 | 100,571 | 3 | 65,654 |
50,000 | 131,344 | 4 | 34,881 |
100,000 | 166,225 | 1 | 0 |
500,000 | 166,225 | 1 | 0 |
1,000,000 | 166,225 | 1 | 0 |
Optimal Decision | Option Value of Smart Charging (£) | ||||
---|---|---|---|---|---|
0.40 | 0.35 | 0.25 | 131,344 | 4 | 34,880 |
0.10 | 0.10 | 0.80 | 37,714 | 3 | 128,510 |
0.25 | 0.25 | 0.50 | 94,285 | 3 | 71,939 |
0.40 | 0.40 | 0.20 | 132,201 | 4 | 34,023 |
0.10 | 0.80 | 0.10 | 69,714 | 3 | 96,510 |
0.25 | 0.50 | 0.25 | 105,714 | 3 | 60,510 |
0.40 | 0.20 | 0.40 | 128,772 | 4 | 37,452 |
0.80 | 0.10 | 0.10 | 166,225 | 1 | 0 |
0.50 | 0.25 | 0.25 | 142,058 | 4 | 24,166 |
0.20 | 0.40 | 0.40 | 84,571 | 3 | 81,653 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giannelos, S.; Borozan, S.; Strbac, G. A Backwards Induction Framework for Quantifying the Option Value of Smart Charging of Electric Vehicles and the Risk of Stranded Assets under Uncertainty. Energies 2022, 15, 3334. https://doi.org/10.3390/en15093334
Giannelos S, Borozan S, Strbac G. A Backwards Induction Framework for Quantifying the Option Value of Smart Charging of Electric Vehicles and the Risk of Stranded Assets under Uncertainty. Energies. 2022; 15(9):3334. https://doi.org/10.3390/en15093334
Chicago/Turabian StyleGiannelos, Spyros, Stefan Borozan, and Goran Strbac. 2022. "A Backwards Induction Framework for Quantifying the Option Value of Smart Charging of Electric Vehicles and the Risk of Stranded Assets under Uncertainty" Energies 15, no. 9: 3334. https://doi.org/10.3390/en15093334
APA StyleGiannelos, S., Borozan, S., & Strbac, G. (2022). A Backwards Induction Framework for Quantifying the Option Value of Smart Charging of Electric Vehicles and the Risk of Stranded Assets under Uncertainty. Energies, 15(9), 3334. https://doi.org/10.3390/en15093334