Study on the Distribution Law of Coal Seam Gas and Hydrogen Sulfide Affected by Abandoned Oil Wells
Abstract
:1. Introduction
2. Analysis of Gas Sources
2.1. Gas Source Statistics during Face Excavation
2.2. Analysis of Gas Composition in Detection Boreholes
3. Analysis of the Positional Relationship between Oil Wells and Coal Seams
3.1. Wellbore Structure of Well Field Oil Well
3.2. Position Relationship between Oil Wells and Coal-Measure Strata
3.3. Oil Well Damage Form and Impact
4. Distribution Laws Regarding Gases
4.1. The Distribution Law of Gas and Hydrogen Sulfide Gas Concentration in Boreholes
Analysis of the Source of Hydrogen Sulfide Gushing
4.2. Determination and Distribution Law of Coal Seam Gas Content
Measurement Results of Coal Seam Gas Content
5. The Law of Harmful Gas Gushing
5.1. Investigation on Distribution Law of Gas and Hydrogen Sulfide
5.2. Investigation on the Influence Scope of Gas and H2S Mining and Gushing
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Raimi, D.; Krupnick, A.J.; Shah, J.S. Decommissioning orphaned and abandoned oil and gas wells: New estimates and cost drivers. Environ. Sci. Techn. 2021, 55, 10224–10230. [Google Scholar] [CrossRef] [PubMed]
- Romanzo, N.N. Locating Undocumented Abandoned Oil and Gas Wells. Master’s Thesis, State University of New York at Binghamton, New York, NY, USA, 18 March 2020. [Google Scholar]
- Lebel, E.D.; Lu, H.S.; Vielstädte, L. Methane emissions from abandoned oil and gas wells in California. Environ. Sci. Techn. 2020, 54, 14617–14626. [Google Scholar] [CrossRef] [PubMed]
- Riddick, S.N.; Mauzerall, D.L.; Celia, M.A. Variability observed over time in methane emissions from abandoned oil and gas wells. Int. J. Greenh. Gas Control 2020, 100, 103116. [Google Scholar] [CrossRef]
- Zanocco, C.; Boudet, H.; Nilson, R. Place, proximity, and perceived harm: Extreme weather events and views about climate change. Clim. Chang. 2018, 149, 349–365. [Google Scholar] [CrossRef]
- Luca, C.; Antonio, Z. Constraints of fossil fuels depletion on global warming projections. Energy Policy. 2011, 39, 5026–5034. [Google Scholar]
- Zhang, W.H.; Yan, Q.Y.; Yuan, J.H.; He, G.; Teng, T.L.; Zhang, M.J.; Zeng, Y. A realistic pathway for coal-fired power in China from 2020 to 2030. J. Clean. Prod. 2020, 275, 122859. [Google Scholar] [CrossRef]
- Zhang, G.; Suo, Y.L.; Xu, G. Distribution Characteristics of H2S in Coal Seams around Abandoned Oil Wells and Division of Its Mining Influence Range in Shuangma Coal Mine. Sci. Technol. Eng. J. Sci. Technol. Eng. 2021, 21, 5759–5766. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?FileName=KXJS202114017&DbName=CJFQ2021 (accessed on 6 January 2021). (In Chinese).
- Zhang, P.; Lan, H.Q.; Yu, M. Reliability evaluation for ventilation system of gas tunnel based on Bayesian network. Tunn. Undergr. Space Technol. 2021, 112, 103882. [Google Scholar] [CrossRef]
- Wang, G.F.; Xu, Y.X.; Ren, H.W. Intelligent and ecological coal mining as well as clean utilization technology in China: Review and prospects. Int. J. Min. Sci. Technol. 2019, 29, 161–169. [Google Scholar] [CrossRef]
- Wang, K.; Jiang, S.G.; Zhang, W.Q.; Wu, Z.Y.; Shao, H.; Kou, L.W. Destruction mechanism of gas explosion to ventilation facilities and automatic recovery technology. Int. J. Min. Sci. Technol. 2012, 22, 417–422. [Google Scholar] [CrossRef]
- Huang, D.; Liu, J.; Deng, L.J. A hybrid-encoding adaptive evolutionary strategy algorithm for windage alteration fault diagnosis. Process Saf. Environ. Prot. 2020, 136, 242–252. [Google Scholar] [CrossRef]
- Gao, K.; Deng, L.J.; Liu, J.; Wen, L.X.; Wong, D.; Liu, Z.Y. Study on Mine Ventilation Resistance Coefficient Inversion Based on Genetic Algorithm. Arch. Min. Sci. 2018, 63, 813–826. [Google Scholar]
- Hu, J.H.; Zhao, Y.; Zhou, T.; Ma, S.W.; Wang, X.L.; Zhao, L. Multi-factor influence of cross-sectional airflow distribution in roadway with rough roof. J. Cent. South Univ. 2021, 28, 2067–2078. [Google Scholar] [CrossRef]
- Mayala, L.P.; Veiga, M.M.; Khorzoughi, M.B. Assessment of mine ventilation systems and air pollution impacts on artisanal tanzanite miners at Merelani, Tanzania. J. Clean. Prod. 2016, 116, 118–124. [Google Scholar] [CrossRef]
- Liang, P.Y.; Han, Y.; Zhang, Y.Y.; Wen, Y.T.; Gao, Q.F.; Meng, J. Novel non-destructive testing method using a two-electrode planar capacitive sensor based on measured normalized capacitance values. Measurement 2021, 167, 108455. [Google Scholar] [CrossRef]
- Rodriguez-Vega, M.; Canudas-de-Wit, C.; Fourati, H. Location of turning ratio and flow sensors for flow reconstruction in large traffic networks. Transp. Res. Part B Methodol. 2019, 121, 21–40. [Google Scholar] [CrossRef]
- Hu, X.; Han, Y.M.; Yu, B.; Geng, Z.Q.; Fan, J.Z. Novel leakage detection and water loss management of urban water supply network using multiscale neural networks. J. Clean. Prod. 2021, 278, 123611. [Google Scholar] [CrossRef]
- Lau, P.-W.; Cheung, B.-Y.; Lai, W.-L.; Sham, J.-C. Characterizing pipe leakage with a combination of GPR wave velocity algorithms. Tunn. Undergr. Space Technol. 2021, 109, 103740. [Google Scholar]
- Liang, L.P.; Xu, K.J.; Wang, X.F.; Zhang, Z.; Yang, S.L.; Zhang, R. Statistical modeling and signal reconstruction processing method of EMF for slurry flow measurement. Measurement 2014, 54, 1–13. [Google Scholar] [CrossRef]
- Lu, H.F.; Iseley, T.; Behbahani, S.; Fu, L.D. Leakage detection techniques for oil and gas pipelines: State-of-the-art. Tunn. Undergr. Space Technol. 2020, 98, 103249. [Google Scholar] [CrossRef]
- Aida-zade, K.R.; Ashrafova, E.R. Localization of the points of leakage in an oil main pipeline under nonstationary conditions. J. Eng. Phys. Thermophys. 2012, 85, 1148–1156. [Google Scholar] [CrossRef]
- Zhang, Z.W.; Hou, L.F.; Yuan, M.Q.; Fu, M.; Qian, X.M.; Duanmu, W.; Li, Y.Z. Optimization monitoring distribution method for gas pipeline leakage detection in underground spaces. Tunn. Undergr. Space Technol. 2020, 104, 103545. [Google Scholar] [CrossRef]
- Santos, R.B.; de Sousa, E.O.; da Silva, F.V.; da Cruz, S.L.; Fileti, A.M.F. Detection and on-line prediction of leak magnitude in a gas pipeline using an acoustic method and neural network data processing. Braz. J. Chem. Eng. 2014, 31, 145–153. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.L.; Huang, X.J.; Ren, J.H.; Feng, H.; Zhang, Y.; Yang, X.X. High-sensitivity gas leak detection sensor based on a compact microphone array. Measurement 2021, 174, 109017. [Google Scholar] [CrossRef]
- Singh, K.R.; Dutta, R.; Kalamdhad, A.S.; Kumar, B. An investigation on water quality variability and identification of ideal monitoring locations by using entropy based disorder indices. Sci. Total Environ. 2019, 647, 1444–1455. [Google Scholar] [CrossRef]
- Huang, D.; Liu, Y.; Liu, Y.H.; Song, Y.; Hong, C.S.; Li, X.Y. Identification of sources with abnormal radon exhalation rates based on radon concentrations in underground environments. Sci. Total Environ. 2022, 807, 150800. [Google Scholar] [CrossRef]
- Castillo, E.; Jiménez, P.; Menendez, J.M.; Conejo, A.J. The Observability Problem in Traffic Models: Algebraic and Topological Methods. IEEE Trans. Intell. Transp. Syst. 2008, 9, 275–287. [Google Scholar] [CrossRef]
- Castillo, E.; Calviño, A.; Lo, H.K.; Menéndez, J.M.; Grande, Z. Non-planar hole-generated networks and link flow observability based on link counters. Transp. Res. Part B Methodol. 2014, 68, 239–261. [Google Scholar] [CrossRef]
- Rinaudo, P.; Paya-Zaforteza, I.; Calderón, P.A. Improving tunnel resilience against fires: A new methodology based on temperature monitoring. Tunn. Undergr. Space Technol. 2016, 52, 71–84. [Google Scholar] [CrossRef]
- Balaji, S.; Anitha, M.; Rekha, D.; Arivudainambi, D. Energy efficient target coverage for a wireless sensor network. Measurement 2020, 165, 108167. [Google Scholar] [CrossRef]
- Li, Y.T.; Bao, T.F.; Chen, H.; Zhang, K.; Shu, X.S.; Chen, Z.X.; Hu, Y.H. A large-scale sensor missing data imputation framework for dams using deep learning and transfer learning strategy. Measurement 2021, 178, 109377. [Google Scholar] [CrossRef]
- Ng, M. Synergistic sensor location for link flow inference without path enumeration: A node-based approach. Transp. Res. Part B Methodol. 2012, 46, 781–788. [Google Scholar] [CrossRef]
- He, S.X. A graphical approach to identify sensor locations for link flow inference. Transp. Res. Part B Methodol. 2013, 51, 65–76. [Google Scholar] [CrossRef]
- Muduli, L.; Jana, P.K.; Mishra, D.P. A novel wireless sensor network deployment scheme for environmental monitoring in longwall coal mines. Process Saf. Environ. Prot. 2017, 109, 564–576. [Google Scholar] [CrossRef]
- Wang, K.; Jiang, S.G.; Wu, Z.Y.; Shao, H.; Zhang, W.Q.; Pei, X.D.; Cui, C.B. Intelligent safety adjustment of branch airflow volume during ventilation-on-demand changes in coal mines. Process Saf. Environ. Prot. 2017, 111, 491–506. [Google Scholar] [CrossRef]
- Song, Y.W.; Yang, S.Q.; Hu, X.C.; Song, W.X.; Sang, N.W.; Cai, J.W.; Xu, Q. Prediction of gas and coal spontaneous combustion coexisting disaster through the chaotic characteristic analysis of gas indexes in goaf gas extraction. Process Saf. Environ. Prot. 2019, 129, 8–16. [Google Scholar] [CrossRef]
- Lyu, P.Y.; Chen, N.; Mao, S.J.; Li, M. LSTM based encoder-decoder for short-term predictions of gas concentration using multi-sensor fusion. Process Saf. Environ. Prot. 2020, 137, 93–105. [Google Scholar] [CrossRef]
- Foorginezhad, S.; Mohseni-Dargah, M.; Firoozirad, K.; Aryai, V.; Razmjou, A.; Abbassi, R.; Garaniya, V.; Beheshti, A.; Asadnia, M. Recent Advances in Sensing and Assessment of Corrosion in Sewage Pipelines. Process Saf. Environ. Prot. 2021, 147, 192–213. [Google Scholar] [CrossRef]
- Hu, Y.N.; Koroleva, O.I.; Krstić, M. Nonlinear control of mine ventilation networks. Syst. Control Lett. 2003, 49, 239–254. [Google Scholar] [CrossRef]
- Khan, K.S.; Tariq, M. Accurate Monitoring and Fault Detection in Wind Measuring Devices through Wireless Sensor Networks. Sensors 2014, 14, 22140–22158. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.P.; Tang, L.; Li, C.S.; Zhu, N.; Zhang, B. Application of air-volume Proportion rule in optimal placement of gas sensor in mine. J. China Coal Soc. 2008, 33, 1126–1130. (In Chinese) [Google Scholar]
- Zhao, D.; Liu, J.; Pan, J.T.; Li, Z.X. Application study of air velocity fault source diagnosis technology for ventilation system in Daming Mine. Chin. J. Saf. Environ. 2012, 12, 204–207. (In Chinese) [Google Scholar]
- Dong, X.L.; Chen, S.; Zhao, D.; Pan, J.T. Study on Application of Minimum Tree Principle in Layout of Wind Speed Sensor in Mine. Chin. World Sci-Tech R D 2015, 37, 680–683. (In Chinese) [Google Scholar]
- Liang, S.H.; He, J.; Zheng, H.; Sun, R.H. Research on the HPACA Algorithm to Solve Alternative Covering Location Model for Methane Sensors. Procedia Comput. Sci. 2018, 139, 464–472. [Google Scholar] [CrossRef]
- Zhao, D.; Zhang, H.; Pan, J.T. Solving Optimization of A Mine Gas Sensor Layout Based on A Hybrid GA-DBPSO Algorithm. IEEE Sens. J. 2019, 19, 6400–6409. [Google Scholar] [CrossRef]
- Wu, C.Q.; Wang, L. On Efficient Deployment of Wireless Sensors for Coverage and Connectivity in Constrained 3D Space. Sensors 2017, 17, 2304. [Google Scholar] [CrossRef] [Green Version]
- Semin, M.A.; Levin, L.Y. Stability of air flows in mine ventilation networks. Process Saf. Environ. Prot. 2019, 124, 167–171. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, Q.H.; Liu, L.; Wang, D.; Huang, D.; Deng, L.J.; Zhou, Q.C. Resistance variant fault diagnosis of mine ventilation system and position optimization of wind speed sensor. J. China Coal Soc. 2021, 46, 1907–1914. (In Chinese) [Google Scholar]
- Jia, J.Z.; Liu, J.; Geng, X.W. Mathematical model of mine ventilation simulation system. J. Liaoning Tech. Univ. 2003, 22 (Suppl. S1), 88–90. (In Chinese) [Google Scholar]
- Dong, L.; Hu, Q.; Tong, X. Velocity-free MS/AE source location method for three-dimensional hole containing structures. Engineering 2020, 6, 827–834. [Google Scholar] [CrossRef]
- Dong, L.; Tong, X.; Ma, J. Quantitative investigation of tomographic effects in abnormal regions of complex structures. Engineering 2021, 7, 1011–1022. [Google Scholar] [CrossRef]
- Dong, L.; Tong, X.; Hu, Q.; Tao, Q. Empty region identification method and experimental verification for the two-dimensional complex structure. Int. J. Rock Mech. Min. Sci. 2021, 147, 104885. [Google Scholar] [CrossRef]
- Dong, L.J.; Chen, Y.C.; Sun, D.Y.; Zhang, Y.H. Implications for rock instability precursors and principal stress direction from rock acoustic experiments. Int. J. Min. Sci. Technol. 2021, 31, 789–798. [Google Scholar] [CrossRef]
Location and Location | Gushing Gas Volume Fraction/10−6 | Actual Site Situation |
---|---|---|
I0104104 return air tunnel excavation, 404–508 m away from no. 5 connecting lane, 212 m away from ma tan 30 oil well | -- | Local roof fissure oil seepage |
I0104104 return air tunnel excavation, 158 m away from ma tan 30 oil well | 3.5~15.0 | The smell of rotten eggs in the lane |
I0104105 return air tunnel excavation, 331 m away from no. 5 connecting lane, 251 m away from ma tan 30 oil well | 1.5~50.0 | Smell of rotten eggs |
I0104105 transport lane excavation, 627 m away from no. 2 ventilation measures lane, 150,435 m away from ma tan 30 and 31 oil wells | 60~80 | The volume fraction of H2S gushing out at 445 m is 45 × 10−6 |
I0104106 excavation of return air lane, 296 and 313 m away from ma tan 30 and ma tan 31 oil wells | 60~80 | H2S gushes out during tunneling |
Detection Location | Inclination/(°) | Length/m | Aperture/mm | μ (H2S)/10−6 |
---|---|---|---|---|
K1 drilling | 7 | 40 | 94 | 38,033.52 |
K2 drilling | 6 | 35 | 94 | 25,599.14 |
The borehole is located 41 m south of the abandoned oil well of ma tan 31 | - | - | - | 10,200.00 |
Serial Number | Analysis Project | Analysis Result/% | Serial Number | Analysis Project | Analysis Result/% |
---|---|---|---|---|---|
1 | H2 | <0.01 | 7 | COS | <0.005 |
2 | CO2 | 0.90 | 8 | CH4 | 75.51 |
3 | O2 | 1.98 | 9 | C2 alkanes | 0.46 |
4 | N2 | 21.13 | 10 | C2 alkanes | 0.01 |
5 | CO | <0.01 | 11 | C3 olefin | <0.01 |
6 | H2S | 1.02 | 12 | C4 alkanes | <0.01 |
Oil Well | Layer Thickness/m | Layer Thickness/m | Cumulative Depth/m | ||||
---|---|---|---|---|---|---|---|
Jurassic | Triassic | ||||||
Fourth Series | Paleogene | Stability Group | Zhiluo Formation | Yan’an Formation | Yan’an Formation | ||
Ma tan 30 | 10 | 81.8 | - | 134.7 | 344.7 | 666 | 1237.2 |
Ma tan 30 | 15 | 64.0 | 63.1 | 67.9 | 290.0 | 666 | 1166.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Ma, H.; Qi, X.; Gao, K.; Li, S. Study on the Distribution Law of Coal Seam Gas and Hydrogen Sulfide Affected by Abandoned Oil Wells. Energies 2022, 15, 3373. https://doi.org/10.3390/en15093373
Wang X, Ma H, Qi X, Gao K, Li S. Study on the Distribution Law of Coal Seam Gas and Hydrogen Sulfide Affected by Abandoned Oil Wells. Energies. 2022; 15(9):3373. https://doi.org/10.3390/en15093373
Chicago/Turabian StyleWang, Xiaoqi, Heng Ma, Xiaohan Qi, Ke Gao, and Shengnan Li. 2022. "Study on the Distribution Law of Coal Seam Gas and Hydrogen Sulfide Affected by Abandoned Oil Wells" Energies 15, no. 9: 3373. https://doi.org/10.3390/en15093373
APA StyleWang, X., Ma, H., Qi, X., Gao, K., & Li, S. (2022). Study on the Distribution Law of Coal Seam Gas and Hydrogen Sulfide Affected by Abandoned Oil Wells. Energies, 15(9), 3373. https://doi.org/10.3390/en15093373