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Abstract: Recently, we demonstrated for Curaçao that renewable electricity generation from wind
combined with energy storage in the form of ammonia is competitive with imported fossil fuels, such
as LNG, oil, and coal. In the current work, we have expanded the model by considering imported
green ammonia as an alternative to local electricity generation and storage. Local production of
ammonia as an energy storage medium was compared with imported ammonia to make up the
electricity produced from onshore wind, for Curaçao and Fiji’s largest island Viti Levu. Curaçao and
Viti Levu have been selected as two interesting extremes with favorable and non-favorable wind
conditions, respectively. Assuming a market price of 500 USD/t NH3, it is found that importing
ammonia is the most feasible solution for both islands, with a levelized cost of electricity (LCOE) of
0.11 USD/kWh for Curaçao and 0.37 USD/kWh for Viti Levu. This compares to 0.12 USD/kWh for
Curaçao; however, for Viti Levu, this value increases to 1.10 USD/kWh for a completely islanded
system based on onshore wind and imported ammonia. These islands represent two extreme cases
in terms of wind load factor and load consistency, as Curaçao has a high and consistent wind load
factor when compared to Viti Levu. Thus, the conclusions obtained for these locations are expected
to be applicable for other small island developing states.

Keywords: green ammonia; small island developing states (SIDS); power to ammonia to power
(P2A2P); green hydrogen carriers

1. Introduction

Resilient energy resources and infrastructures are key for small islands developing
states (SIDS) as climate change effects (e.g., tropical storms, hurricanes, sea-level rise)
are bleaker and more frequent in these regions [1–4]. These intrinsic vulnerabilities of
SIDS have become even more evident with the on-set of the COVID-19 pandemic that
has led to severe economic contraction in these islands [5]. In this context, deployment
of renewables can improve energy security in the long term. The fluctuating nature of
renewables, however, complicates facile integration in the electricity grid for on-demand
electricity generation, which negatively impacts the resilience of the energy sector [1,6].
To unlock the true potential of renewables, it is relevant to develop cost-effective energy
storage systems that can act as buffers for the short- and long-term fluctuations in electricity
generation. Essentially, to tackle this, sufficient energy storage is required for both hourly
and seasonal fluctuations. For short-term small-scale storage, the use of conventional
batteries is a suitable option. However, for long-term large-scale storage, batteries fall out
of favor, and hydrogen carriers become the better option, as illustrated in Figure 1.
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safety risks. Fortunately, ammonia-related accidents are scarce when handled by trained 
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scale is currently possible on a large scale as this chemical is essential in the production of 
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winds was employed to satisfy the demand in the consumption peak of the year, reducing 
the levelized cost of electricity (LCOE). One can imagine that an optimum in costs can be 
achieved in cases where green ammonia can be imported at competitive prices. In this 
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Ammonia is considered as an option for seasonal energy storage in islanded renewable
energy systems [9–13], due to its economical and proven track record for safe storage and
transportation. Furthermore, ammonia can be synthesized from abundant nitrogen in
air and hydrogen generated via water electrolysis using renewables. Ammonia is easier
to store as compared to hydrogen. Furthermore, ammonia does not require a circular
CO2 source.

Other options instead of ammonia are methanol and methane. Both options are
interesting and could be competitive in terms of storage conditions [14]. However, both
options depend on a circular CO2 source. Direct air capture (DAC) is an experimental
technology that is not cost-competitive with nitrogen purification from air, making energy
storage in the form of green methane or methanol substantially more expensive than in
the form of green ammonia. It should be noted, however, that handling of ammonia has
safety risks. Fortunately, ammonia-related accidents are scarce when handled by trained
personnel. Furthermore, storage, usage, and transportation of ammonia on an industrial
scale is currently possible on a large scale as this chemical is essential in the production of
synthetic fertilizers [14].

Recently, we demonstrated for the island of Curaçao that renewable electricity gener-
ation from wind combined with energy storage in the form of ammonia and batteries is
competitive with imported fossil fuels, such as LNG, oil, and coal [7]. In this island, the
months with the highest demand of electricity (holiday season) coincided with the months
with the lowest wind electricity generation. By deploying the so-called power-to-ammonia-
to-power or P2A2P process, the ammonia generated in the months with the strongest winds
was employed to satisfy the demand in the consumption peak of the year, reducing the lev-
elized cost of electricity (LCOE). One can imagine that an optimum in costs can be achieved
in cases where green ammonia can be imported at competitive prices. In this scenario,
low ammonia import costs can potentially outweigh the benefits of local production as the
capital costs of the P2A2P can be reduced. In this line, the present contribution aims at
assessing the impact of imported ammonia in the LCOE from renewables in SIDS. Three
cases are explored in this study, including (1) full ammonia synthesis on-site, (2) full green
ammonia import, and (3) a balance between the two options. Such an optimization between
locally produced and imported renewable energy vectors has not been published before
for SIDS.
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Two islands with similar energy demands were considered hereafter, namely Viti Levu
in Fiji (Pacific region), and Curaçao (Caribbean region). Viti Levu has a low load factor for
onshore wind with high fluctuations, while Curaçao has consistent wind with a high net
capacity factor [15]. These two islands serve as extreme cases to assess the impact of green
ammonia price imports. The island of Trinidad & Tobago and Brazil were chosen as the
primary suppliers of green ammonia for the island of Curaçao thanks to their proximity,
potentially reducing transportation costs of ammonia, and the existing infrastructure for
large-scale production and storage of ammonia in these countries [16,17]. Following the
same rationale, Australia and Chile were selected as the green ammonia suppliers for the
island of Viti Levu in Fiji [18,19]. An additional reason why importing ammonia could be
interesting for Curaçao and Viti Levu, is the fact that both islands already have ports in
place [20,21]. As a result, only ammonia storage terminals are required. A market price of
500 USD/t NH3 is assumed for green ammonia (see Supplementary Materials).

Fiji has a total electricity generation capacity of 362 MW as of 2020, of which 59% is
renewable, including 38% hydropower, 15% bioenergy, 3% wind, and 3% solar [22,23]. Fiji
has set a target for 100% renewable electricity generation by 2030 [24]. Viti Levu, the largest
islands of Fiji, represents about 90% of the total electricity generation capacity of Fiji [25].
Currently, the import of fossil fuels represents 25–35% of total merchandise imports [25],
which has led to electricity tariffs of 0.16–0.19 USD/kWh from 2010 until 2019 [24,26].

Curaçao has a total electricity generation capacity of 207 MW as of 2020, of which
47 MW is generated by wind and 18 MW from solar PV [27]. About 25% of the electricity
was produced with renewables in 2020 [27]. Curaçao has set a target for 50% renewable
electricity generation by 2035 [27]. Currently, the majority of electricity is generated
using imported petroleum [27]. Surprisingly, in this location, the electricity tariffs were
0.23–0.36 USD/kWh from 2015 until 2020 [27,28]. In this case-study, the costs of energy
generation using local wind energy resources are benchmarked with the costs of ammonia
import for both islands. While it is true that the costs of onshore wind electricity for Fiji
are expected to be higher than those for Curaçao, due to the differences in consistency and
capacity factors, the purpose of the present study is to illustrate how inexpensive green
ammonia can be leveraged to facilitate the energy transition in locations where the lack of
renewable energy resources hinders decarbonization. Here, one can anticipate that a trade-
off between ammonia imports and local production will be necessary for locations with
neighboring countries with excess capacity for green ammonia generation. Furthermore, it
is assumed that renewable electricity is exclusively produced from onshore wind. This is
not entirely realistic, as for example, Fiji already has substantial hydropower and biomass
capacity [29].

The manuscript has been subdivided in several sections. Section 2 describes the
methodology, including the modelling approach and the arguments for process selections.
Section 3 describes the results. The results show technical results into energy patterns,
dimensions, and flowrates, as well as levelized costs of electricity. These costs are sub-
sequently compared to energy generation alternatives. Then, a sensitivity analysis is
implemented. Section 4 discusses the results, and the key factors influencing the final
results. Section 5 describes the conclusions following from this manuscript, as well as
recommendations for further research.

2. Methodology

The levelized cost of electricity (LCOE) from local wind energy has been estimated
using an iterative algorithm previously reported by our group [7]. First, an order of
magnitude calculation was performed to estimate a realistic range of equipment sizes to
support a full power-to-ammonia-to-power (P2A2P) grid, with the goal of finding relevant
boundary conditions for equipment size using equipment property correlation methods.
Then, a P2A2P process was modelled to find the roundtrip efficiency (RTE). Subsequently,
the annual and daily energy demand patterns were calculated, as well as annual and daily
net capacity factor patterns for wind turbines.
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In this study, wind turbines have been selected as the benchmark technology as the
renewable energy generation source. Curaçao has one of the strongest and most consistent
wind patterns in the world [30]. Furthermore, an analysis for the close SIDS island Barbados
suggests that wind energy is deemed to be the cheapest option for renewable energy [31].
Wind energy is therefore selected as the benchmark technology for energy generation in this
model. Wind energy is utilized for Viti Levu as well for a consistent comparison. For the
net capacity patterns, the Vestas V82 1.65 MW wind turbine [32] was found to be suitable
and its wind speed versus energy output patterns were utilized. The respective wind
turbine was selected for several reasons including (1) a low cut-in wind speed required to
start energy generation, (2) a relatively favorable wind-energy curve with high average
capacities, mainly benefiting the Viti Levu case, as Viti Levu was found to have low wind
speeds, and (3) these wind turbines are relatively short compared to modern wind turbines,
which is important as large wind turbines can result in significant and critical transport
problems on SIDS [31]. The net capacity patterns for the respective wind turbine were
modeled using hourly and monthly wind data, from the ERA5 satellite database over the
years 2007–2020 [15]. With the use of the calculated energy efficiencies, demand patterns,
and net capacity factors, an iterative process was utilized to determine the size of the wind
farm and the P2A2P system, with respect to RTE, safety factors, and fraction of ammonia
from imports and on-site production.

In the model, wind turbines were used to directly power the electricity grid. To
stabilize the energy output in the short term, battery storage was employed using battol-
ysers. These units are designed to stabilize the energy output of renewables. This was
performed by initially storing excess energy in Ni-Fe batteries, and subsequently per-
forming electrolysis when the batteries were fully charged [33]. For seasonal fluctuations,
energy from ammonia was used. Ammonia was synthesized using absorption-enhanced
Haber–Bosch (AE-HB), which allows flexible ammonia production following renewable
electricity patterns [7].

The flowsheet behind the first step in the modelling strategy is shown in Figure 2. Here,
pure water was required for the electrolysis step. For this reason, seawater desalination
was performed to obtain pure water in SIDS. To prevent the negative impact of brine
disposal on marine life, Zero Liquid Discharge (ZLD) was performed using High Rejection
Reverse Osmosis (HRRO) and Low Rejection Reverse Osmosis (LRRO), as described in [34]
in combination with mechanical vapor compression (MVC). MVC was used due to its
high energy efficiency compared to alternatives evaluated in reference [35]. Subsequently,
battolysers were used to either store, for the short term, electricity, or split water into
hydrogen and oxygen. The hydrogen generated in the previous step was reacted with
nitrogen to produce ammonia thermo-catalytically. This reaction was conducted using
absorption-enhanced Haber–Bosch, which in contrast to conventional high-pressure Haber–
Bosch process, is highly resilient towards dynamic fluctuations in operational load [7,9,36].
Ammonia was afterwards stored in large-scale storage tanks at −33 ◦C and 1.1–1.2 bar
as this is the most common and cost-effective storage method for large-scale ammonia
storage [37]. The alternatives to storage tanks are high-pressure atmospheric temperature
liquid ammonia storage, which is recommended for smaller-scale storage. Storage of
ammonia in salts is recommended when increased safety is prioritized [7,9,38].

During seasonal energy shortages, the stored ammonia can be used to produce elec-
tricity. Patel and Farooque [39] have previously illustrated this concept at the same order of
magnitude as the one herein used. The conversion of ammonia back to electricity can be
performed using either direct fuel cells or fuel cells with thermal energy recovery. From
these options, the preferred alternative is direct ammonia fuel cell using Solid Oxide Fuel
Cells (SOFC) [40] without thermal energy recovery, as the relatively poor electrical effi-
ciency gain of 2% using a recovery system does not justify the CapEx increase when using
a thermal energy recovery system [41]. Furthermore, the thermal energy recovery system
would substantially reduce the flexibility of the SOFCS. An efficiency of 55%LHV is assumed
in this manuscript [9]. The SOFC-Hs are direct-use; this means that ammonia will be fed
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directly to the fuel cells. The electrocatalyst in the SOFC is Ni-based, which is able to
dissociate NH3 at the elevated temperatures inside the SOFC [42]. This means that no
pre-dissociation is required. This is an attractive proposition as external ammonia cracking
requires additional energy input that can result in heat losses [9], which can be significant
at relatively small-scale processes.
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Figure 2. Conceptual process flow diagram for power-to-ammonia-to-power (P2A2P), using a battolyser,
pressure swing adsorption (PSA), and absorption-enhanced Haber–Bosch (AE-HB). Modified from [7].

The round-trip efficiency (RTE) of P2A2P was calculated to be 24%LHV, and leads
to a significant wind turbine overcapacity, which clearly increases the CapEx and thus
the final levelized cost of electricity. Here, it becomes clear that using imported ammonia
from a low-carbon ammonia plant is an attractive proposition, particularly when there is
insufficient renewable electricity. The scale of the Haber–Bosch can be decreased or even
completely removed from the planning depending on the expected ammonia costs and,
finally, the smaller battery storage capacity will lead to less severe fluctuations during
the daily operation. In this approach, the battolysers can be replaced by conventional
Ni-Fe batteries, as electrolysis is not required. Here, however, the carbon-neutrality of the
ammonia must be ensured. Thus, so-called green ammonia (i.e., ammonia generated from
renewables) must be readily available in the region. Furthermore, since the wind farm will
be smaller in this case, the ammonia-fueled SOFC-H will have to operate more frequently
to prevent energy shortages, which could affect the stability of the stacks. In this sense,
between the two extreme cases, it is possible to find an optimum between import and
production on-site. The calculation methods that are utilized in this work are summarized
in Table 1.
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Table 1. Calculation methods as utilized in this work.

Calculation Method

Wind turbine generation curves Matlab, wind data from ERA5 database,
example wind turbine from literature.

Demand curves From literature, implemented in Matlab.
Haber–Bosch loop Aspen Plus

Absorption columns in HB loop and
other equipment

Matlab with property data from
literature/Aspen Plus.

Equipment dimensions Iterative loop in Matlab until annual shortage =
annual surplus = 0.

Costs and sensitivity analyses Excel, and imported to Matlab, or directly
in Matlab.

The specific energy consumption (SEC) of the ammonia synthesis loop based on
AE-HB was 12.0 kWh/kg NH3 (see Table 2). For comparison, modern natural gas- and
coal-based ammonia plants have an energy consumption of 7.8 and 10.6 kWh/kg NH3,
respectively [43–45]. As mentioned before, when this process was combined with SOFC-H
with an electrical efficiency of 55%LVH (LHV of 5.17 kWh/kg of NH3), the round-trip
efficiency (RTE) of P2A2P was 24%. This value is comparable to the well-to-power (W2W)
efficiency of fossil-based technologies of c.a. 16–20% [46].

Table 2. Energy consumption of the P2A2P process, in kWh/kg NH3. Comparable results shown in
references [7,9].

Process Energy in kWh/kg NH3 Reference

Water desalination 0.02 [10,34]
Electrolysis 8.75 [47]

PSA 0.35 [48]

Ammonia synthesis loop 2.76 Absorption beds [49], rest
Aspen Plus

Ammonia storage 0.16 [37,50]

Total 12.0

3. Results

Hereafter, the analysis of the resulting electricity prices is presented for each location.
The results show that for Viti Levu, importing ammonia is significantly cheaper compared
to ammonia production on-site. For Curaçao, import is cheaper compared to on-site
production in the main assumed scenario. The sensitivity analysis, however, shows that
on-site production could be more cost-efficient for Curaçao in scenarios where the costs of
imported ammonia are higher than those projected in the state-of-art.

3.1. Curaçao

First, the case of Curaçao was assessed to determine the wind farm size. From the data
presented in [15], the hourly average wind speed and monthly average wind speed were
calculated (see Figure 3a,b). The wind distribution, together with the wind speed versus
capacity factor curve, is shown in Figure 3c.

Figure 3a illustrates that at night, wind speeds are higher than during the day. Fur-
thermore, a drop in wind speed is illustrated at 9 a.m. [15]. The results of Figure 3b,c are
in close agreement with empiric data from wind turbines on Curaçao, as illustrated in
reference [30]. A net capacity factor of 0.67 is found, which is very high compared to wind
turbines in different locations, including SIDS [30]. A net capacity factor of 0.67 is found,
which is very high compared to wind turbines in different locations, including SIDS [30].



Energies 2022, 15, 3374 7 of 18Energies 2022, 15, 3374 7 of 18 
 

 

 
Figure 3. Hourly (a) and monthly (b) wind patterns on Curaçao, data from ERA5 in years 2007–
2020, and (c) annual wind speed distribution, together with modeled wind speed versus net capacity 
factor curve on Curaçao. 

To estimate how much energy could be used for the grid and the seasonal storage, a 
calculation over the energy demand was performed (Figure 4a). This approximates the 
amount of energy lost in the battolysers in a day using the average hourly wind pattern, 
average demand pattern, and an 85% RTE [33], as a percentage of total generation. From 
this, the amount of energy that is not available for ammonia production or direct use was 
calculated. Figure 4b shows the effective net capacity factor that was corrected for bat-
tolyser RTE losses. Figure 4a illustrates that at night, more energy is generated than con-
sumed, whereas during the day, the opposite holds true. This is because energy genera-
tion and demand are anticyclic. Figure 4b illustrates the net capacity factor of wind tur-
bines on Curaçao, corrected for short-term storage losses. 

 
Figure 4. Battolyser energy flux and charging losses for Curaçao, based upon average wind speed 
and average demand pattern (a), and effective net capacity factor for Curaçao, corrected for bat-
tolyser RTE losses (b). 

From this data, it was possible to calculate annual generation and demand curves 
(Figure 5a). The distribution of energy flows going towards direct use, short-term storage, 

W
in

ds
pe

ed
 in

 m
/s

W
in

ds
pe

ed
 in

 m
/s

N
et

 c
ap

ac
ity

 fa
ct

or

R
el

at
iv

e 
oc

cu
rre

nc
e 

of
 w

in
ds

pe
ed

N
et

 e
ne

rg
y 

to
w

ar
ds

 b
at

te
rie

s

H
ou

rly
 a

vg
 c

ha
rg

e 
lo

ss
es

 a
s 

%
 fr

om
 to

ta
l

N
et

 c
ap

ac
ity

 fa
ct

or

Figure 3. Hourly (a) and monthly (b) wind patterns on Curaçao, data from ERA5 in years 2007–2020,
and (c) annual wind speed distribution, together with modeled wind speed versus net capacity factor
curve on Curaçao.

To estimate how much energy could be used for the grid and the seasonal storage, a
calculation over the energy demand was performed (Figure 4a). This approximates the
amount of energy lost in the battolysers in a day using the average hourly wind pattern,
average demand pattern, and an 85% RTE [33], as a percentage of total generation. From
this, the amount of energy that is not available for ammonia production or direct use was
calculated. Figure 4b shows the effective net capacity factor that was corrected for battolyser
RTE losses. Figure 4a illustrates that at night, more energy is generated than consumed,
whereas during the day, the opposite holds true. This is because energy generation and
demand are anticyclic. Figure 4b illustrates the net capacity factor of wind turbines on
Curaçao, corrected for short-term storage losses.
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Figure 4. Battolyser energy flux and charging losses for Curaçao, based upon average wind speed
and average demand pattern (a), and effective net capacity factor for Curaçao, corrected for battolyser
RTE losses (b).
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From this data, it was possible to calculate annual generation and demand curves
(Figure 5a). The distribution of energy flows going towards direct use, short-term storage,
and seasonal storage, is illustrated in Figure 5b. Here, one can note that from August to
November, the long-term storage is negligible. This is due to the large electricity demand
and insufficient power generation in this section of the year.
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Figure 5. Annual energy demand and generation patterns for Curaçao (a), and the utilization of
generated energy per month for Curaçao (b).

For Curaçao, a wind farm size of 209 MW was calculated when making all ammonia
on-site; this is comparable to the 207 MW of generation capacity in place as of 2020 [27].
The curves of average and maximum Haber–Bosch capacity versus import percentage of
ammonia are shown in Figure 6. The maximum Haber–Bosch capacity was taken as the
capacity required in the month with the largest energy excess, at wind speeds 25% higher
than average for the given month, as a safety factor.
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Figure 6. Ammonia import percentage versus import ammonia flows, average HB capacity, and max
HB capacity for Curaçao, storage tank included as well.
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When full import is in place, the power-to-ammonia plant will not be in place anymore.
Therefore, the battolysers can be switched with regular short-term storage batteries. Future
projected costs of battolysers are 425 USD/kW [8,9,51]. The capacity of battolysers is
designed to store 4 h of energy maximum charging capacity [52]. At a Lang factor of 4.06 [7],
total installed costs per kWh are 430 USD/kWh. Based upon real projects, a near-term
projection for installed costs for batteries is 340 ± 60 USD/kWh in the UK [53]. Long-term
projections for installed costs are estimated to be 175 ± 25 USD/kWh in 2027–2040 [53].
Based on near- and long- term projections, and the location, installed costs of 250 USD/kWh
were used in this model as a price estimation for conventional energy storage using batteries.
Figure 7 illustrates the LCOE in USD/kWh assuming imported green ammonia costs at
500 USD/ton. Here, one can immediately recognize that increasing the ammonia imports
from 0–100% can lead to a reduction of 18% of the LCOE to 0.110 USD/kWh. This result
is rather surprising considering that the utilization factors for the wind farm in Curaçao
is among the largest in the world [54]. These results indicate that even in locations with
very favorable weather conditions, importing ammonia can still decrease the levelized
costs of electricity. This result could thus be used to hint to other locations about the most
cost-efficient configuration of an ammonia-based energy storage system.
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Figure 7. Ammonia import percentage versus LCOE in USD/kWh, at 500 USD/ton NH3, for Curaçao.

The P2A2P system was compared with fossil fuels as illustrated in Figure 8. Figure 8
shows that P2A2P is competitive with fossil fuels at a levelized cost of 0.11 USD/kWh,
when green ammonia is fully imported. When no ammonia is imported, levelized costs
of 0.12 USD/kWh were found. Therefore, a P2A2P system in which ammonia will be
imported rather than produced on-site can lead to competitive costs and renewable energy.

3.2. Fiji-Viti Levu

For Fiji, the same steps have been taken. Here, Figure 9a shows the hourly and monthly
wind curves, whereas Figure 9b presents the wind distribution and the wind turbine wind
versus capacity factor curve. From these figures, it becomes clear that the wind speed and
net capacity factor of Viti Levu is significantly lower than that of Curaçao. This is in line
with the resulting wind speed distribution (Figure 9c) in which the relative occurrence of
winds with high speeds (e.g., +10 m/s) is essentially zero. Figure 9a illustrates that wind
speeds are higher during the day than at night, which is beneficial as energy consumption
during the day is higher than at night. Figure 9b,c, however, show that there is a relatively
inconsistent and low wind speed throughout the year, leading to a low net capacity factor,
and high required energy storage.



Energies 2022, 15, 3374 10 of 18
Energies 2022, 15, 3374 10 of 18 
 

 

 
Figure 8. LCOE of P2A2P compared with fossil-fuel-based alternatives for Curaçao, adapted and 
modified from reference [7]. 

3.2. Fiji-Viti Levu 
For Fiji, the same steps have been taken. Here, Figure 9a shows the hourly and 

monthly wind curves, whereas Figure 9b presents the wind distribution and the wind 
turbine wind versus capacity factor curve. From these figures, it becomes clear that the 
wind speed and net capacity factor of Viti Levu is significantly lower than that of Curaçao. 
This is in line with the resulting wind speed distribution (Figure 9c) in which the relative 
occurrence of winds with high speeds (e.g., +10 m/s) is essentially zero. Figure 9a illus-
trates that wind speeds are higher during the day than at night, which is beneficial as 
energy consumption during the day is higher than at night. Figure 9b,c, however, show 
that there is a relatively inconsistent and low wind speed throughout the year, leading to 
a low net capacity factor, and high required energy storage. 

 
Figure 9. Hourly (a) and monthly (b) wind patterns on Viti Levu, data from ERA5 in years 2007–
2020. Wind speed distribution, together with modeled wind speed versus net capacity factor curve 
on Viti Levu (c). 

W
in

ds
pe

ed
 in

 m
/s

W
in

ds
pe

ed
 in

 m
/s

N
et

 c
ap

ac
ity

 fa
ct

or

R
el

at
iv

e 
oc

cu
rre

nc
e 

of
 w

in
ds

pe
ed

Figure 8. LCOE of P2A2P compared with fossil-fuel-based alternatives for Curaçao, adapted and
modified from reference [7].
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Figure 9. Hourly (a) and monthly (b) wind patterns on Viti Levu, data from ERA5 in years 2007–2020.
Wind speed distribution, together with modeled wind speed versus net capacity factor curve on Viti
Levu (c).

To obtain an effective net capacity factor, the short-term battery RTE losses were
calculated as illustrated in Figure 10a. From this, the corrected net capacity factor per
month is given in Figure 10b. Figure 10a illustrates a surplus of energy during the day.
Energy generation at night and during the winter months is very low, as the cut-in wind
speed of approximately 4 m/s as illustrated in Figure 9c, hinders energy generation at low
wind speeds.

The low-capacity factor for wind on Viti Levu results in a relatively large storage
requirement, and therefore a significantly oversized wind farm. This means that P2A2P
without any import is likely not economically justified. Therefore, it is expected that Viti
Levu could significantly reduce its costs by importing ammonia. Figure 11 shows how the
on-site ammonia production capacity can be reduced by importing green ammonia.
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Figure 10. Battolyser energy flux and charging losses for Viti Levu, based upon average wind speed
and average demand pattern, dotted line for average daily charging losses (a). Effective net capacity
factor for Viti Levu, corrected for battolyser RTE losses (b).
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Figure 11. Ammonia import percentage versus import ammonia flows, average HB capacity, and
max HB capacity for Viti Levu.

Figure 12 illustrates the LCOE in USD/kWh assuming green ammonia total costs
of 500 USD/ton. It becomes clear that importing ammonia is significantly cheaper than
producing ammonia on-site. At 500 USD/ton, an LCOE of 0.37 USD/kWh was found when
fully importing ammonia. Note that the cost reduction upon importing ammonia is more
significant for Viti Levu than for Curaçao, which can be understood from the low wind
capacity factor for Viti Levu.

Figure 13 shows the comparison between P2A2P and the most relevant alternatives
for importing energy, namely LPG and diesel. It shows that for Viti Levu, ammonia is
more expensive than the other alternatives. When utilizing green ammonia imports, LCOE
of 0.37 USD/kWh are found which is higher than at the alternatives; it is therefore not
expected that P2A2P will be implemented in the future in this location. Without import,
the levelized costs rise to 1.10 USD/kWh. Wind energy combined with imported ammonia
is only competitive at extremely high fossil fuel prices. It is expected that other options,
such as biofuels or hydropower or solar are more relevant in a decarbonized energy system
for Viti Levu [29].
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Viti Levu.

Energies 2022, 15, 3374 12 of 18 
 

 

Figure 12 illustrates the LCOE in USD/kWh assuming green ammonia total costs of 
500 USD/ton. It becomes clear that importing ammonia is significantly cheaper than pro-
ducing ammonia on-site. At 500 USD/ton, an LCOE of 0.37 USD/kWh was found when 
fully importing ammonia. Note that the cost reduction upon importing ammonia is more 
significant for Viti Levu than for Curaçao, which can be understood from the low wind 
capacity factor for Viti Levu. 

 

Figure 12. Ammonia import percentage versus LCOE in USD/kWh, at 500 USD/ton NH3, for Viti 
Levu. 

Figure 13 shows the comparison between P2A2P and the most relevant alternatives 
for importing energy, namely LPG and diesel. It shows that for Viti Levu, ammonia is 
more expensive than the other alternatives. When utilizing green ammonia imports, 
LCOE of 0.37 USD/kWh are found which is higher than at the alternatives; it is therefore 
not expected that P2A2P will be implemented in the future in this location. Without im-
port, the levelized costs rise to 1.10 USD/kWh. Wind energy combined with imported am-
monia is only competitive at extremely high fossil fuel prices. It is expected that other 
options, such as biofuels or hydropower or solar are more relevant in a decarbonized en-
ergy system for Viti Levu [29]. 

 
Figure 13. LCOE and carbon footprint of P2A2P compared to fossil-fuel-based alternatives for Viti 
Levu. 

LC
O

E 
in

 U
SD

/k
W

h

Figure 13. LCOE and carbon footprint of P2A2P compared to fossil-fuel-based alternatives for
Viti Levu.

3.3. Sensitivity Analysis
Effect of Ammonia Price

The prices of green ammonia have been estimated based on the costs related to
purchasing, transporting, and storing. However, the future market price of green ammonia
remains uncertain with a considerably large costs range projection [55]. Therefore, several
scenarios were calculated, with ammonia import costs of 400–800 USD/ton; the results
are shown in Figure 14 for Curaçao and Viti Levu, respectively. For Curaçao, it is shown
that at ammonia import costs of 400 USD/ton, it is preferred to import all ammonia.
This means that the grid will consist of wind turbines, a short-term storage Ni-Fe battery,
SOFC-Hs, and imported green ammonia including storage. For green ammonia costs
of >800 USD/ton, it is preferred to produce all ammonia on-site, whereas at prices of
600 USD/ton, a balance between imported ammonia and produced ammonia could be
made. Notably, at 600 USD/ton, it could be possible that the slight increase in LCOE to
use 100% import is justified by the implementation of a simpler system. However, this
consideration is out of the scope of the presented model. For Viti Levu, it shows that
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regardless of the ammonia import price within the realistic range, importing ammonia is
significantly cheaper than producing ammonia on-site. When ammonia import costs of
400 USD/ton are achieved, the LCOE can decrease to 0.35 USD/kWh. At 600 USD/ton
and 800 USD/ton, the LCOE is calculated to be 0.39 and 0.42 USD/kWh, respectively.
Sensitivity analyses of the wind turbine cost and lifetime of the SOFC can be found in the
Supplementary Materials.
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Sensitivity analyses on the wind turbine cost and the lifetime of the SOFC can be
found in the supporting information.

4. Discussion

Importing ammonia has a lower cost than operating in an islanded system. The main
reason for this is that the imported ammonia is produced at a lower cost than the locally
produced ammonia on the islands. There are several key factors that could reduce green
ammonia costs to further support the economic feasibility of ammonia as an energy vector
in the aforementioned set-up utilizing imported green ammonia. Some of these key factors
that affect this are listed below:

• Plant size. GW-scale green ammonia plants have been announced [56]. Furthermore,
partial decarbonization of existing renewable ammonia plants decrease the cost of
renewable ammonia.

• Lower cost of electricity generation. The electricity cost of complementary offshore
wind and solar PV is below 0.02 USD/kWh in some locations [57]. Levelized cost
of onshore wind 0.05 USD/kWh on Curaçao and 0.46 USD/kWh on Viti Levu were
found in this work.

• Higher load factor. Upon combining wind and solar PV, ammonia production with
electrolyzer load factors up to 60–70% may be achieved [58,59]; decreasing the cost
of the ammonia production plant. For reference, the onshore wind-based ammonia
plant only operates at a load factor of 41% for Curaçao and 20% for Viti Levu. Thus,
local production could become more attractive by increasing the utilization factor of
the AEHB system.
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Local ammonia production as energy storage medium on the islands provides re-
silience, as this means supply is not affected by geopolitics. However, geographic effects
are also important to consider in this respect, as cyclones and hurricanes occur frequently
in the Caribbean and Pacific areas. Furthermore, these are expected to increase in frequency
and magnitude, due to climate change. Thus, the effective investment into the ammonia en-
ergy storage system can be substantially higher than calculated in this work. Additionally,
it should furthermore be noted that building an islanded system requires a high capital
investment, as both the onshore wind capacity and the ammonia energy storage system
must be built. This high capital investment hinders the implementation rate of renewable
technologies in SIDS [4,60–62]. If ammonia is imported as an energy commodity, then it
is possible to reduce the risks associated with the capital investment. It should be noted
that Viti Levu also has good local bagasse (0.08–0.13 USD/kWh), biomass (0.11 USD/kWh),
and hydropower (0.09–0.15 USD/kWh) resources [22], implying less ammonia import
is required. However, a benefit of ammonia is its availability throughout the year as a
commodity, improving resilience and reducing further the reliance on fossil fuels.

Therefore, resilience on small island states is probably best achieved through corpora-
tion with an ammonia supplier abroad. For the case of completely importing ammonia,
Curaçao requires about 83 kt ammonia imported annually, while Viti Levu requires about
164 kt ammonia imported annually. For reference, the announced renewable ammonia
plants account for over 30 Mt ammonia by 2030 [56]. Thus, supply of renewable ammonia
is not expected to be an issue. Based on the aforementioned information, the statements as
shown in Table 3 hold true.

Table 3. Conclusions from the results as found in this work.

Curaçao Viti Levu

Cheapest configuration With ammonia import With ammonia import
Isolated islanded system Economically feasible Not economically feasible

Islanded system including
ammonia imports Economically feasible Not economically feasible

5. Conclusions

Local production of ammonia as an energy storage medium was compared with im-
ported ammonia to make up for the deficits in the electricity produced from onshore wind,
for Curaçao and Viti Levu in Fiji. It was found that importing ammonia is the most feasible
solution for both islands, with a levelized cost of electricity (LCOE) of 0.11 USD/kWh for
Curaçao and 0.37 USD/kWh for Viti Levu. This compares to 0.12 USD/kWh for Curaçao
and 1.10 USD/kWh for Viti Levu for a completely islanded system based on onshore wind
and local ammonia production. These islands represent two extremes in terms of wind
load factor and load consistency with a high, consistent wind load factor for Curaçao and
a low, inconsistent wind load factor for Viti Levu. Thus, the results herein reported are
expected to be applicable for other SIDS. Additional arguments for importing ammonia are
a lower capital investment and the geographic risks due to cyclones and hurricanes in the
Caribbean and Pacific areas. In summary, SIDS can produce electricity from local onshore
wind and imported ammonia in a cost-effective manner at a cost similar to imported fossil
commodities with near-zero emissions.

Future research should be directed to several parts of the project, including (1) the
costs of wind turbines have a significant influence on the final LCOE, thus case-specific
projections are required for more accurate results on the respective SIDS; (2) more accurate
projections on ammonia shipping rates, harbor terminals, storage, and transport infrastruc-
ture on a case-specific basis; and (3) a pilot set-up of the integrated system in a realistic
environment should verify modeling results.
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