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Abstract: Energy production and supply are important challenges for civilisation. Renewable energy
sources present an increased share of the energy supply. Under these circumstances, small-scale
grids operating in small areas as fully functioning energy systems are becoming an interesting
solution. One crucial element to the success of micro-grid structures is the accurate forecasting of
energy consumption by large customers, such as factories. This study aimed to develop a universal
forecasting tool for energy consumption by end-use consumers. The tool estimates energy use based
on real energy-consumption data obtained from a factory or a production machine. This model allows
the end-users to be equipped with an energy demand prediction, enabling them to participate more
effectively in the smart grid energy market. A single, long short-term memory (LSTM)-layer-based
artificial neural network model for short-term energy demand prediction was developed. The model
was based on a manufacturing plant’s energy consumption data. The model is characterised by high
prediction capability, and it predicted energy consumption, with a mean absolute error value of
0.0464. The developed model was compared with two other methodologies.

Keywords: short-term forecasting; energy consumption; microgrids; smart grids; LSTM

1. Introduction

Energy production and supply are undoubtedly crucial issues in modern economies.
Most countries are transforming their energy systems towards cleaner, greener, and entirely
renewable alternatives. Meeting civilisation’s demand requires different approaches to link
energy systems, production, transmission, and consumption. This challenge is typical when
shifting from highly centralised energy production systems toward diffuse production
systems, small-scale energy production systems, and microgrids. Furthermore, renewable
energy sources are characterised by changeable production capacity, where variables
are difficult to predict accurately. In such circumstances, forecasting, including short-
term forecasting, in various nodes of an energy system becomes a vital and scientifically
critical issue.

A microgrid is a small-scale grid. However, it is fully functional, operating in a limited
geographical area; it can operate independently or be connected to a larger grid [1,2].
Worighi et al. [3] presented a smart-grid architecture model. The model is a smart grid
consisting of the main grid and multiple embedded microgrids. The authors underline the
benefits of small-scale grids that can maximise the local resources and reduce economic
and energy losses during the power transmission. They can supply power stability, shift
peak-load demand, and lower carbon emissions [2] (p. 238). The benefits are multidimen-
sional; consumers can control their energy usage in a more flexible, reliable manner while
considering economic factors at the same time [4].

Microgrids complement demand response programs. The demand response relies
upon consumers actively involved in a smart grid, and they can adjust their electricity
consumption during peak times and may benefit financially [5]. Such a program implies
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increasing and reducing energy demand in everyday use; it also refers to load curtailment
through signals sent by the supplier or grid operator [1]. Alotaibi et al. [5] indicated that
the participation of demands is based on economic incentives for consumers arising from the
dynamic pricing framework. Several dynamic pricing modalities have been implemented
for demand response, such as time-of-use, critical peak pricing, real-time pricing, and
day-ahead pricing [5] (p. 19). Various small-scale components, including demand response,
challenge the microgrid’s modelling and planning. As Shulyma et al. [6] stated, the micro-
grid system is characterised by rapidly changing operating modes and configurations.

Smart grids and their applications vary in form and function. Palma-Behnke et al. [7]
introduced a design for a smart microgrid solution for rural, isolated towns in Chile.
Masembe [8] proposed smart grid technologies as a solution for increasing reliability and
reducing power outages. Samad et al. [9] outlined varied smart grid technologies with
industrial use case studies. Keller et al. [10] presented future interaction methods of fac-
tories and smart grids and manufacturing integration. The common approach described
above is that smart grids have modularity, flexibility, and the ability to use different power
sources—renewable and fossil fuels. Smart grids can be stand-alone—as so-called islands
or connect with energy grids. To operate, elements of smart grids must be capable of
communicating. One such method is machine to machine (M2M) to exchange measure-
ment, failure, and diagnostic information. Another method is high-level communication,
performed by humans or artificial agents, connected with decision making about buying,
selling, and bidding energy on automated markets.

The novelty and the main contribution of this study is a developed method of fore-
casting energy consumption by the end-user (factory or machine), along with an example
application. The proposed prediction model was based on long short-term memory (LSTM)
network which allows for using measured energy consumption so far. The proposed
solution makes it possible to predict energy requirements and, based on that, take part as
a consumer or prosumer in the local smart grid or other energy markets. In contrast to
most researchers connected with forecasting energy demand for the prognosis of the entire
national energy market, our proposed solution focused on the end-user perspective, and
forecasting was based on real-sensor-based measurements.

2. Forecasting Methods for Smart Grids

Most researchers focus on the microgrid or smart grid as a larger system—or a scalable
system of systems, e.g., Shahid [11]—in which renewable energy sources are used as power
generators. We can classify groups based on photovoltaic (PV) forecasts and solar irradiance
(W/m2) to estimate cloud structure over time. Proper scheduling and planning of power
system operations need to have an accurate load demand and renewable energy generation
estimation from many sources, particularly in the short term, e.g., an hour ahead or a day
ahead [12]. Therefore, the issue of forecasting concerning smart grids is presented by the
literature as a crucial outcome [2,4,13,14]. Forecasting helps manage the produced energy
in a dispatchable manner [4]. According to Ma and Ma [2] (p. 241), the major forecasting
techniques used in that field can be categorised as statistical parametric or nonparametric
intelligent methods and a hybrid model.

In recent years, scholars have assessed varied strategies and algorithms of forecast-
ing for smart grids. Ahmad et al. [15] proposed a hybrid artificial neural network-based
day-ahead load-forecasting model for smart electricity grids. The authors underlined
the importance of short-term customer load forecasting in smart grids; it might impact
decisions, such as generating capacity scheduling and energy transaction planning [15].
Yaprakdal et al. [12] elaborated bi-directional LSTM units based on a deep recurrent neural
network model to reduce power losses by optimal operational scheduling of reconfigurable
microgrids. Wood [14] applied machine-learning methods for power time-series predic-
tions in the case of the German electricity market. Wang et al. [16] proposed operation
optimisation modelling for microgrids considering distributed generation, environmental
factors, and demand response. Kempener et al. [17], in a guiding document, also under-
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lined the concern of one-to-six-hour-ahead predictions for smart grids. They called them
nowcasting because of the short periods considered.

Studies in the literature classify forecasting techniques in many ways. Two general
approaches need to be considered for this study design. The first type of forecasting tech-
nique is classical methods. They are based on process modelling and statistical analysis
of parameters such as autocorrelation, seasonality, and trends. With classical techniques
based on mathematical process modelling and analysis of time-series data, we can differen-
tiate between other groups, e.g., autoregressive integrated moving average (ARIMA) [18],
autoregressive moving-average models with exogenous input (ARMAX) [19] or seasonal
ARIMA (SARIMA) [20]. Another group of forecasting models is based on identification and
mathematical modelling, e.g., state–space models. The different Kalman filter modifications
can be separated into extended or unscented Kalman filters. Using processing and measure-
ment equations and external sensor data with chosen weights, we can estimate the future
state of a modelled object. Su et al. [21] and Emami et al. [22] used modified Kalman filters
for short-term wind speed and traffic flow predictions. Another approach [23] considers
parametric and nonparametric model usage. The authors of [24] presented also sequential
models for the time-evolving process of energy demand prediction. Lisi and Shah [25]
showed several functional models of next-day forecasting of energy consumption. Basis
functions for energy prediction in the Japan Electric Power Exchange and LASSO method
for choosing optimal parameters were shown by Hirose et al. [26]. Ensemble-based model
for forecasting spot prices in the Italian electricity market was described by Bibi et al. [27].
In addition, another study presented ARMA-based forecasting of the Pakistan electricity
consumption data [28].

In-depth studies identified the two following approaches to forecasting, with a few
crucial limitations:

(a) Requirements and constraints connected with mathematical modelling. Difficul-
ties related to the requirements for accurate mathematical description due to linearity
requirements and data approximation;

(b) Knowledge of parameters and characteristics, e.g., a lack of sensor parameter
limitations, including measurement accuracy from which data are collected (to be used in
determining the confidence weights for the measurement equation of the Kalman filter);

(c) Requirements to fulfil linearity, stationarity, and seasonality assumptions, requiring
earlier time series analysis. Knowledge of what is feasible or connected with various
sources of data uncertainties;

(d) Restrictions from processes and errors connected with measured values in real-
life scenarios, e.g., errors in data series, empty values, time series parameters such as
nonlinearity, seasonality, or trend.

Beyond these classical methods, a group of methods is based on machine learning
techniques. We can distinguish techniques such as support vector machines (SVMs), con-
volutional neural networks (CNNs), and LSTM. The specificity of these methods was
further analysed, considering their use related to the subject of these studies by others.
Zhang et al. [29] used the SVM technique for PV fault detection problem prediction. Artifi-
cial neural networks of diverse types and architectures are often used in topics related to
energy forecasting; developing a neural network model trains the network to recognise
patterns based on input and output data. The first category of the artificial neural network
is CNN, the main application of which is image recognition. Del Real et al. [30] described
a CNN model that recognised energy demand on the French power grid. The second
category is a recurrent neural network (RNN) model, commonly used in speech and text
recognition. Kang et al. [31] compared CNN and RNN and hybrid models in forecast-
ing power demands using the Korean energy grid data. Kumar et al. [32] chose models
based on LSTM and gated recurrent unit (GRU) networks to forecast household electricity
consumption. Mele et al. [33] illustrated self-organising maps and k-nearest neighbours
(KNNs) as other examples of machine learning techniques adopted in energy forecasting.
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Konstantinou et al. [34] proposed a prediction model based on the LSTM artifi-
cial neural network to predict power levels generated by PV stations over 1.5 h ahead.
Ahn et al. [35] proposed a PV forecast RNN-based short-term algorithm based on measure-
ments of power internet of things (IoT) sensors. Brahma et al. [36] proposed deep neural
networks to create a daily forecasting model to predict solar irradiance based on a historical
dataset with a range of 36 years. Jeon et al. [37] suggested a different approach, using the
Korean meteorological service’s next-day weather forecasts (i.e., temperature, humidity,
and wind speed). Four different methods in the scope of forecasting electricity energy
consumption were compared by Bilgili et al. [38]. Pen et al. [39] used wavelet transform to
increase the accuracy of LSTM networks. Adapting a genetic algorithm to choose optimal
hyperparameters for forecasting the LSTM network was also presented [40].

Pena-Gallardo et al. [41] showed that machine learning methods have better perfor-
mance than ARIMA but need more time for training and retraining, whereas ARIMA
cofactors are computed only once. Pao [42] compared an artificial neural network (ANN)
with the ARMAX model to predict energy consumption. The analysis shows that the ANN
model is better at identifying nonlinearities and nonlinear effects. However, despite the
growing popularity of smart grids and connected technologies, the literature shows that
existing models and techniques are case-specific and focus on forecasts of energies gener-
ated by smart grids or renewable energy sources because different factors relate to creating
prediction models based on neural networks. We identify problems with obtaining datasets,
features engineering, measurement quality, computation time, and solutions quality.

Different research groups have used LSTM-based models and their different variants
to forecast energy consumption. Wang et al. [43] studied the LSTM network in terms of
its application for periodic time-series prediction. Their model’s prediction performance
was higher than traditional forecasting methods based on a statistical approach, e.g.,
autoregressive moving average (ARMA) or autoregressive fractional integrated moving
average (ARFIMA) models. The paper also emphasised LSTM’s capacity for generalisation.
Laib et al. [44] proposed a hybrid architecture with an LSTM network for the prediction of
natural gas consumption, with a multilayer perceptron neural network.

Among the disadvantages, Deligiannidis et al. [45] showed that RNNs could have
comparable prediction performance but with a smaller number of units. Additionally,
Kaur et al. [46] showed that LSTM-based solutions could be inferior to RNN-based net-
works in smaller datasets. Choi et al. [47] proposed a different approach for forecasting, by
using ANN models with an ensemble of different LSTM networks, resulting in adaptive
weighting. Ahmed et al. [48] showed the limitations of LSTM networks in comparison to
techniques for PV solar power forecasting. Then, they proposed their derivatives, named
deep LSTM, and different solutions of deep convolutional neural networks (DCNNs), as
future alternatives.

Sun et al. [49] compared different forecasting methods in building energy prediction.
Among others, ANN has a higher percentage of use among considered studies. However,
in second place are support vector regression (SVR) models. The third place is occupied
by models based on ensemble methods. In the fourth position are deep learning models.
Somu et al. [50] proposed kCNN-LSTM, a deep learning framework for building energy de-
mand predictions. Luo et al. [51] presented a different approach—a physically constrained
LSTM to limit models from generating unrealistic results.

This study aimed to develop a universal forecasting tool intended for energy consump-
tion forecasts by end-use consumers. The developed tool estimates energy use based on
real data and energy used by specific equipment. The forecasting model provides end-users
with information on energy use prognosis, allowing them to participate in the smart grid
energy market in an economically beneficial manner.

The developed solution allows the end-users to forecast factory energy requirements
from minutes to four hours ahead, using the previous 24 h supply data. It combines
solutions to two opposing problems using neural networks, multiple datasets for the
learning process, and the complicated design of ANN architecture. Expensive, proprietary
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software packages dedicated to scientific research were not used for the program, making it
more feasible to implement. The model can use only one variable to forecast data prediction,
which simplifies its use and makes it practical in industrial environments. The systematic
summary of methods employed by scholars in the field of energy forecasting is presented
in Table 1 below.

Table 1. The summary of research studies associated with energy forecasting.

References Main Area of Work Described in Paper Methods/Algorithms Used

[2,18,19] Summary of forecasting methods
for microgrids ARIMA, ARMAX, ANN, others

[4,29] Weather prediction for microgrids Artificial intelligence methods

[12,31–33] Short-term operation management
and forecasting Deep neural networks, ANN

[13] Forecasting for Smart Cities Hybrid algorithms

[14,34–37] Wind and solar energy prediction Transparent open box algorithm

[18,38,41] ARIMA vs. LSTM LSTM

[21,22] Modelling of electricity consumption in
changing environment

Kalman filters, Model
Predictive Control

[23–28] Electricity market forecasting Parametric and nonparametric
approach, statistical methods

3. Proposed Methodology
3.1. Proposed Machine Learning Model and Data Characteristics

The proposed machine learning model needs to take into consideration the follow-
ing limitations:

(1) Energy use data—the time range for which forecasting is made;
(2) Application for the end-user—the model needs to forecast energy consumption with-

out the employment of expensive software, and therefore, the proposed solution is a
utility that is easy to use and does not require knowledge in forecasting techniques;

(3) The character of the measurement data—the shape of the input vector and the number
of data points impact the preparation of training and test datasets;

(4) Automation of energy prediction forecasting.

3.1.1. Dataset Exploited in this Study

The dataset used for the energy consumption forecast was acquired by recording
energy use in a manufacturing plant. The measurements were recorded with PQ BOX 100,
a portable analyser of power quality parameters. The energy (W) measurements used in the
proposed model were 8640 samples taken at intervals of 10 s over 24 h (360 per hour). The
basic statistical characteristics of the data are described in Table 2, and the values are shown
in Figure 1. The presented measurements show the total electricity used by all pieces of
equipment in the manufacturing plant, which is located in the northeast of Poland.

Table 2. Basic characteristics of the dataset.

Number of samples 8640
Mean value 122,241.410

Standard deviation 64,964.959
Minimum value 20,386.545
Maximum value 241,949.547

Q1 72,733.056
Median 82,668.418

Q3 203,871.187
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Figure 1. Measurement data graph—24 h.

Figure 1 presents highly nonlinear energy measurements with rapid changes in values
and a broad range of amplitude.

3.1.2. Machine Learning Model

Due to the limitations and requirements described in Section 2 and the character of
measurement data, the authors considered using an RNN—a class of ANN that has an
internal memory state and the ability to process past time inputs. The disadvantage of
RNN is that this group of ANN can only remember short-term information. Manowska [52]
presented LSTM neural networks as a type of RNN with a feedback loop. This feature
allows them to overcome temporary memory barriers and use them as a default choice
in forecasting models. LSTM, described as such by Hochreiter et al. [53] due to the above
properties, was also used in handwriting recognition tasks [54]. Sak et al. [55] used LSTM
as architecture for large-scale acoustic modelling. Wu et al. [56] defined Google’s Neural
Machine Translation (GNMT) system as composed of a deep LSTM network with eight
encoder and decoder layers. The LSTM unit can be defined by Equations (1)–(6) as follows:

ft = σg

(
W f × xt + U f × ht−1 + b f

)
(1)

it = σg(Wi × xt + Ui × ht−1 + bi) (2)

ot = σg(Wo × xt + Uo × ht−1 + bo) (3)

c′t = σc(Wc × xt + Uc × ht−1 + bc) (4)

ct = ft·ct−1 + it·c′t (5)

ht = ot·σc(ct) (6)

where
x(t)—LSTM unit input at time step;
o(t)—LSTM unit output at time step;
Wf, Wi, Wo, Wc, Uf, Ui, Uo, Uc—weight matrices;
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bf, bi, bo, bc—biases;
σg—sigmoid function;
σc—tanh function;
ft—forget LSTM gate;
it—input LSTM gate;
ot—output LSTM gate;
ct—cell state LSTM gate;
ht—hidden LSTM gate.
The models proposed in this study were developed using the Keras framework, and

computations were performed using a CUDA graphic processing unit (Geforce 1060 with
6 GB of memory). The LSTM model has two neural network layers. The first one is the
LSTM layer, and the second one is the dense layer. The network structure is shown in
Table 3 and Figure 2. The network parameters of the LTSM model were chosen to allow for
computations on a mid-range computer in a reasonable time.

Table 3. Model layers parameters.

Layer Type Number of Units Number of Params

LSTM 128 66,560
Danse 1 129

Total params 66,689
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The number of epochs was selected as 50, and increasing that value did not signifi-
cantly enhance the learning process. The Adam optimiser algorithm was chosen, allowing
for the first-order gradient-based optimisation of stochastic objective functions, described
by Kingma et al. [57], with a 0.0001 value. The dataset was split into 80 per cent of data for
training and 20 per cent for testing.

Before training, the dataset needed to be rescaled by so-called robust data scaling,
provided by the scikit-learn library, as described by Pedregosa et al. [58]. The robust trans-
formation is based on the median and interquartile range rather than the mean and standard
deviation. Equation (7) shows how each value was scaled before the learning process.

Value = (value −median)/(Q75 − Q25) (7)

3.2. Deep Learning Process

The learning process described in this study is shown in Figure 3. The first step was to
load the measurement data, e.g., in the .csv file format. The next step was preprocessing
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and splitting data into training and test sets. After that, the model was created by choosing
different values for the number of units in the LSTM layer and different prediction time
steps. The last step was evaluating the model by comparing data from the prediction with
the test set.
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4. Results

The results of different forecasting lengths are shown in Table 4 (1–3). The model
learning loss plot is shown in Figure 4. Figure 5 shows the similarity of true (test data) and
predicted (model result) values. The learning process took from 350 to 500 s.

Table 4. Comparison of prediction evaluation metrics for performed forecasts.

Parameter Prediction 1 h
(360 Points)

Prediction 2 h
(720 Points)

Prediction 3 h
(1080 Points)

Prediction 4 h
(1440 Points)

1 Single-layer LSTM
mean-squared error 0.0112 0.0087 0.0084 0.0067

2 Single-layer LSTM
mean absolute error 0.0524 0.0464 0.0487 0.0476

3 Single-layer LSTM
cosine similarity 0.9039 0.9080 0.9195 0.9105

4 Double-layer LSTM
mean-squared error 0.0119 0.0102 0.0111 0.0085

5 Double-layer LSTM
mean absolute error 0.0714 0.0486 0.0494 0.0389

6 Double-layer LSTM
cosine similarity 0.8565 0.9467 0.9588 0.9378

7 CNN network
mean-squared error 0.0178 0.0497 0.1420 0.0885
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Table 4. Cont.

Parameter Prediction 1 h
(360 Points)

Prediction 2 h
(720 Points)

Prediction 3 h
(1080 Points)

Prediction 4 h
(1440 Points)

8 CNN network
mean absolute error 0.0844 0.1737 0.3272 0.2322

9 CNN network
cosine similarity 0.8504 0.2058 −0.32133 0.5397
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The proposed method was compared with two alternate network processes. The
first is a double-layered LSTM network—one layer of 128 units and another of 64 units.
Table 4 (4–6) shows the results. The second type of network is based on CNN architecture.
The convolution layer comprises 32 filters of kernel size equal to 3 with the activation
function relu. Then, there is a MaxPooling layer, with a pool size equal to two. Next, there
is the flattened and dense layer. The mean-squared error metric as a loss function was used
for learning the Adam optimiser. Table 4 (7–9) presents the results of the prediction metrics.
Among them, mean-squared error (MSE), mean absolute error (MAE), and cosine similarity
(CS) were used, which are defined in Equations (8)–(10). The learning graphs of all three
network types are shown in Figures 6–9. All networks described in this study were created
with Keras and TensorFlow frameworks.

MSE =
1
n

n

∑
i=1

(
Yi − Ŷi

)2 (8)

MAE =
1
n

n

∑
i=1

(∣∣Yi − Ŷi
∣∣) (9)

CS = cos(θ) =
A·B

‖A‖ ‖B‖ =
∑n

i=1 AiBi√
∑n

i=1 A2
i

√
∑n

i=1 B2
i
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Results for single-layer LSTM gathered in Table 4 show a decrease in error values for
MSE and MAE metrics with an increase in prediction horizon (rows 1 and 2). The same
result is shown in Figures 6–9, when, after the decrease in error values, in the first few
epochs, the level is constant. Cosine similarity (row 3) error value stays between 0.9039 and
0.9105 despite its 4 times longer prediction. Rows 4 and 5 show similar behaviour—with
the difference being that the decrease in error value takes longer (up to 20 epochs). Cosine
similarity is more fluctuated (row 6). The CNN network (rows 7–9) has the most fluctuating
behaviour among error value plots. Figures 8 and 9 show peaks of error value increase. The
longer the forecasting time, the more changeability can be observed. Another disadvantage
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of the CNN network in comparison with single-layer LSTM and double-layer LSTM is the
trend of increased error values with an increase in computation epochs.
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Figures 6–9 present the properties of the single LSTM network as the model with
the fastest converging learning rate (blue). In contrast, the model with double LSTM
layers (red) has a slower learning rate, vulnerable to overfitting, and requires more memory
resources; the CNN layer (yellow) is sensitive to the length of the data forecast. Furthermore,
Figures 8 and 9 demonstrate that the longer the data prediction, the higher the instability,
error, and learning rate. The CNN network is vulnerable to overfitting, creating a large
scatter of results. Thus, the single-layer LSTM network shows the best convergence in the
learning rate, which means the fastest minimisation of the error value.

Additional comparison of forecasts accuracy was carried out with the Diebold–Mariano
(DM) test [59,60] application. In Table 5, results (p-values) of forecasting accuracy are pre-
sented for the shortest (1 h) forecast. Values in the table (Table 5) confirm better accuracy of
the single-layer LSTM model in comparison to double-layer LSTM and CNN models. In
fact, both LSTM models achieved better accuracy than the CNN model. As DM test results
for other forecasting periods yield values very close to 0 or 1, the presentation of these data
was considered as not contributing significantly to the discussed issue. However, it affirms
what is observed in the case of 1 h forecasts. The obtained undifferentiated results of the
DM test for longer forecasts (2 h and more) are possibly caused by the immanent qualities
of the DM test in these types of data.

Table 5. Results of the Diebold–Mariano tests for 1 h forecasting accuracy with the null hypothesis
that the model in the row predicts more precisely than the model in the column.

Models Single-Layer LSTM Double-Layer LSTM CNN Layers

Single-layer LSTM - 0.70 0.99

Double-Layer LSTM 0.30 - 0.99

CNN layers <0.0001 <0.0001 -

5. Discussion

This study aimed to develop a useful model to forecast energy consumption in a
short-term future window (0–4 h) based on previous energy use data. The proposed model
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can predict energy demand based on only one measurement—energy consumption. The
selection of LSTM as an ANN layer proved to be optimal for the above task and is a good
compromise between the simplicity of network architecture and computation time. As
shown in Figures 6–9, the proposed model with a single LSTM layer rapidly converges and
maintains a constant and low value of error. This is especially important due to fact that
forecasting energy consumption is measured at 10 s intervals. This feature of our model
highlights its potential in application areas in the industry where there are rapidly changing
values of measurement data.

In comparison with developed solutions, the more complicated double-layer LSTM
model requires more epochs to successfully converge and minimise its error values. The
CNN model shows the greatest instability and peaks of error values. Moreover, in the
case of highly nonlinear data or when convergence time will not be a priority, our model
can be expanded by adding new LSTM layers. Another advantage of the proposed model
is its ability to be integrated into the so-called forecasting machine learning pipeline
for constantly forecasting new prognoses. Due to the development of the model with
industry-standard software—namely, the Keras framework and Python language—instead
of academic-only statistical software, our proposed model can be easily integrated into
other machine learning applications. The Diebold–Mariano test was used to compare
forecasting accuracy.

The energy consumption forecasting method proposed in this study is feasible to
adapt to an industry environment without specialised forecasting knowledge. Only the
measurements of energy consumption data are required. Next to the economic benefits
associated with the ability to predict power demand, it will allow manufacturers to become
active players in the microgrid energy markets. Predicting energy consumption makes
it possible to optimise the purchase, sale, and use of energy, and it provides flexibility
and increases resilience to supply disruptions. The following systems are architectures for
automated energy market design in smart grids and microgrids. Electricity consumption
will be constantly increasing and access to the proposed tool allows prosumers (consumers
with the ability to sell energy) to optimise financial gains.

Currently, new studies in the area of energy forecasting are focused on increasing the
accuracy of predictions using LSTM networks along with other types of algorithms—the
so-called hybrids methods. Extension of LSTM by connecting it with singular spectrum
analysis was propped by Jin et al. [61]. LSTM network was connected with a CNN network
to increase the ability of precise prediction by Agga et al. [62]. Another hybrid model was
developed by the connection of random forests and LSTM algorithms layers [63].

Ultimately, it should be stated that the forecasting model based on the single-layer
LSTM network proposed by the authors shows an acceptable compromise between accuracy
and computation time and requirements. Th authors emphasise industrial application
possibilities related to the use of this forecasting model, e.g., for the prediction of a factory’s
energy consumption, with up to 4 h horizon.

6. Conclusions

From the perspective of end-users, energy consumption forecast is the barrier that
limits the adoption and use of smart grids. In this study, the authors developed a model
for short-term (0–4 h) energy demand prediction based on a manufacturing plant’s mea-
surement data. The presented model is adaptable to different manufacturing companies;
it requires only previous energy use data. According to the data gathered in Table 3, a
single-layer LSTM model can predict energy utilisation, with a mean absolute error value
of 0.0464, which shows good model prediction capabilities. Additional visual inspection of
Figure 5 shows a lack of differences between real and predicted values.

The single-layer LSTM model was also compared with two other approaches: the first
was the double-layer LSTM, and the second was the CNN-based model. The double-layer
LSTM has a slower convergence rate and higher memory and GPU time requirements
due to more LSTM units. The CNN approach shows a lack of stability and the need
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for a larger dataset which can be unfeasible in real manufacturing scenarios. The model
presented by the authors allows end-users to optimise energy utilisation costs by delivering
forecasts of energy use. In environments with limited power line throughput, it can be
used as a tool for optimisation of machine load and scheduling production plans according
to energy utilisation requirements of factory equipment. In future research, forecasting
apparent and reactive power will be considered and our model will be expanded to include
weather parameters. The authors plan to use hybrid or ensemble models to increase the
accuracy of the forecasting model, e.g., by using larger datasets with more features and
hyperparameter optimisation.

Author Contributions: Conceptualisation, W.U.; methodology, W.U. and M.S.; validation, W.U. and
M.S.; formal analysis, W.U. and M.S.; investigation, W.U. and M.S., data curation, W.U. and M.S.;
writing—original draft preparation, W.U. and M.S.; writing—review and editing, W.U. and M.S.;
visualisation, M.S.; coding, M.S., supervision, W.U.; project administration, W.U. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by a grant from the Minister of Science and Higher Education
received by the Bialystok University of Technology, Grant Number W/WIZ/3/2022.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Considine, T.; Cox, W.; Cazalet, E.G. Understanding Microgrids as the Essential Architecture of Smart Energy. In Proceedings of

the Grid-Interop Forum 2012, Irving, TX, USA, 3–6 December 2012. [CrossRef]
2. Ma, J.; Ma, X. A Review of Forecasting Algorithms and Energy Management Strategies for Microgrids. Syst. Sci. Control. Eng.

2018, 6, 237–248. [CrossRef]
3. Worighi, I.; Maach, A.; Hafid, A.; Hegazy, O.; Van Mierlo, J. Integrating Renewable Energy in Smart Grid System: Architecture,

Virtualization and Analysis. Sustain. Energy Grids Netw. 2019, 18, 100226. [CrossRef]
4. Sabzehgar, R.; Amirhosseini, D.Z.; Rasouli, M. Solar Power Forecast for a Residential Smart Microgrid Based on Numerical

Weather Predictions Using Artificial Intelligence Methods. J. Build. Eng. 2020, 32, 101629. [CrossRef]
5. Alotaibi, I.; Abido, M.A.; Khalid, M.; Savkin, A.V. A Comprehensive Review of Recent Advances in Smart Grids: A Sustainable

Future with Renewable Energy Resources. Energies 2020, 13, 6269. [CrossRef]
6. Shulyma, O.; Shendryk, V.; Baranova, I.; Marchenko, A. The Features of the Smart MicroGrid as the Object of Information

Modeling. In Information and Software Technologies, 2nd ed.; Dregvaite, G., Damasevicius, R., Eds.; Communications in Computer
and Information Science; Springer International Publishing: Cham, Switzerland, 2014; Volume 465, pp. 12–23. [CrossRef]

7. Palma-Behnke, R.; Reyes, L.; Jimenez-Estevez, G. Smart Grid Solutions for Rural Areas. In Proceedings of the 2012 IEEE Power
and Energy Society General Meeting, San Diego, CA, USA, 22–26 July 2012; pp. 1–6. [CrossRef]

8. Masembe, A. Reliability Benefit of Smart Grid Technologies: A Case for South Africa. J. Energy S. Afr. 2015, 26, 2–9. [CrossRef]
9. Samad, T.; Kiliccote, S. Smart Grid Technologies and Applications for the Industrial Sector. Comput. Chem. Eng. 2012, 47, 76–84.

[CrossRef]
10. Keller, F.; Schultz, C.; Simon, P.; Braunreuther, S.; Glasschröder, J.; Reinhart, G. Integration and Interaction of Energy Flexible

Manufacturing Systems within a Smart Grid. Procedia CIRP 2017, 61, 416–421. [CrossRef]
11. Shahid, A. Smart Grid Integration of Renewable Energy Systems. In Proceedings of the 2018 7th International Conference on

Renewable Energy Research and Applications (ICRERA), Paris, France, 14–17 October 2018; pp. 944–948. [CrossRef]
12. Yaprakdal, F.; Yılmaz, M.B.; Baysal, M.; Anvari-Moghaddam, A. A Deep Neural Network-Assisted Approach to Enhance

Short-Term Optimal Operational Scheduling of a Microgrid. Sustainability 2020, 12, 1653. [CrossRef]
13. Elattar, E.E.; Sabiha, N.A.; Alsharef, M.; Metwaly, M.K.; Abd-Elhady, A.M.; Taha, I.B.M. Short Term Electric Load Forecasting

Using Hybrid Algorithm for Smart Cities. Appl. Intell. 2020, 50, 3379–3399. [CrossRef]
14. Wood, D.A. Hourly-Averaged Solar plus Wind Power Generation for Germany 2016: Long-Term Prediction, Short-Term

Forecasting, Data Mining and Outlier Analysis. Sustain. Cities Soc. 2020, 60, 102227. [CrossRef]
15. Ahmad, A.; Javaid, N.; Mateen, A.; Awais, M.; Khan, Z.A. Short-Term Load Forecasting in Smart Grids: An Intelligent Modular

Approach. Energies 2019, 12, 164. [CrossRef]
16. Wang, Y.; Huang, Y.; Wang, Y.; Li, F.; Zhang, Y.; Tian, C. Operation Optimization in a Smart Micro-Grid in the Presence of

Distributed Generation and Demand Response. Sustainability 2018, 10, 847. [CrossRef]
17. Kempener, R.; Komor, P.; Hoke, A. Smart Grids and Renewables, A Guide for Effective Deployment, Working Paper. Available

online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2013/smart_grids.pdf?la=en&hash=08F3E571
B5580F017E70BCD1EC39864536681ADB (accessed on 8 October 2021).

http://doi.org/10.13140/2.1.1157.8564
http://doi.org/10.1080/21642583.2018.1480979
http://doi.org/10.1016/j.segan.2019.100226
http://doi.org/10.1016/j.jobe.2020.101629
http://doi.org/10.3390/en13236269
http://doi.org/10.1007/978-3-319-11958-8_2
http://doi.org/10.1109/PESGM.2012.6345389
http://doi.org/10.17159/2413-3051/2015/v26i3a2124
http://doi.org/10.1016/j.compchemeng.2012.07.006
http://doi.org/10.1016/j.procir.2016.11.250
http://doi.org/10.1109/ICRERA.2018.8566827
http://doi.org/10.3390/su12041653
http://doi.org/10.1007/s10489-020-01728-x
http://doi.org/10.1016/j.scs.2020.102227
http://doi.org/10.3390/en12010164
http://doi.org/10.3390/su10030847
https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2013/smart_grids.pdf?la=en&hash=08F3E571B5580F017E70BCD1EC39864536681ADB
https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2013/smart_grids.pdf?la=en&hash=08F3E571B5580F017E70BCD1EC39864536681ADB


Energies 2022, 15, 3382 15 of 16

18. Siami-Namini, S.; Tavakoli, N.; Siami Namin, A. A Comparison of ARIMA and LSTM in Forecasting Time Series. In Pro-
ceedings of the 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), Orlando, FL, USA,
17–20 December 2018; pp. 1394–1401. [CrossRef]

19. Yang, H.-T.; Huang, C.-M.; Huang, C.-L. Identification of ARMAX Model for Short Term Load Forecasting: An Evolutionary
Programming Approach. IEEE Trans. Power Syst. 1996, 11, 403–408. [CrossRef]

20. Fang, T.; Lahdelma, R. Evaluation of a Multiple Linear Regression Model and SARIMA Model in Forecasting Heat Demand for
District Heating System. Appl. Energy 2016, 179, 544–552. [CrossRef]

21. Su, W.; Wang, J.; Zhang, K.; Huang, A.Q. Model Predictive Control-Based Power Dispatch for Distribution System Considering
Plug-in Electric Vehicle Uncertainty. Electr. Power Syst. Res. 2014, 106, 29–35. [CrossRef]

22. Emami, A.; Sarvi, M.; Asadi Bagloee, S. Using Kalman Filter Algorithm for Short-Term Traffic Flow Prediction in a Connected
Vehicle Environment. J. Mod. Transport. 2019, 27, 222–232. [CrossRef]

23. Shah, I.; Bibi, H.; Ali, S.; Wang, L.; Yue, Z. Forecasting One-Day-Ahead Electricity Prices for Italian Electricity Market Using
Parametric and Nonparametric Approaches. IEEE Access 2020, 8, 123104–123113. [CrossRef]

24. Aykroyd, G.R.; Alfaer, N. Sequential Models for Time-evolving Regression Problems with an Application to Energy Demand
Prediction. Stoch. Modeling Appl. 2016, 20, 1–16.

25. Lisi, F.; Shah, I. Forecasting Next-Day Electricity Demand and Prices Based on Functional Models. Energy Syst. 2020, 11, 947–979.
[CrossRef]

26. Hirose, K.; Wada, K.; Hori, M.; Taniguchi, R. Event Effects Estimation on Electricity Demand Forecasting. Energies 2020, 13, 5839.
[CrossRef]

27. Bibi, N.; Shah, I.; Alsubie, A.; Ali, S.; Lone, S.A. Electricity Spot Prices Forecasting Based on Ensemble Learning. IEEE Access 2021,
9, 150984–150992. [CrossRef]

28. Shah, I.; Iftikhar, H.; Ali, S. Modeling and Forecasting Medium-Term Electricity Consumption Using Component Estimation
Technique. Forecasting 2020, 2, 163–179. [CrossRef]

29. Zhang, W.; Zhang, H.; Liu, J.; Li, K.; Yang, D.; Tian, H. Weather Prediction with Multiclass Support Vector Machines in the Fault
Detection of Photovoltaic System. IEEE/CAA J. Autom. Sinica 2017, 4, 520–525. [CrossRef]

30. del Real, A.J.; Dorado, F.; Durán, J. Energy Demand Forecasting Using Deep Learning: Applications for the French Grid. Energies
2020, 13, 2242. [CrossRef]

31. Kang, T.; Lim, D.Y.; Tayara, H.; Chong, K.T. Forecasting of Power Demands Using Deep Learning. Appl. Sci. 2020, 10, 7241.
[CrossRef]

32. Kumar, S.; Hussain, L.; Banarjee, S.; Reza, M. Energy Load Forecasting Using Deep Learning Approach-LSTM and GRU in Spark
Cluster. In Proceedings of the 2018 Fifth International Conference on Emerging Applications of Information Technology (EAIT),
Kolkata, India, 12–13 January 2018; pp. 1–4. [CrossRef]

33. Mele, E.; Elias, C.; Ktena, A. Machine Learning Platform for Profiling and Forecasting at Microgrid Level. Electr. Control. Commun.
Eng. 2019, 15, 21–29. [CrossRef]

34. Konstantinou, M.; Peratikou, S.; Charalambides, A.G. Solar Photovoltaic Forecasting of Power Output Using LSTM Networks.
Atmosphere 2021, 12, 124. [CrossRef]

35. Ahn, H.K.; Park, N. Deep RNN-Based Photovoltaic Power Short-Term Forecast Using Power IoT Sensors. Energies 2021, 14, 436.
[CrossRef]

36. Brahma, B.; Wadhvani, R. Solar Irradiance Forecasting Based on Deep Learning Methodologies and Multi-Site Data. Symmetry
2020, 12, 1830. [CrossRef]

37. Jeon, B.; Kim, E.-J. Next-Day Prediction of Hourly Solar Irradiance Using Local Weather Forecasts and LSTM Trained with
Non-Local Data. Energies 2020, 13, 5258. [CrossRef]

38. Bilgili, M.; Arslan, N.; Sekertekin, A.; Yasar, A. Application of long short-term memory (LSTM) neural network based on deep
learning for electricity energy consumption forecasting. Turk. J. Elec. Eng. Comp. Sci. 2022, 30, 140–157. [CrossRef]

39. Peng, L.; Wang, L.; Xia, D.; Gao, Q. Effective Energy Consumption Forecasting Using Empirical Wavelet Transform and Long
Short-Term Memory. Energy 2022, 238, 121756. [CrossRef]

40. Luo, X.J.; Oyedele, L.O. Forecasting Building Energy Consumption: Adaptive Long-Short Term Memory Neural Networks Driven
by Genetic Algorithm. Adv. Eng. Inform. 2021, 50, 101357. [CrossRef]

41. Pena-Gallardo, R.; Medina-Rios, A. A Comparison of Deep Learning Methods for Wind Speed Forecasting. In Proceedings of the
2020 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), Ixtapa, Mexico, 4–6 November 2020;
pp. 1–6. [CrossRef]

42. Pao, H. Comparing Linear and Nonlinear Forecasts for Taiwan’s Electricity Consumption. Energy 2006, 31, 2129–2141. [CrossRef]
43. Wang, J.Q.; Du, Y.; Wang, J. LSTM Based Long-Term Energy Consumption Prediction with Periodicity. Energy 2020, 197, 117197.

[CrossRef]
44. Laib, O.; Khadir, M.T.; Mihaylova, L. Toward Efficient Energy Systems Based on Natural Gas Consumption Prediction with LSTM

Recurrent Neural Networks. Energy 2019, 177, 530–542. [CrossRef]
45. Deligiannidis, S.; Mesaritakis, C.; Bogris, A. Performance and Complexity Evaluation of Recurrent Neural Network Models for

Fibre Nonlinear Equalization in Digital Coherent Systems. In 2020 European Conference on Optical Communications (ECOC); IEEE:
Brussels, Belgium, 2020; pp. 1–4. [CrossRef]

http://doi.org/10.1109/ICMLA.2018.00227
http://doi.org/10.1109/59.486125
http://doi.org/10.1016/j.apenergy.2016.06.133
http://doi.org/10.1016/j.epsr.2013.08.001
http://doi.org/10.1007/s40534-019-0193-2
http://doi.org/10.1109/ACCESS.2020.3007189
http://doi.org/10.1007/s12667-019-00356-w
http://doi.org/10.3390/en13215839
http://doi.org/10.1109/ACCESS.2021.3126545
http://doi.org/10.3390/forecast2020009
http://doi.org/10.1109/JAS.2017.7510562
http://doi.org/10.3390/en13092242
http://doi.org/10.3390/app10207241
http://doi.org/10.1109/EAIT.2018.8470406
http://doi.org/10.2478/ecce-2019-0004
http://doi.org/10.3390/atmos12010124
http://doi.org/10.3390/en14020436
http://doi.org/10.3390/sym12111830
http://doi.org/10.3390/en13205258
http://doi.org/10.3906/elk-2011-14
http://doi.org/10.1016/j.energy.2021.121756
http://doi.org/10.1016/j.aei.2021.101357
http://doi.org/10.1109/ROPEC50909.2020.9258673
http://doi.org/10.1016/j.energy.2005.08.010
http://doi.org/10.1016/j.energy.2020.117197
http://doi.org/10.1016/j.energy.2019.04.075
http://doi.org/10.1109/ECOC48923.2020.9333288


Energies 2022, 15, 3382 16 of 16

46. Kaur, D.; Islam, S.N.; Mahmud, M.A.; Dong, Z. Energy Forecasting in Smart Grid Systems: A Review of the State-of-the-Art
Techniques. arXiv 2020, arXiv:2011.12598.

47. Choi, J.Y.; Lee, B. Combining LSTM Network Ensemble via Adaptive Weighting for Improved Time Series Forecasting. Math.
Probl. Eng. 2018, 2018, 2470171. [CrossRef]

48. Ahmed, R.; Sreeram, V.; Mishra, Y.; Arif, M.D. A Review and Evaluation of the State-of-the-Art in PV Solar Power Forecasting:
Techniques and Optimization. Renew. Sustain. Energy Rev. 2020, 124, 109792. [CrossRef]

49. Sun, Y.; Haghighat, F.; Fung, B.C.M. A Review of The-State-of-the-Art in Data-Driven Approaches for Building Energy Prediction.
Energy Build. 2020, 221, 110022. [CrossRef]

50. Somu, N.; Raman, M.R.G.; Ramamritham, K. A Deep Learning Framework for Building Energy Consumption Forecast. Renew.
Sustain. Energy Rev. 2021, 137, 110591. [CrossRef]

51. Luo, X.; Zhang, D.; Zhu, X. Deep Learning Based Forecasting of Photovoltaic Power Generation by Incorporating Domain
Knowledge. Energy 2021, 225, 120240. [CrossRef]

52. Manowska, A. Using the LSTM Network to Forecast the Demand for Electricity in Poland. Appl. Sci. 2020, 10, 8455. [CrossRef]
53. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
54. Graves, A.; Liwicki, M.; Fernandez, S.; Bertolami, R.; Bunke, H.; Schmidhuber, J. A Novel Connectionist System for Unconstrained

Handwriting Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31, 855–868. [CrossRef]
55. Sak, H.; Senior, A.; Beaufays, F. Long Short-Term Memory Based Recurrent Neural Network Architectures for Large Vocabulary

Speech Recognition. arXiv 2014, arXiv:1402.1128.
56. Wu, Y.; Schuster, M.; Chen, Z.; Le, Q.V.; Norouzi, M.; Macherey, W.; Krikun, M.; Cao, Y.; Gao, Q.; Macherey, K.; et al. Google’s

Neural Machine Translation System: Bridging the Gap between Human and Machine Translation. arXiv 2016, arXiv:1609.08144.
57. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017, arXiv:1412.6980.
58. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Müller, A.; Nothman, J.;

Louppe, G.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [CrossRef]
59. Diebold, F.X.; Mariano, R.S. Comparing Predictive Accuracy. J. Bus. Econ. Stat. 2002, 20, 134–144. [CrossRef]
60. Shah, I.; Iftikhar, H.; Ali, S.; Wang, D. Short-term electricity demand forecasting using components estimation technique. Energies

2019, 12, 2532. [CrossRef]
61. Jin, N.; Yang, F.; Mo, Y.; Zeng, Y.; Zhou, X.; Yan, K.; Ma, X. Highly Accurate Energy Consumption Forecasting Model Based on

Parallel LSTM Neural Networks. Adv. Eng. Inform. 2022, 51, 101442. [CrossRef]
62. Agga, A.; Abbou, A.; Labbadi, M.; Houm, Y.E.; Ou Ali, I.H. CNN-LSTM: An Efficient Hybrid Deep Learning Architecture for

Predicting Short-Term Photovoltaic Power Production. Electr. Power Syst. Res. 2022, 208, 107908. [CrossRef]
63. Karijadi, I.; Chou, S.-Y. A Hybrid RF-LSTM Based on CEEMDAN for Improving the Accuracy of Building Energy Consumption

Prediction. Energy Build. 2022, 259, 111908. [CrossRef]

http://doi.org/10.1155/2018/2470171
http://doi.org/10.1016/j.rser.2020.109792
http://doi.org/10.1016/j.enbuild.2020.110022
http://doi.org/10.1016/j.rser.2020.110591
http://doi.org/10.1016/j.energy.2021.120240
http://doi.org/10.3390/app10238455
http://doi.org/10.1162/neco.1997.9.8.1735
http://doi.org/10.1109/TPAMI.2008.137
http://doi.org/10.48550/ARXIV.1201.0490
http://doi.org/10.1198/073500102753410444
http://doi.org/10.3390/en12132532
http://doi.org/10.1016/j.aei.2021.101442
http://doi.org/10.1016/j.epsr.2022.107908
http://doi.org/10.1016/j.enbuild.2022.111908

	Introduction 
	Forecasting Methods for Smart Grids 
	Proposed Methodology 
	Proposed Machine Learning Model and Data Characteristics 
	Dataset Exploited in this Study 
	Machine Learning Model 

	Deep Learning Process 

	Results 
	Discussion 
	Conclusions 
	References

