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Abstract: In this paper, an axial slot-less permanent magnet synchronous motor (ASFPMSM) was
designed to increase the power density. The iron core of the stator was replaced with block coils,
and the stator back yoke was removed because 3D printing can provide a wide range of structures
of the stator. The proposed model also significantly impacts efficiency because it can reduce iron
loss. To meet size and performance requirements, coil thickness and number of winding layers in the
block, the total amount of magnet, and pole/slot combinations were considered. The validity of the
proposed model was proved via finite elements analysis (FEA).

Keywords: axial flux permanent magnet synchronous motor; SPMSM; slot-less; block-coil; collabora-
tive robot (cobot); robot joint; 3D-print; Somaloy Core; torque density; output power density

1. Introduction

Many studies on radial flux permanent magnet synchronous motor (RFPMSM),
applied in collaborative robots (cobots) and which can physically interact and share a
workspace with humans, have been conducted [1–3]. However, the RFPMSM should be
developed with consideration of material developments to meet high-performance require-
ments in industry because the performance and efficiency of the RFPMSM are saturated
due to pioneer studies [4,5]. Furthermore, since there is an unfavorable structural problem
of multi-joint motors applied in cobots, bilateral axial slot-less flux permanent magnet
synchronous motor (ASFPMSM) with high power density has been addressed as a new
motor model [6–8].

Theoretically, there is a limitation that it is hard to manufacture with a slot-less struc-
ture because the press die manufacturing method can provide only conventional struc-
ture [9]. Therefore, a new structure of the motor can be developed when the motor is
manufactured using 3D printing technology with the core powder as Somaloy material.
However, when the core powder is used, the B-H characteristics are lower than that of
laminated electrical steel sheets, and iron loss, which influences the efficiency of the motor,
is higher than that of laminated electrical steel sheets.

To compensate for the drawbacks of the 3D printing technology, a block coil, which
can remove the slot of the stator where the coil is wound, and mold the coil with plastic,
can be used to reduce iron loss. In addition, it is possible to reduce iron loss with a shape
without the back yoke of the stator because of the closed magnetic flux loop made by facing
the same permanent magnet poles during operation of the motor [10–13]. In addition, the
output power and torque density of ASFPMSM manufactured by 3D printing can be higher
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compared to RFPMSM [14–16]. In short, the advantages of eliminating the slot and the
back yoke of the stator have a significant impact on the efficiency of the motor [17,18].

In this paper, improved output power density and torque density of an ASFPMSM
applied in cobots were proposed via optimization design.

2. Target Model Specification

Among the permanent magnet synchronous motor types for collaborative robots,
the radial flux type SPMSM (surface permanent magnet synchronous motors) motors are
commonly used. Since the magnetic flux density distribution in the air gap is uniform in the
SPMSM, the control is accurate. These advantages have a significant impact on minimizing
the size of the motor. In addition, it is much easier to obtain more spaces for winding
and weight reduction than in the case of the internal permanent magnet synchronous
motor (IPMSM).

The general cobots used in a narrower working space should be considered their size
requirements during machine design. Therefore, an optimization design process is required
to maximize performance with limited requirements.

RFPMSM applied in actual cooperative robots was selected as the target model, as
shown in Figure 1, to meet the performance and size requirements when a new model
is designed.
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Figure 1. Radial Flux Permanent Magnet Synchronous Motor target model of cobots [1].

To ensure equal performance between the target model and an ASFPMSM, torque, no-
load back EMF, and efficiency were considered. Based on the specifications, the ASFPMSM
with 52.2 mm of outer rotor diameter was proposed with 0.55 Nm torque at 3500 rpm
and 89.6% efficiency, as shown in Tables 1 and 2. The torque curve of the target model is
presented in Figure 2. More detailed information related to the dimensions is presented
later in the manuscript.

Table 1. The specifications of the target model.

Parameter Value (mm)

Stator Outer Diameter 82

Stator Inner Diameter 54

Stator Teeth Width 3.3

Rotor Outer Diameter 52.2

Rotor Inner Diameter 44.8

Magnet Thickness 5

Air Gap 1

Stator Stack Length 10

Rotor Stack Length 13

Magnet Thickness 2
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Table 2. Performance and materials of the target model.

Parameter Value Unit

Performance

Pole/Slot 20/18 -

Rated Speed 3500 RPM

Torque @3500 Rotating Per Minutes 0.55 Nm

Current 5.1 Arms

No-load L-L Back Electric Motive Force
@3500 Rotating Per Minutes 26.28 Vrms

Copper Loss 11.1 W

Iron Core Loss 12.5 W

Efficiency 89.6 %

Direct Current Link 48 V

Winding

Material Copper -

Diameter 0.85 mm

Series Turns Per Phase 96 Turns

Magnet

Material N42SH -

Br 1.33 T

Hc 1592 kA/m
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3. ASFPMSM Proposal Model Concept
3.1. Proposed ASFPMSM Concept

ASFPMSM applied in cobots should provide high output power density because their
thin and small structures are needed to meet space limitations in cobots. Therefore, a
new model of ASFPMSM is proposed in this paper. As mentioned above, since there are
requirements related to size and power density in cobots, it is hard to meet the requirements
with the existing winding method. A type of block coil using 3D printing technology can
overcome the limitations. The block coil can be manufactured by molding the coil part
with plastic using 3D printing technology, as shown in Figure 3. The winding part of the
motor can be designed because the 3D printing technology provides the freedom to create
the desired model, as shown in Figure 3a,b.
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Furthermore, when the rotor N and S poles are designed to face each other in both
directions, the facing permanent magnet and the rotor back yoke form a closed loop of
magnetic flux. This structure can eliminate the stator back yoke. Finally, multi-poles and
multi-slot structure were selected to design a thin motor.

An amount of magnetic flux per pole, which influences the performance of the motor,
can be presented as shown in Equation (1). This equation provides some facts that magnetic
flux is proportional to the difference between the square of the inner diameter and the
square of the outer diameter of the ASFPMSM. Furthermore, the magnetic flux per pole
can be reduced as the number of poles increases. This correlation proved that the width
of the back yoke of the rotor of ASFPMSM could be decreased as thin as possible when a
big number of pole-slot combination is applied in the motor because the magnetic flux per
pole can be reduced.

Φf =
∫ Rout

Rin

aiBmg
2π
2p

r dr = aiBmg
π

2p
(R 2

out−R2
in) (1)

3.2. Analysis of Proposed ASFPMSM

To make a comparative analysis based on the same criteria as the target model, the total
laminated length of ASFPMSM was set to 13 mm. The rotor radius was adjusted according
to the stator radius of RFPMSM, and the same winding specifications were designed. In
addition, since the ASFPMSM does not have a stator shoe and teeth, the laminated length,
excluding the air gap length (block coil height) and core back yoke thickness, is designed
to be the same length as the magnet thickness to increase the back electromotive force
(back EMF). The ASFPMSM is presented with the same laminated length and winding
specifications as the target model in Figure 4a,b.
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A comparative analysis of the vector plot of the target model under no load and the
proposed ASFPMSM model under no-load was performed at a rated speed of 3500 rpm, as
shown in Figure 5.
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The vector diagram confirmed that the low back EMF is due to the air gap length
increasing as the coil height increases. The magnetic flux of the permanent magnet did not
reach the back yoke of the stator and leaked to the next magnet. As a result, it is necessary
to find the minimum air gap length for the magnetic flux to reach the back yoke of the
stator and to make the magnetic flux closed-loop possible, and to design a design with the
maximum number of turns within the air gap length while minimizing the use of magnets.

3.3. ASFPMSM Optimal Coil Height Analysis

In ASFPMSM, the airgap length value is increased by the height of the block coil
because there are no stator teeth and shoes. Therefore, airgap length has a significant
influence on the performance of the motor compared to other types of motors. Thus, flux
paths were analyzed at various block coil heights (1~6 mm), respectively, to increase the
performance, as shown in Figure 6.

In Figure 6, the coils are located in the empty space between the rotor and the stator,
and the coils are molded with plastic material using 3D printing. Therefore, since the coil
part becomes an air gap, after removing the coil part, the vector diagram of the magnetic
flux was checked to make it easier to check the flow of the magnetic flux.

The results of analyzing the magnetic flux vector diagram for each coil height are as
follows. When the block coil height is 1~2 mm, the leakage flux is minimized, and the
magnetic flux path forms a closed loop with the back yoke of the stator. Models with a
block coil height of 3 mm or more could not produce the desired performance due to large
magnetic flux leakage, as shown in Figure 6. Therefore, since the winding height of the
target model is 0.85 mm, a value between 1 mm and 2 mm, a height of 1.7 mm block coil,
which is a multiple of 0.85 mm, was selected as the optimal height.

Since 0.85 mm is close to 1 mm, even though it is not within the optimal height
range (1~2 mm), both 0.85 mm and 1.7 mm of the block coil height were selected for
1-layer winding and 2-layer winding to conduct accurate performance analysis, as shown
in Figure 7a–d. Both models have their pros and cons. Although the 1-layer winding model
has a short airgap length, when winding four turns per coil side, the number of serial turns
is 24 turns, so it is difficult to expect a good performance. The 2-layer model has better
performance because it can wind up to 48 turns, despite the longer airgap length compared
to the 1-layer model. No-load back EMFs are presented to validate that the 2-layer model,
which has 1.7 coil height, has a better performance compared to the 1-layer model, as
shown in Figure 8. As a result, it was found that 1.7 mm is the most optimal value for
coil height.
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Figure 6. Flux line analysis according to block coil height. (a) Block-Coil Thickness 1 mm, (b) Block-
Coil Thickness 2 mm, (c) Block-Coil Thickness 3 mm, (d) Block-Coil Thickness 4 mm, (e) Block-Coil
Thickness 5 mm, (f) Block-Coil Thickness 6 mm.
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3.4. ASFPMSM Optimal Magnet Size Analysis

In order to select a reasonable amount of magnet while minimizing leakage flux
from the optimal block coil thickness analyzed previously, the performance analysis was
conducted by changing the amount of magnet in the axial direction. Back EMFs were
compared and analyzed between models with the total magnet thickness from 2 mm to
10 mm, as shown in Figure 9.
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Figure 9. Analysis of no load phase back EMF according to magnet thickness. (a) Magnet Thickness,
(b) No load phase Back EMF according to Magnet Thickness.

As a result of the analysis of no-load back EMF according to various amounts of
magnet, it was confirmed that back EMF increases as magnet thickness increases until
6 mm. However, the performance was saturated when the total magnet thickness is larger
than 6 mm. It is possible that back EMF does not increase because of saturation of the core.
Therefore, whether no-load back EMF saturation is from core saturation or not should be
checked from simulation results with various core thicknesses, as shown in Figure 10.

From the result presented in Figure 10, the fact that no-load back EMF does not increase
as magnet thickness increases is not from the saturation of the core. There is a correlation
between the core thickness and the total amount of magnet. Since the laminated length
was fixed to 13 mm, after determining the thickness of the coil, the remaining laminated
length is used as the core thickness and the magnet thickness. Therefore, the thinner the
core, the greater the amount of magnet can be used. Considering that the stacking length
of the target model is 13 mm, the optimal core thickness was selected as 2 mm to minimize
the size of the proposed motor.
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3.5. ASFPMSM Optimal Pole Slot Combination Analysis

Based on the above analysis, it was confirmed that the back EMF of the ASFPMSM was
significantly lower than that of the target model. As a result of analyzing the reasons, the
motor of the ASFPMSM generally adopts a 2:3 structure or a 4:3 structure of pole number
and slot number combination to use the concentrated winding to reduce the bulk of end
turns. Furthermore, multi-pole and multi-slot combinations are applied to the motor to
make the back yoke of the core thinner. Therefore, it is essential to analyze the combination
of poles and the number of slots. The analysis of the number of poles and the number
of slot combinations were performed based on the proposed model explained above, as
shown in Table 3 and Figure 11.

Table 3. Analysis of poles/slots combination (2:3 structure).

Poles/Slots No-Load Phase
Back EMF

Number of Serial
Turns Magnet Volume

24p/36s 14.87 Vrms 48 Turn 19,739 mm3

28p/42s 16.62 Vrms 56 Turn 19,739 mm3

32p/48s 9.11 Vrms 32 Turn 19,739 mm3

36p/54s 7.74 Vrms 36 Turn 19,739 mm3

48p/72s 5.93 Vrms 48 Turn 19,739 mm3
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Figure 11. Comparative analysis of target RFPMSM and ASFPMSM pole/slot combination.
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Poles/Slots Combinations.

In cases of the block coil models, it is difficult to analyze the models while keeping the
same number of turns in series per pole because there is no slot, and the area of the block
on which the coil is wound varies according to the number of slots. Therefore, the size of
the winding used in the target model was used according to the number of slots, and the
number of windings according to the number of slots was used, as shown in Figure 12.
Therefore, when the 0.85 mm winding is used, it is advantageous to minimize the gap by
applying the (c) and (d) pole/slot combination in Figure 12.
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(c) 28p/42s coil shape, (d) 28p/42s coil area, (e) 32p/48s coil shape, and (f) 32p/48s coil area.
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However, in the case of 28 poles/42 slots, there are spaces between the winding and
the outline of the block when 0.85 mm thickness winding is used, as shown in Figure 13.
Therefore, 0.9 mm thickness winding was checked as an optimistic design. Then, 0.9 mm
thickness was shown to deliver 12% more current with the same current density (Table 4).
Finally, the final model of the ASFPMSM of 28p/42s was selected based on the previously
analyzed optimal design and used to comparatively analyze the performance of the existing
RFPMSM load.
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Table 4. Current density comparison.

Parameter Coil 0.85 Coil 0.9 Unit

Current 5.1 5.7 Arms

Coil Diameter 0.85 0.9 mm

Coil Area 0.57 0.64 mm2

Current Density 8.98 8.98 A/mm2

4. Optimal Designed Model Comparison Analysis

In this chapter, the final ASFPMSM model was proposed based on the above optimum
design and analysis, and this was compared and analyzed with the target model, as shown
in Figure 14.
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The optimal model was proposed with the same stacking length as the target model
RFPMSM with a core thickness of 2 mm, a magnet thickness of 3.3 mm, a coil thickness of
1.8 mm, and an air gap length of 0.3 mm, as shown in Table 5. More details are presented
in Table 6.

Table 5. Specification of optimally designed ASFPMSM.

Parameter Value (mm)

Rotor Outer Diameter 52.2

Rotor Inner Diameter 44.8

Magnet Length 7.4

Air Gap 0.3

Motor Stack Length 13

Magnet Thickness 3.3

Table 6. Materials of optimally designed ASFPMSM.

Parameter Value Unit

Performance

Poles/Slots 28/42 -

Rated Speed 3500 RPM

DC Link 48 V

Winding

Material Copper -

Diameter 0.9 mm

Series Turns Per Phase 56 Turns

Phase Resistance 0.032 Ω

Magnet

Material N42SH -

Br 1.33 T

Hc 1592 KA/m

For comparative analysis, the no-load back EMF of the target model and the no-load
back EMF of the ASFPMSM are shown in the Figure 15, and both were analyzed at the
rated speed of 3500 Rpm.
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As shown in Figure 15, Table 7 it was confirmed that the back EMF of the proposed
model is 10% larger than that of the target model. It is validated that the performance of
the proposed model is 10% higher than that of the target model at the same current density.

Table 7. Performance and materials of optimally designed ASFPMSM.

Parameter RFPMSM ASFPMSM Unit

RPM 3500 r/min

DC Link 48 V

Current Density 8.98 8.98 A/mm2

Torque 0.55 0.63 N·m
Input 226.2 235.4 W

Copper Loss 11.1 4.48 W

Iron Core Loss 12.5 0.5 W

Output 202.0 230.4 W

Efficiency 89.6 97.9 %

From load torque comparison, as shown in Figure 16, the torque of the proposed
model is 20% higher than that of the target model. It was confirmed that the output power
and the efficiency increased by 15% and 8.3%, respectively. In addition, it can be seen that
the iron loss is very low because only iron loss from the rotor remains at no back yoke of
the stator structure. Therefore, it is possible to reduce the total iron loss significantly. In the
case of an axial flux motor, it is possible to reduce the surface magnetic flux density per
pole by using a multi-pole structure to increase the output density in a thin structure, and
design a thin rotor back yoke. However, as the back yoke becomes thinner, the rotor back
yoke is saturated, and torque ripple may occur.
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As a result of analyzing the vector diagram in Figure 17, it is confirmed that magnetic 
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Figure 16. Load torque comparison between RFPMSM and ASFPMSM.

In the case of an axial flux motor, the main requirements are small size, lightweight,
high torque density, and high power density. Therefore, torque ripple is not a main
characteristic. Vibration and noise caused by torque ripple are commonly buried in external
noise or other structural device noise in the applications. Even considering that the current
torque ripple is 10% to 20%, it is not a high level, and there is no problem with the motor
performance.

To verify the validity of the design, the magnetic flux line and magnetic flux density
saturation of ASFPMSM were checked via FEA as shown in Figures 17 and 18.
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As a result of analyzing the vector diagram in Figure 17, it is confirmed that mag-
netic flux is formed as a closed-loop without a leakage flux problem. In addition, it is
also confirmed that there was no problem with the saturation of the core at the rating
power. Therefore, it was confirmed that the torque density and output power density were
improved compared to the same size of the target model at the rated 3500 RPM.

5. Conclusions

In this paper, the high torque density of ASFPMSM using 3D printing technology
for collaborative robots was proposed to replace the RFPMSM used in collaborative robot
joints. For accurate performance comparison, the same inner diameter, outer diameter size,
volume, winding size, and current density as the target model were used. The back EMF of
the ASFPMSM may be smaller compared to the RFPMSM because the block coil increases
the airgap. Therefore, it was necessary to analyze the design parameters to increase the
performance while minimizing the leakage flux. The block winding thickness, and the
total amount of magnet and pole/slot combinations were considered for optimization
design. Then, the model with a core thickness of 2 mm, a magnet thickness of 3.3 mm,
a coil thickness of 1.8 mm, and an air gap length of 0.3 mm was proposed. The model’s
12% higher torque, 15% higher output power, and 8.3% higher efficiency than that of the
RFPMSM were proved via FEA.
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