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Abstract: Due to cutting-edge innovations in industry and academia, research is more centered
around multilevel inverters (MLIs), which play a significant role in different high/medium voltage
and high-power applications when contrasted with traditional inverters. Relative analysis of the
reduced DC source count and switch inverter topologies highlight its significant benefits, which
include control complexity, switch count, source count, reliability, efficiency, cost, voltage stress, total
harmonic distortion (THD), and power quality. When switched-capacitor technology is deployed,
it is seen that with the assistance of 14 switches, a 53 level result is accomplished, and the THD
is just around 1.41%, which is kept up with as per the IEEE 519-2014 norms. Whenever cascaded
MLI topology is employed, the inversion efficiency is more prominent, and is about 99.06%. Hence,
this review focuses on a few of the late-evolved MLIs utilized, and the benefits and drawbacks
for different topologies are examined. To assist with current modern research in this field and the
decision of the proper inverter for various applications, a novel topology of an MLI can be planned
later on. Different setups of MLIs have been exhaustively covered and reviewed.

Keywords: multilevel inverter (MLI); reduced component count; asymmetrical; pulse width modula-
tion (PWM); photovoltaic (PV) systems; electric vehicles (EV)

1. Introduction

Because of the rise in population, and enterprises and to fulfill everyday needs, power
generation has received enormous interest. To deliver electrical energy, many power plants
have been entrenched for years. A total of 75% of the energy in India is created by of
thermal power stations, which use fossil fuels and coal. Thus, it brings about an expansion
in the carbon levels. This has a tremendous effect on atmospheric climatic conditions,
which are changing daily. Utilizing environmentally friendly power from renewable energy
conventional sources (RECS), predominantly solar and wind, creates a lot of interest in
power generation in recent research. This will likewise build a more extensive scope of
utilization in power electronics and power system regions, rather than a huge reliance on
changing climatic circumstances [1]. The objective of this paper is to change one type of
energy over to another form, either by a rectification or an inversion process. Essentially,
a traditional voltage-fed inverter is utilized, which can create two-levels of voltage. The
terms MLI was first used with the advent of the three-level converter in the late 20th century.
Since multilevel inverters have more levels than standard versions, their power rating
has improved, while their device count has decreased [2]. Buck-boost and Q-ZSIs-type
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operations are more efficient compared to ordinary VSIs and CSIs [3]. In [4], the author
discussed the main characteristic of the proposed interconnection system: it can provide
power to the load even though one of its converters is under maintenance. To obtain a high
voltage gain with less voltage stress on the switches, the cells are coupled in parallel for the
LV bus, and in series for the HV bus.

For higher applications and high-power evaluations, MLIs are employed. An MLI
is a setup in which the different variations of powered electronic devices are arranged
and worked together with DC-connected voltages to deliver more significant levels of
the waveform at the output side [5]. MLIs are liked because of their intrinsic benefits,
for example, low switching pressure, low dv/dt rating across the switches, reliability,
lower cost, reduced complexity, improved THD, and superior efficiency when used in
applications [6]. For the most part, DC–DC gain converters are put into use for higher
power applications, for example, solar PV systems, fuel cells, high discharge lights, electric
power trains, high power density devices, induction engine drives, UPS, X-ray beams,
medical equipment, auto applications, and so forth.

MLIs assume a significant role in renewable energy (RE) applications as well as in
electric vehicles. As a result, MLIs employ advanced power semiconductor devices to
develop a stepped waveform that seems to be near to a sine waveform. It is the ideal
choice for generating vast output, mostly in SPV applications [7]. A novel hybrid MLI
topology that integrates the concepts of hybrid and asymmetrical behavior is presented in
work in [8]. The smaller number of devices and sources makes the architecture possible
for applications linked to solar PV and motor drives. Authors in [9] developed a new MLI
with symmetric and asymmetric structures, presented in this study. Asymmetric topologies
employ a minimum switch count, while symmetric topologies demand equal DC source
values. However, the switches in both structures experience multiple blocking voltages,
lowering the losses. The author of the work [10] developed an MLI by employing stacked
capacitors for three-phase four-wire grid supply systems. With inherent advantages such
as high-power density, reliability in extended temperatures, and stable drop characteristics,
it lacks in its cost for high voltage applications. The essential concept in EV works as
such: it contains the battery which is fed to the inverter, followed by the motor, where it
relies upon the sort of vehicle. This vital role is performed by the inverter alongside the
controller [11]. By changing the duty cycles of the employed inverter, the result output
can be controlled. Inverters likewise have a rise and impact in EV charging systems; they
can either be a wired or a wireless system. Along these lines, different MLIs are planned
by their applications [12]. A large portion of the EV’s innovation is coordinated with the
RES. This can be valuable for suitable systems while working in V2G operations, where the
power flow ought to be bi-directional. These are additionally used to further develop the
battery life, state of charge (SOC), and state of discharge (SOD).

The hybrid form of the MLI is another category. It typically consists of two sections.
The staircase voltage is created in unidirectional polarity in the first section, referred to as
level generation [13]. This is accomplished by combining the DC sources in a specific way
to flip between levels. The second step involves switching the polarity, which results in a
voltage across the positive and negative load. For this, an H-bridge inverter is typically
employed [14]. In [15], the author referred to the DC voltage sources in this topology that
can be linked in series to create all the additive combinations.

Additionally, they can be linked in parallel, increasing the required output voltage
and current flexibility. The author referred to it as a switched series/parallel sources (SSPS)
MLI. Series connected switching sources (SCSS) are a different architecture that has been
discussed. In this work [16], a novel idea for generating new converter topologies and
output voltage waveforms has the advantage of low harmonic content. The converter
employs two orthogonal space vectors. The basic idea is founded on being able to produce
133 distinct output space vectors and to allow for stepwise RMS output voltage adjustment.

Classification of MLIs: Fundamentally, ordinary MLIs are characterized into three
classifications, represented in Figure 1: the diode clamped (DC-MLI), the flying capacitor
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type (FC-MLI), and the cascaded H-bridge type inverter (CHB-MLI). These are called
classical inverters, where this kind of arrangement finds a use for switches that are straight
forward and that correspond to their generating levels, resulting in complexity in the
system [5]. Further arrangements are made for diminishing the switch count and making
the structure a complex-free operation. Table 1 represents the merits and demerits of the
classified topologies [6]. DC-MLI uses fewer DC voltage sources. However, it performs
numerous tasks such as fault-tolerant analysis, is simple to use, and is essential in develop-
ment. Yet because the available power is halved on the output side, it cannot be applied
in high-voltage applications. In [11], FC-MLI shows many benefits. For example, a lower
number of devices, and energy can be created by the power-dense capacitors for obtaining
ripple-free voltage and the multiplying effect [11].
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Figure 1. Classification of MLI.

CHB-MLI are classified into symmetrical and asymmetrical arrangements. To create
a higher level of voltage, symmetrical arrangement is preferred, where the voltage of the
DC source accommodated with each circuit is the same. Various magnitudes of voltage
are given for creating asymmetrical configurations [17]. SC-MLI topology is created using
available advantages in the cascaded and neutral point clamped MLIs, such as the low use
of capacitors, switches, and diodes. It offers many benefits, such as boosting the output
power and balancing the capacitor voltage.

Based on the preceding development in presumed converters, this review article
makes an effort by providing an in-depth survey of all deduced converters currently used
in the field of power semiconductor research. The following is a list of the review article’s
undertakings: (1) An overview of various determined converters is given, along with a
discussion of how they differ from traditional converters. (2) Control methods used to
operate the switches of the inferred converters are thoroughly explained.

The article is organized into four sections. The introduction and conclusion were
explained better in Sections 1 and 4. A survey of various inferred converters is clarified,
along with their operation and application point of view in Section 2. Section 3 clarifies
various types of controllers exploits for working the inferred converters.
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Table 1. Pros and Cons regarding different Multilevel Inverters.

Types of MLI
Configurations Pros Cons

Diode clamped
[18–23]

X They are used for rectification processes.
X It tends to be deployed for high switching

frequencies; therefore, switching operation
is improved.

X Capacitors can be charged with few input
sources.

X The method to control the circuit is
straightforward.

X Limited DC sources are required.
X They are used for fault-tolerant operations.

X It is challenging to balance the voltage in
the circuit.

X The switches present in the circuit share
unequal voltages.

X If there is a high output voltage level
requirement, the number of diodes should
be increased, i.e., no. of levels directly
proportional to diodes.

X Even if a high input source voltage is given,
the output voltage is halved due to the
diode losses present in the circuit.

FC MLI
[19,20,23–26]

X Reduction in input DC components.
X The level of the capacitor voltage is

balanced.
X The diode requirement is zero.
X The flow of power can be controlled easily
X Harmonics are reduced abruptly, with no

need for extra usage of filters.
X Transformer-less operation for high levels

X The rating of the capacitor should be high.
X The voltage balancing circuit, which is

designed for the capacitor, is more
complex.

X Monitoring each capacitor voltage is
difficult.

X Losses are greater while transmitting real
power.

X Designing the circuit is more costly.
X The estimation of pre-charging time is

more complicated.

CHB-MLI
[22,24,25,27,28]

X Due to the absence of diodes and
capacitors, there is a huge reduction in the
circuit component

X Easy to design and control.
X Voltage levels can be extended according to

the required value.
X In the cascaded H-bridge case, MLI

bi-directional switches employed are fewer
in number and operated for only particular
levels. Therefore, stress is low across the
switch.

X Symmetrical and asymmetrical sources can
be employed in both operations.

X Electric shocks are prevented due to
isolation in the circuit

X The output voltage is significantly lower.
X To drive the circuits, more gating circuits

are required.
X This can be used only for specific

applications where a separate DC source is
needed.

X To obtain the maximum output, more DC
sources are required.

X When the bi-directional switch is
employed for multiple levels for
continuous operation, switch stress
increases further, leading to switching
losses and a reduction in efficiency

X Complexity in the circuit, especially in
asymmetrical configuration.

X Cost is more in the case of asymmetrical
operation.

X Different ratings of switches are needed for
the configuration.

2. Review of Derived Converters, Operation, and Applications

Since the utilization of multilevel inverters over the last many years, numerous alter-
ations in the inverters have been performed with the usage of power electronic devices. For
expanding the voltage levels in the inverter, the quantity of the switch count, the source
count, and the components helped increase the circuit activity. This outcome results in
different factors, such as increasing the circuit’s complexity, increasing the weight and
cost, stress across the switches, electromagnetic compatibility (EMC) and electromagnetic
interference (EMI) issues, THD, and losses in the circuit. At long last, this prompts a
decline in efficiency and impacts the nature of the power on the grid utilities/distribution
systems. To decrease the previously mentioned drawbacks, the paper investigates the
various topologies and their operation with the decreased part count. Right off the bat, in
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the year 1993, a decreased switch count was presented. For evaluating the operations of
various topologies, asymmetrical and symmetrical arrangements are considered [11]. The
main drawback of using a switched-capacitor is that it can produce only 5, 7, and 11 levels.
Subsequently, planning an SC-MLI for more generating levels is a difficult task [28]. Due to
the advantage of high switching operations and high voltage ratings, IGBT/MOSFET are
used. Recently, wide band gap (WBG) semiconductors are also performing the operations
for generating high levels. These also have low thermal conductivity and are highly stable
during operation.

2.1. Operation of Derived Converters Based on DC Source Count

For easy understanding, Table 2 is framed, and the analysis of the derived converters
is taken with respect to their DC source counts.

Table 2. Comparative analysis for different converters representing their switch counts, diodes, capac-
itors, inductors, DC source counts, number of levels generated, efficiency, THD, algorithm/controller
used, and their applications.

Ref No Ns Nd Ncap/Nind Ndc Nl
Efficiency
in (%) THD Algorithm/Controller

Used Application

[29] 14 3 3 3 53 94.21 1.41 P&O SPV & EV

[30] 12 0 0 6 35 > 93 1.90 FFS Low and Medium
power factor loads

[31] 9 2 0 5 23 93.06 As per IEEE
standards FFS Industrial

Applications

[32] 10 0 0 3 21 94.02 3.49
P&O-based

MPPT technique
is used

SPV Energy Systems

[15] 9 3 7 6 17 98.05 3.88 SHE-PWM
RES

11 3 7 6 19 PD-PWM

[33] 10 0 0 3 15
99.01

As per IEEE
standards

<5%

FFS and SF are
used

Medium and
High-power voltage

applications12 0 0 4 25

[34] 6 2 4/4 2

Higher level
of Voltages
(19 times

greater than
input)

91
As per IEEE
standards

<5%

Double-input
high DC–DC
topology is
employed

MPPT-based low and
medium power

applications and
Regenerative braking

in EV’s

[35] 10 4 4 6 17 93.02 2.57 SHE-PWM PV Systems

[36] 10 0 0 3 15 >90 3.50 Hybrid
Modulation

High-Speed
switching devices

[37] 10 10 0 3 13 99.06 6.60 FFS SPV/RES

[38] 12 4 4 1 13 95.29 5.74
FFS and HFS
Control loop
techniques

RES

[39] 16 2 4 2 13 94.18 3.26

FFS and HFS
control technique

is used along
with SHE

SPV systems and
drives

[40] 9 5 0 5 11 >96 <4

Multi-carrier
level shifted

PWM strategy
with phase
disposition

Photo Voltaic
systems

Ns—Number of sources, Nd—Number of diodes, Ncap/Nind—Number of capacitors/inductors used, Ndc—
Number of DC sources, Nl—Number of levels generated in topology.
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2.1.1. Using Six DC Sources

In [41], for six DC sources, the existing topology proposes 13-levels. In [42–44], the
use of switches and the gate driver circuits are larger in number for a low level of steps
in the output. This additionally causes the weight, size, and cost of the system to be more
complicated. To avoid the disadvantages mentioned above, [30] created a structure that
has eight unidirectional switches (T1, T2, T3, T4, L2, R2, Su and Sd), among which four
are bidirectional (L1, R1, T5 and T6), which are shown in Figure 2.
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To create the positive, negative, and zero levels, the switches rely upon the DC sources.
The DC sources are chosen as upper and lower sources, where Vu = Vd = Vdc. In Figure 2,
it may be seen that the left leg creates V1 = Vdc, and the sources in the right leg create
V2 = 6Vdc. If the connections are made in this manner, we can generate 35 levels: 17 levels
on the positive side and 17 on the negative side, and zero levels where the expense and
size of the structure are diminished.

In [45,46], the authors involved discrete diodes in the circuit, which resulted in a
more typical structure when contrasted with the traditional structure, topologies need just
a few DC sources. In [47,48], they considered U-packed cells and the series connected
switched capacitors. In any case, these have a few downsides, as it uses several part counts
for producing the minimum output level. With a similar switch count, the proposed [15]
topology creates more levels. It further includes a reduced switch H-bridge (RSHB) and
LDC. The RSHB MLI profits with few units coupled to the H-bridge, where an H-bridge
contains one switch and diode with two DC sources. By utilizing several units over and over
in the circuit, for example, (1, 2, . . . .n), it can produce 2n + 3 levels at the output. Switches
and diodes in the circuit cannot be conducted all the while. On the other side, we consider,
for one unit, the resulting voltage will be Vdc/n when the switch Sn is in OFF, where
(Vcr1, Vcr2, . . . .Vcrn = Vdc). When the switch Sn is turned ON, the result (Vrn) will be
(Vdc + Vdc/n), where, (Vcr1/n, Vcr2/n, . . . .Vcrn/n = Vdc). In the proposed structure 1
from Figure 3a, it may be seen that PS2 has an LDC module which includes two switches
(K1 and K2) and one capacitor (C). The two switches ought to be turned on alternatively
to avoid heavy short circuits. In reference [32], to prevent the source from short-circuiting,
the switches K1 and K2 in LDC1 should turn ON alternatingly. Additionally, K1 and K2
primarily function in the cycle’s positive and negative halves, respectively. It is feasible to
almost double the number of levels compared to the output produced by the RSHB MLI
with just two more switches. Equivalent equations are (1)–(4) for the number of levels,
sources/capacitors, and switches. The corresponding expressions are [32]:

Number of switch count (Nsw) = n + 6 (1)

Number of discrete diodes (Ndd) = n (2)

Number of DC sources/capacitors (Ndcs) = 2n + 1 (3)
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Number of levels (Nl) = 4n + 5 (4)
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In the proposed structure 2 from Figure 3b, it tends to be seen that the PS2 has an LDC
module that involves four switches (K1, K2, K3 and K4) which are only a full H-bridge. The
activity is the same as that of construction 1, yet in this, (K1 and K3) will be worked for the
positive half cycle and (K2 and K4) will be worked for the negative half cycle. Generalized
expressions for determining the component count in the PS2 are given as follows [32]:

Number of switch count (Nsw) = n + 8 (5)

Number of discrete diodes (Ndd) = n (6)

Number of DC sources/capacitors (Ndcs) = 2n + 1 (7)

Number of levels (Nl) = 4n + 7 (8)

When contrasted with [49–52], the proposed [53] Figure 4 does not need an H-bridge
even if it can create more levels; (two 2Vdc, 3vdc, and one 0.5Vdc) are given as input DC
sources. (Sa1, Sb1, Sc1, Sd1) are the switches used to produce various levels of voltage
for the result, which are implemented for boosting the voltage level. By providing com-
plimentary switching operations, (Ha1, Hb1′) works during the positive half cycle and
(Hc1, Hd1′) works during the negative half cycle. The switch voltage stress is limited
by operating this way. The designed circuit is useful to lessen the total blocking voltage
(TBV), and the overall performance of the ACCM MLI is improved successfully. The con-
duction and switching losses are all well determined, and they fundamentally rely upon
the switching operation of the circuit.
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2.1.2. Using Five DC Sources

In [46,54–57], more DC sources with different magnitudes are chosen. In [56], the
switches chosen were additionally more in number. The proposed [31] structure diminishes
all of the disadvantages mentioned in the previous topologies. The design is made with
a T-type and half-bridge inverter. An adjusted design was created, which is displayed in
Figure 5. Out of nine, eight switching devices, named S1, S1′, S2, S2′, T1, T1′, T2, T2′, which
are unidirectional, and switch S3 is unidirectional. The DC source sizes are unique and
named as (V1 = V2, V3, V4 = V5). Because of the decreased switch count and the DC
source, the blocking voltage is an additional benefit.
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In [58–60], because of the adjustment of the temperature and irradiance in the created
PV system, it brings about the open circuit voltages and the short circuit currents. By
involving the MPPT controller in [40], this can be avoided. The converter configuration
is kept up with stability even in disturbed load conditions. The designed topology is
the change of the cascaded half-bridge MLI. The DC sources in Figure 6 are symmetrical
where all the voltage sources are equivalent V1 = V2 = V3 = V4 = V5 = Vdc. For the
level-generating part, the switches (S1− S5) are alike, and for the polarity part (S6− S9)
are utilized in the H-bridge structure, where both operate at switching frequencies.

Energies 2023, 16, x FOR PEER REVIEW 9 of 26 
 

 

In [58–60], because of the adjustment of the temperature and irradiance in the created 
PV system, it brings about the open circuit voltages and the short circuit currents. By in-
volving the MPPT controller in [40], this can be avoided. The converter configuration is 
kept up with stability even in disturbed load conditions. The designed topology is the 
change of the cascaded half-bridge MLI. The DC sources in Figure 6 are symmetrical 
where all the voltage sources are equivalent 𝑉1 = 𝑉2 = 𝑉3 = 𝑉4 = 𝑉5 = 𝑉𝑑𝑐 V1 = V2 = 
V3 = V4 = V5 = VDC. For the level-generating part, the switches (𝑆1 − 𝑆5) are alike, and 
for the polarity part (𝑆6 − 𝑆9) are utilized in the H-bridge structure, where both operate 
at switching frequencies. 

 
Figure 6. 11−Level MLI. 

Modulation index (ma) for the reduced switch count is given by equation (9), referred 
from [40], where Vm represents the amplitude of reference and Vcr represents the ampli-
tude of carrier wave, and m relates to the number of levels 𝑚 = ቀ ଶೝ(୫ିଵ)ቁ, (9) 

2.1.3. Using Four DC Sources 
In [61], the construction works with 12 switches and creates a 17-level. When con-

trasted with [62], the TSV is kept up at 78. Cost and conversion efficiency are additionally 
an issue. For a similar switch count, the proposed topology [33] creates 25 levels, and the 
TSV is additionally 60. Reduced switching loss and cost are the main principles and ad-
vantages. Switches (𝑆1 − 𝑆8) are unidirectional and one bidirectional switch (𝑆9)  is 
available in the circuit. Switches (𝑆1 − 𝑆2), (𝑆3 − 𝑆4), (𝑆5 − 𝑆6), (𝑆7 − 𝑆8) are paired in 
a complementary manner to avoid short circuits. The designed Figure 7 can be worked in 
two setups. Possibly, it very well may be symmetrical/asymmetrical. To have the circuit 
in a symmetrical setup, the voltages 𝑉1  and 𝑉2 should be equivalent to 𝑉𝑑𝑐  (𝑉1 =𝑉2 = 𝑉𝑑𝑐). To acquire a similar circuit in the asymmetrical setup, the voltage magnitudes 
are different such that (𝑉1 = 𝑉𝑑𝑐) and (𝑉2 = 3𝑉𝑑𝑐), thusly, the circuit performs. In a 
similar way to produce 25-level output, the structure needs to replace supply voltage 
source 𝑉1 with two configured voltage sources with the same magnitude. This is possi-
ble only with an asymmetrical configuration. 

Figure 6. 11−Level MLI.



Energies 2023, 16, 18 9 of 25

Modulation index (ma) for the reduced switch count is given by Equation (9), referred
from [40], where Vm represents the amplitude of reference and Vcr represents the amplitude
of carrier wave, and m relates to the number of levels

ma =

(
2Vm

Vcr(m− 1)

)
(9)

2.1.3. Using Four DC Sources

In [61], the construction works with 12 switches and creates a 17-level. When con-
trasted with [62], the TSV is kept up at 78. Cost and conversion efficiency are additionally
an issue. For a similar switch count, the proposed topology [33] creates 25 levels, and
the TSV is additionally 60. Reduced switching loss and cost are the main principles and
advantages. Switches (S1− S8) are unidirectional and one bidirectional switch (S9) is
available in the circuit. Switches (S1− S2), (S3− S4), (S5− S6), (S7− S8) are paired in a
complementary manner to avoid short circuits. The designed Figure 7 can be worked in two
setups. Possibly, it very well may be symmetrical/asymmetrical. To have the circuit in a
symmetrical setup, the voltages V1 and V2 should be equivalent to Vdc (V1 = V2 = Vdc).
To acquire a similar circuit in the asymmetrical setup, the voltage magnitudes are different
such that (V1 = Vdc) and (V2 = 3Vdc), thusly, the circuit performs. In a similar way to
produce 25-level output, the structure needs to replace supply voltage source V1 with
two configured voltage sources with the same magnitude. This is possible only with an
asymmetrical configuration.
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2.1.4. Using Three DC Sources

In [60], the part count per level and the TSV bring about a higher value. To further
avoid the present circumstance in the MLIs, a new proposed [29] topology produces a
53-level result where a switched capacitor (SC) is placed at the front side alongside the
H-bridge as shown in Figure 8. It boosts the voltage and makes the operation of capacitor
charging and discharging simple. Utilizing many quantities of capacitors prompts an
increment in the levels of the MLI. During ideal circumstances, capacitor C, which is at the
front side of MLI, is charged to voltage V1 when it is associated with the corresponding DC
source. Whenever the capacitor is made in series connection, it is discharged with regard
to the load. At the point when the switch S2 is in conduction, the capacitor is charged for
every half-cycle during Vo = ±Vc1. During discharging mode, diode D and switch S2 will
be in the OFF position. Capacitor C discharges while switch S1 is in conduction. The load
currents are known with the help of V1 and Vc1 when it supplies energy to the load.
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The cost factor relies upon many factors, for example, switch count, DC source count,
total standing voltage (TSV), and the gate driver circuit. It is given by

Cost Factor (C.F) = (Ns + Ndk + Nd + Nc + αTSVpu)× n (10)

In [45,60,63–67], more gate driver circuits, switches, and DC sources are used for
generating the resulting level. Along these lines, the TSV and cost work is less. Mentioned
in [32], a proposed structure decreases the part count without diodes, capacitors, and
inductors. Another design has been created, which is displayed in Figure 9. (V1, V2, V3)
are utilized in this topology. Based on the switching operations, the output levels are
obtained. Assuming the switching state is ‘1’, it expresses that the switch is in conduction
(ON state) and assuming that the switching state is ‘0’ it implies that the switch is in (OFF)
condition. To obtain the resulting voltage of 400 V, switches should be worked in various
modes. Prior to that, voltages are opted based on a 1 : 2 : 7 proportion. In this way, it
produces a voltage level of 40 V, 80 V, 280 V individually. It obstructs every one of the
undesirable voltages, therefore, the cost of the design is decreased.
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The total standing voltage is given by

TSV = 2(Vs1 + Vs3 + Vs5 + Vs7 + Vs9) (11)

The current of 4 A is created at 400 V voltage level with the resistor value of 100 Ω.
This topology has performed many tests with sudden disturbances for various loads, and
it shows reliable results.

Number of switches (Ns) = 2n + 2 (12)

Number of voltage levels (Nl) = 7× n (13)

Output voltage (Vo) = 2n + 2 ∗Vdc (14)

Cost factor (C.F) = (Ns + Ndk + Nd + Nc + αTSVpu)× n (15)

where, (Ns) is the number of switches present in the circuit, and (Ndk) is the driving board
circuit. (Nd) and (Nc) indicate the number of diodes and capacitors. (TSV) is the total
standing voltage and (n) demonstrates the number of DC sources used.

Fundamentally, losses are two types, conduction loss and switching loss.

Conduction loss (Pcl) =
[
Vs + Rsiβ(t)

]
i(t) (16)

Here (Vs) is the voltage drop, and (Rs) is the switch equivalent resistance.
In [65], the current design needs 28 and 36 switches for producing 11 and 15 lev-

els. This shows the tremendous effect on design structure, and brings more conduction
and switching losses. In [60], for the same hybrid topology, 16 switches are expected
for the 15 level output. The proposed structure [36] employs a switched capacitor and
an H-bridge circuit in the topology shown in Figure 10. It is apportioned into two sec-
tions. In the initial segment, it is a design with an H-bridge where the DC voltage is
equivalent to Vo. Section 2 construction is an inverter where the voltage equivalents to
Vk. The voltage source can utilise the example of exchanging capacitors. From this, we
can comprehend that the simple switching circuit is placed in the front side (DC source)
while (Sa− 1− San− 1 ) and (Sb1− Sbm − 1) are the operating switches that are asso-
ciated in series. We can see that when Phase A is operated, switch Sb1 will be in ON
state and the current passes through the switch, which brings about voltage V1. Conse-
quently, it results (Vab = V1). The switches (Sa1 and Sb1) will be in conduction mode,
therefore the remaining switches are OFF. Voltages (V1 and V2) are in series outcomes of
Vab(Vab = V1 + V2). Later, switches (Sa1 and Sa2) are in ON state and different switches
will be in OFF state, where the voltages (V1 and V3) are cascaded. This results in voltage
as (Vab = V1 + V2 + V3). For example, conventional topology uses 12 switches for 11
level output. The introduced topology is basic in structure, reliable, and efficient for power
applications. In the alteration of the introduced topology, we can create 21 levels with just
12 switches when the proportion of (Vo : Vk) is 1:3.

In [63,68,69], the device needs four DC sources for the 17-level. In [70,71], the MLI
is designed by utilizing unidirectional switches. Hence, the gate driver circuit usage is
greater. This outcome results in an expansion in part counts. The proposed design [37] uses
just two DC sources and bi-directional switches, where just one gate driver circuit is put
into service for the two bidirectional switches used in Figure 11. For voltage and current
operations, unidirectional and bidirectional switches are utilized. Switches (S1 and S2),
which are associated in the middle of the two-voltage source V1, need just one gate driver
circuit. The voltage V2 is associated in the middle of the switch (S3 and S4), which changes
the magnitude of operation. The modules associated in the circuit pairs are complementary
switches (S1− S2), (S3− S4), (S5− S6), (S7− S8), which are not turned ON all the while.
In the circuit, voltage sources are associated all the while, thus, it can further develop the
voltage level.

Total Standing Voltage is given by TSV = ∑2k+4
x=1 Sx (17)
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The voltage Vx is the blocking voltage at switch Sx
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The reliability of the proposed structure is the major factor to be considered, and is
calculated with the help of fault analysis.

2.1.5. Using Two DC Sources

In [71], the device generates fewer levels. In [72], it requires N DC sources for
the N level. In [73–75], because of the presence of pulsating input currents, this is
not appropriate for different applications. The proposed [34] structure has less con-
duction loss because of low diode counts, and has a higher gain value. Figure 12 in-
volves non-coupled inductors (L1a, L1b, L2a, L2b), capacitors (C1, C2, Cm1, C0), switches
(T1, 1, T1, 2, T1, 3 , T2, 1, T2, 1, T2, 2, Q ), and diodes (Dm1, D2), and presents a funda-
mental dual topology. Here in the circuit, two voltage sources are named (V1) (either
storable or non-storable) and (V2). Assuming the voltage source (V1) is storable, it can
transfer energy or, in all likelihood, it can take from another source. At the point when the
power flow is unidirectional, the component (Q) can be replaced by a diode. Cm1 is used
to further develop the voltage gain of the converter. In this topology, peak inverse voltage
(PIV) assumes an imperative part, where it shows the tremendous effect on the switches,
and subsequently the cost of the system is decreased. To avoid this condition, another new
quantity is carried out, i.e., (NPIV), which is given by

NPIV =

[(
PIV
Vo

)]
(18)
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Ripple currents produced are due to inductors, which are directly proportional to
the switching frequency. Further, this topology can be changed, and only 4n switches are
utilized to create the higher level. This results in the output voltage being boosted to 19
times that of the input voltage. When contrasted with [76–87], the proposed topology [88,89]
has a maximum efficiency of 99.06%. Unidirectional switches and DC sources accomplish
the maximum output. Voltage DC sources are organized differently to obtain five-level
results shown in Figure 13. The SKHI 10/12R gate driver circuit is connected to a heat sink,
which lessens internal temperatures. Here ‘E’ represents the source voltage, Phases are
represented with A, B, C. The switches in the Circuit are represented from (S1–S12) and
finally 0 represents the reference/ground value.
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2.1.6. Using One DC Source

In [90–93] four capacitors find a use for a nine-level MLI. Because of the utilization
of capacitors, inrush currents and voltage spikes across the diodes bring lower efficiency.
Every one of the referenced drawbacks is changed in the [39], where it employs just
three capacitors with one DC source. Figure 14 looks like an ‘M’; thus, it is named an
M-type switched capacitor MLI (MSCMLI). No H-bridge circuit is used. Out of 13, only
4 switches (S10− S13) will be operated once in the fundamental cycle, and the excess
switches (S6, S8, S9) will perform for the other method of operation. As such, the circuit
will create all certain and negative levels in the result, which, accordingly, reduces the
switching losses. The switches are matched to be integral (S1− S3) and (S2− S4) The
level-1 is generated directly from the DC source and receives (±Vdc), level-2 is obtained by
adding the capacitor (C1) that turns the switch (S3) and receives the voltage (±2Vdc). The
level-3 is delivered by adding the capacitors (C1) and (C2) and producing the (±3Vdc).



Energies 2023, 16, 18 14 of 25

As such we can generate all levels. Where Pl represents the conduction loss, Rint denotes
for the internal resistance

Conduction loss is given by Pl =
1

2π

∫
Rint I2

c dωt (19)

Total Standing Voltage is given by TSV =
TSV o f all the indicidual switches

peak value o f output
(20)

The cost factor is given by

CF = [Nsw + Ndr + Nd + Nc +

(
δ∗TPSV

Gain

)
](

Ndc
Nl

) (21)

Nsw—defines the number of switches used in the topology, Ndr—states the number
of gate driver circuits, Ndc

Nl , represents the number of DC sources ratio to that of the number
of voltage levels generated, Nd and Nc belong to the number of diodes and capacitors
employed in the circuit.
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The switches used in the suggested structure [38] have only 10 switches compared
to [94–97]. It engages just four self-capacitors, and every capacitor is boosted to three
multiple times and generates higher levels with a short of one DC source, shown in
Figure 15. In light of the switched capacitors, it is called cross-switched hybrid MLI, and
is developed where the voltage is boosted to 1.5 times at the output side. The circuit is
made with one DC source, with switches ranging from (S1− S12), diodes (D1− D4), and
capacitors (C1, C2, C f 1, C f 2). Here, we additionally have the complementary switch
sets as (S9, S10) and (S11, S12). By utilising the series-parallel balancing rule, capacitors
present in the circuit are self-charged to Vm. Switches (S11 and S12) have the voltage stress
as (2Vin); different switches will more often have voltage stress of just Vin. Capacitors
(C1 and C2) have oneself charge capacity of Vin, and the excess capacitors (C f 1 and C f 2)
have a value of 0.5Vin. In the proposed CHI, the primary level of the positive half cycle is
(±0.5Vin), which is acquired by subtracting (Vc f 1 and Vin). Similarly, the negative half
cycle the capacitor C1 is in charging mode up to (−2Vin). The relevant equations for the
respective circuit topology are stated in Equations (22)–(24). Where, fs—is termed as the
switching frequency, Cp—relates to parasitic capacitor at the blocking voltage VB, and fo
defines the fundamental frequency

Switching loss is given by Pl =
1
2

fsCpV2
B (22)

Ripple loss is given by Pr =
1
2

foC∆V2
c (23)
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Ohmic loss is given by Po = I2
o (4Rs + 2Rd + Rc)Io =

Vin − 2Vd −Vc f 1

4Rs + 2Rd + Rc
(24)

where, Io is the current referred-to output, Vin is the input voltage, Vd is the voltage
drop of the diode, Rs—is the switch resistance, Rd—is the diode resistance, Rc—is the
capacitor resistance.
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The output frequencies are 50 Hz and 400 Hz, which can be used for high switch-
ing operations.

2.2. MLI Design Based on the Application

The designed topologies are applied to various applications, some of which are men-
tioned below.

2.2.1. PV System Based/RES Applications

In [97], the FCML structure is intended to apply for lower voltage power switches.
Accordingly, it has low ON resistance. To meet the utilization of 800 V, a three-stage
AC/DC converter with GaN power semiconductors was developed with lesser losses. The
scaling laws in the circuit show that it needs at least six levels to meet the load. These
are primarily employed in aircraft motor drives. The effectiveness factor is additionally
high when contrasted with different topologies. Ref. [98] uses the designed structure for
charging station (CS) applications. The CS is planned where it coordinates the grid and the
renewable energy source (RES). Power can sometimes be bidirectional, for this topology
is intended to produce a three-level waveform among every leg and have a neutral point.
When contrasted with a regular inverter, it lowers the filter circuits, voltage stresses, and
unity power factors regardless of the functional model. It likewise balances the voltage
across the capacitors. In [99], the 11-level is produced by SC-MLI, which delivers a voltage
gain of 1.4 times more than the DC connect voltage appropriate for PV-based distribution
systems. Ref. [100] refers to opto-isolation devices separating the voltage (either low/high)
segments. The 1-ϕ, 13-level H-bridge inverter, which handles photovoltaic applications
where it lessens the THD and has low frequencies (650 Hz), improves the efficiency. A chip
ARM regulator is utilized to accomplish high efficiency at 180 MHz.

2.2.2. Electric Vehicles (EV)

In [101], the multi-input multi-output DC converter structure is designed, which has
the most reliable and efficient operation. Single-input multiple-output (SIMO) has voltage
gain where it is high, continuous input current, and soft switching. This can be applied
to isolated and non-isolated forms [102]. Supercapacitors work for high-power density
applications. The DC converter structure is designed with two bidirectional switches, and
the voltage is boosted without a transformer. DC link voltage is kept constant, which is fed
to the motor. The capacitor can be charged/discharged during the buck and boost operation,
proposing the usage of a seven level MLI, where every one of the switches is associated
in series. This is done to decrease the switching losses concerning switching frequency.
The THD results are 11%. It likewise lessens the strain on the switches. For each two-level,
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an IGBT/Diode switch is added. Blocking voltage is varied with the levels of clamping
diodes. In [103], the NPC inverter builds effectiveness. The designed topology diminishes
the weight on the switch, THD, and EMI. Overall, the quality of power is improved. In
NPC-MLI is created with an independent DC source, which is utilized. It gives better power
management while charging/discharging the battery [104]. To accomplish the objectives
of the inverter, such as high-power density and low cost for traction drives, higher stable
activity of the DC interface is required. By further developing the DC-link, EMI and voltage
stress are the significant disadvantages. A [105], for lessening the size, weight, and filtering
equipment of the multi-port converter, is created. This is particularly intended for electric
vehicle applications with the utilization of hybrid energy storage systems. This builds the
battery duration and the condition of charge level.

2.2.3. Motor Drive Applications

In [106], a cascaded T-Type multilevel inverter (CT2MLI) is proposed and applied
to AC 415 V industrial application. In this, the converter shares a common emitter (CE)
configuration. Along these lines, only one driver circuit is sufficient [107]. The designed
topology is applied for PMSM drive applications. Where it works by double-level VSI for
two and multilevel modes [108] by utilizing FCML structure in the inverter, the utilization
of wideband gap (WBG) switches, and the exhibition of two-level 1200 V SiC switches, low
voltage GaN HEMT switches accomplish 15.8 KW/dm3 power density with an efficiency of
99.03%, and ML leg efficiency is noticed. It benefits 3-phase variable speed drives [109]. The
designed converter uses eight switches, and is named the eight switches bridge converter
(ESBC). This works to drive the brushless direct current motor (BLDCM), where the motor
phases become detached through various switches. This likewise improves the system’s
reliability during fault conditions. In [105], a five-level diode clamped inverter is proposed
to simplify the circuit, be robust-free, and have a great unique response. This is applied
for direct torque control (DTC) and field-oriented control (FOC) in motor applications.
In [110], different switching operations of the nine-level inverter are required to develop
the dynamic load changing and the settling time of the applied induction motor further.
The author in [16] presents that, although zero voltage vectors might also be employed,
they appear to be useful for induction motor direct torque control in the OVT-ST inverter.

2.2.4. Industrial Applications

In [111], two identical DC–AC inverters are connected in parallel with the assistance
of the standard capacitor. The designed circuit benefits high-power applications and
accomplishes the greatest efficiency of 93.7%. In [112], the multi-port converters are (a)
MISO-able to work as boost and Cuk converters (b) SIMO-switch losses are diminished,
and (c) MIMO-different duty cycles can be worked for various modes and are proposed
and utilized for high/low-level applications.

2.2.5. Multi-Purpose and Other Applications

The novel converter planned in [112] has simple and reliable inactivity, and can be
applied for various AC–DC, DC–DC, DC–AC, and AC–AC applications. While utilizing
traditional inverters because of many disadvantages, many adjusted forms of MLI are
created. In [113], switched capacitor (SC) is developed, the voltage levels are greater in
number, and the voltage level is boosted. Capacitors and inductors are eliminated within
this topology to decrease the system’s weight and cost. Along these lines, the effectiveness
of the circuit can be improved to high and further develop the energy density. It is applied
for AC–DC/DC–AC power conversions [113]. For different applications, such as EV and
aerospace, the MLI is designed using silicon (Si) and gallium nitride (GaN). GaN e-FETs are
preferred more than Si MOSFETs because the component is a three [114] plan 3ϕ five-level
CHB, even though MLI employs 24 switches, produces more voltage, and utilizes only
two separate DC sources. Results in [115] show that the THD is diminished, and power
quality is further developed when the VFISPWM technique is applied to multi-purpose
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applications. The authors of [116] proposed an inverter which is designed so that it has just
a couple of parts counts, and it is used for naval ship propulsion rectifier applications.

3. Modulation Techniques for Derived Converters

Different modulation schemes are accessible to control the operations in the inverter. A
portion of these is informed here. Changing the voltage or frequency waveform modulation
technique finds use where it involves two signs: the carrier signal and the reference signal.
By changing the pulse width in the sinewave, the resulting levels of the voltage/frequency
are modified. For the most part, the pulse width modulation (PWM) methods are created
to diminish the operations and switching losses, and to further develop the system’s
efficiency [117]. Overall, modulation methods are grouped into two classifications. Low
frequency/high switching frequency, which is sub characterized by (a) selective harmonic
elimination (SHE), (b) nearest vector, (c) nearest level, and (d) hybrid modulation. The
second one is high switching frequency, and it is sub-delegated by (a) multi carrier PWM is
further classified as phase shifted and level shifted, phase disposition (PD-PWM) which is
in phase with each carrier, phase opposition disposition (POD-PWM) where carriers are in
phase above the zero references and below 180◦ out of phase, alternate phase opposition
disposition (APOD-PWM) which is 180◦ out of the phase, (b) space vector modulation (2D-
Algorithm and 3D-Algorithm) and (c) hybrid modulation. According to the accessibility
and the suitability, these techniques are utilized.

Figure 16 classifies the commonly used modulation techniques. In [2], the carrier-based
PWM technique is easy to implement and control. Output can be modulated using CBPWM.
SVPWM is used for controlling the neutral point; also, [115] was used to calculate the
timings of the modulation with level information. Nearest vector PWM is a part of SVPWM,
similar to CBPWM [11]. SVPWM gives the exact switching sequences; it can be derived
from the dwell times with easy computational effects and can be implemented in FPGA.
Ref. [116] proposes the two frequency operations. Firstly, the low-frequency modulation,
where the works are with a f = 50 Hz grid, supply frequency. It generates a qualified
output waveform. Cost and efficiency are added parameters. Secondly, high-frequency
modulation works with a switching frequency of 200 KHz. Duty cycles are controlled to
obtain the desired output voltage at a particular frequency (f) [5]. Spatial vector represents
the recommended SVPWM. It is made of three hexagons, whose size fluctuates depending
on the DC input voltages [6]. Conventional CII uses common carrier interleaving or a
discontinuous form of PWM (DPWM). Line PWM frequency is always equal to (2× n× f c).
Standard interleaving and carrier manipulation schemes are employed. In [117], for a
seven-level symmetrical inverter, the modulation index is given as m = πV1

4∗3Vdc [30]. NPC
topologies use (PD-SPWM) [53]. Modified PWM control strategy uses triangular signals as
carrier signals and sinewaves as reference signals. PD strategy is used for carrier signals
with a switching frequency of 1.1 KHz. Only two switching angles are required to calculate
five-level output.
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Refs. [29,31] involves a P&O calculation-based MPPT procedure for the applications to
extricate the maximum power from the PV array; the stable output is accomplished under
all conditions (even partially shaded conditions).

3.1. Fundamental Frequency Switching (FFS) and High-Frequency Switching (HFS)

In [28], NLC control exchanges tasks and decreases THD. Reference [30] employs
fundamental frequency switching (FFS), which is sub-classified as low switching frequency
(LFS) and high switching frequency (HFS) [33]. It has an open loop and closed loop
switching for specific applications [37]. It works so that only one switching operation is
permitted in turn. Subsequently, it diminishes the losses in the system and accomplishes
higher energy levels with minimal expense [38]. NLC is mostly used for higher levels
because of its simple control [39]. It enjoys a significant benefit in that the computation
angle switching can effectively store these qualities in the lookup table by the processor,
and is perfectly carried out. Ref. [118] is used for a more severe level of adaptability in the
exchanging activity with variable magnitude count.

3.2. Selective Harmonic Elimination (SHE)

In [32], to dispense with the odd-order harmonics (third, fifth, seventh, ninth, eleventh,
thirteenth, fifteenth), PSO calculation is carried out in the selective harmonic elimination
strategy [34,35]. PS1 structure utilizes carrier-based SPWM techniques [107], and the
respective highlights of SHE are mentioned in Table 3. It likewise collaborates with the NR
strategy for solving the angles of non-linear equations.

V(ωt) = a0/2 + ∑∞
n=1(an cos(nωt) + bn sin(nωt) (25)

Table 3. SHE-PWM technique advantages.

Type of Technique Pros

SHE-PWM X It has low switching frequency/low operation and conduction losses
X In a single phase, triple harmonics are controlled.
X Heavy computational calculations are reduced.
X Balancing and unequal distribution of voltages can be controlled in the

case of DC-link.
X It can be dealt with in any switching pattern.
X Dominant harmonics are monitored with intelligent algorithms in

real-data implementation.

3.3. Pulse Width Modulation (PWM)

Refs. [37,115] utilize pulse width modulation, where level shifted and phase shifted
schemes play a vital role in this strategy [40]. FPGA-based harmonic reduction (HR)
calculations can likewise be carried out in the strategy [103]. Harmonics in this scheme are
limited, and voltage adjusting can be accomplished [15]. Additionally, FFT investigation
and current strategies can likewise be carried out in numerous applications, and advantages
related to PS-PWM are mentioned in Table 4.

Table 4. PS-PWM technique advantages.

Type of Technique Pros

PS-PWM
X MLI performance is balanced throughout the operation during the

charging/discharging process.
X It results in low leakage power and loss, therefore resulting in high

efficiency.
X It avoids leakage currents when applied to grid-connected systems.
X It operates in a safer region with a high switching frequency.
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3.4. Predictive Torque Control

In [107], the authors present the predictive torque control (PTC) and model predictive
control (MPC) methods for calculating the errors present in the motor drives [105]. This
additionally works on the decrease in system ripples and reduces the switching frequency.

3.5. Perturb and Observe (P&O) and MPPT-Based Approach

An MPPT controller is used to operate solar PV to extract the maximum power possible
from the PV module. Solar PV’s efficiency and life span have improved throughout all of
the disruptions above. The solar source can be set to the load to obtain maximum power
production under different climatic conditions. By adjusting the voltage from the array by a
small amount, the controller measures the power and, if it rises, performs more adjustments
in that direction until the power stops rising [29]. The most popular strategy is perturb and
observe (P&O), which might lead to power output oscillations. It is often referred to as the
“hill climbing” technique, since it depends on the power versus voltage curve rising below
the maximum power point and falling above it [32]. The perturb and observe method is
the most used since it is so simple.

4. Conclusions

The study covers recent developments in the recently established MLI, where different
topologies are compared with the conventional inverters to continue research and advance-
ment in multi-level generations. As a result, it is understood that each topology has a
distinct feature that leads to significant inherent benefits, such as a decrease in switching
losses, voltage ripples, voltage stress, active switches, diodes, capacitors, and driver circuits.
In addition, there are reductions in DC sources, TSV, TBV, THD, EMI issues, standard mode
voltages, fault operations, quality output voltage, cost, volume, and weight, which improve
the efficiency that aids in reducing the complexity of inverters. These are mostly preferred
for RECS, PV, EV, and industrial drive applications. Comparative analysis with different
topologies also made for a clear understanding. Asymmetrical configurations with different
topologies, their operations, benefits, and applications are explained in a broad way. In
some topologies of the circulating inrush currents, voltage balancing is minimal. Various
modulation techniques and control schemes are also highlighted to know which will suit a
particular application. It can be observed that the maximum efficiency achieved is 99.06%,
and the THD factor is 1.41%. The extensive review shows that MLI faced many problems,
such as high switching rating, larger filtering devices for distortion-free output, heating
problems, more sensing components, and a lack of DC sources. For switching/frequency
operations for higher levels, GaN/SiC switches are preferred solutions due to their inherent
benefits such as high thermal conductivity, which also lowers the device count.

Author Contributions: Conceptualization, K.N.D.V.S.E. and M.A.N.D.; methodology, M.B.; soft-
ware, P.V.; validation, M.B. and H.K.; formal analysis, K.N.D.V.S.E. and M.A.N.D.; investigation
K.N.D.V.S.E., M.A.N.D. and A.S.; resources, P.V. and S.K.; data curation, K.N.D.V.S.E.; writing—
K.N.D.V.S.E.; writing—review and editing, M.B. and H.K.; visualization, A.S. and H.K.; supervision,
M.A.N.D. and P.V.; project administration, M.A.N.D., P.V., A.S. and S.K.; funding acquisition, S.K. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by Science, Technology & Innovation Funding Authority (STDF)
under grant (43180).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Energies 2023, 16, 18 20 of 25

Nomenclature

MLI Multilevel Inverter
THD Total Harmonic Distortion
PWM Pulse Width Modulation
EV Electric Vehicle
PV Photovoltaic
RECS Renewable Energy Conventional Sources
UPS Uninterrupted Power Supply
RE Renewable Energy
V2G Vehicle-to-Grid
EMC/EMI Electromagnetic Compatibility/Electromagnetic Interference
TBV Total Blocking Voltage
TSV Total Standing Voltage
SC Super Capacitor
VSI Voltage Source Inverters
CSI Current Source Inverters
Q-ZSI Quasi-impedance Source Inverters
SC Super Capacitor
SOC State of Charge
SOD State of Discharge
SCSS Switched Connected Switched Sources
SSPS Switched Series Parallel Sources
IGBT Insulated Gate Bi-polar Transistor
MOSFET Metal Oxide Converter Field Effect Transistor
SC-MLI Switched Capacitor—Multilevel Inverter
PIV Peak Inverse Voltage
WBG Wide Band Gap
LV Low Voltage
HV High Voltage
LDC Level Doubling Circuits
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