Design and CFD Analysis of the Energy Efficiency of a Point Wave Energy Converter Using Passive Morphing Blades
Abstract
:1. Introduction
2. Working Principle and Structure
2.1. Working Principle of Point-Absorption WEC with Passive Morphing Blades
2.2. Structure of Passive Morphing Blades
3. Energy-Conversion-Efficiency Model of PTOs
3.1. Energy-Conversion Processes
3.2. Energy-Conversion-Efficiency Evaluation Model
4. CFD Numerical Simulation
4.1. CFD Modeling
4.2. Numerical-Simulation Result
4.2.1. Effect of the Passive Morphing Blades on the Hydraulic-Conversion Performance of PTO
4.2.2. Effect of Blade-Group Solidity on the Hydraulic Performance of PTO
4.2.3. Effect of Blade Number on the Hydraulic Performance of PTO
4.2.4. Effect of the Blade Load Condition on the Hydraulic Performance of PTO
5. Conclusions
- The dynamic torque , power , and hydraulic conversion efficiency of the PTO increase with the blade group’s solidity, with a fixed blade number, deflection angle, and load ratio. The maximum energy-conversion efficiency is achieved when the blade group solidity is about 90%.
- A 10-blade group, with a fixed-blade-group solidity (90%), deflection angle (20°), and load ratio (50%), has a large dynamic torque and a large power, and is suitable as a reference value for the number of blades of a PTO.
- The passive morphing-blade group produces a smaller wake-field diameter, when the other conditions are identical. The passive morphing-blade group provides ~40% higher torque and ~60% higher hydraulic efficiency than the flat-blade group.
- For PTOs with two blade groups, the wake field has a great effect on the rotational speed , torque , power , and hydraulic-conversion efficiency . The distance between the two passive morphing-blade groups should be spaced four times larger than the blade diameter to reduce the intergroup wake-field effects.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
outermost deflection angle of blade | |
deflection angle of | |
deflection angle of | |
hydraulic efficiency | |
generation efficiency | |
density, kg·m·s−2 | |
ratio of blade area to blade rotating flat area | |
angular velocity, rad/s | |
mechanical energy of floating body’s heaving and pitching motion, W | |
mechanical energy of PTO’s dipping motion, W | |
mechanical energy of transmission shaft, W | |
electric energy, W | |
rotation speed, r/s | |
dynamic power, W | |
input power, W | |
output power, W | |
maximum radius of blade, mm | |
hub radius, mm | |
blade radius, mm | |
blade area, mm2 | |
dynamic torque, N·m | |
maximum torque of blade under impact of steady flow field, N·m | |
unit time, s | |
flow rate, m/s |
References
- López, I.; Andreu, J.; Ceballos, S.; Martínez de Alegría, I.; Kortabarria, I. Review of wave energy technologies and the necessary power-equipment. Renew. Sustain. Energy Rev. 2013, 27, 413–434. [Google Scholar] [CrossRef]
- Tiron, R.; Mallon, F.; Dias, F.; Reynaud, E.G. The challenging life of wave energy devices at sea: A few points to consider. Renew. Sustain. Energy Rev. 2015, 43, 1263–1272. [Google Scholar] [CrossRef]
- Li, Y.; Yu, Y.-H. A synthesis of numerical methods for modeling wave energy converter-point absorbers. Renew. Sustain. Energy Rev. 2012, 16, 4352–4364. [Google Scholar] [CrossRef]
- Falcão, A.F.d.O. Wave energy utilization: A review of the technologies. Renew. Sustain. Energy Rev. 2010, 14, 899–918. [Google Scholar] [CrossRef]
- Dai, Y.; Chen, Y.; Xie, L. A study on a novel two-body floating wave energy converter. Ocean Eng. 2017, 130, 407–416. [Google Scholar] [CrossRef]
- Amiri, A.; Panahi, R.; Radfar, S. Parametric study of two-body floating-point wave absorber. J. Mar. Sci. Appl. 2016, 15, 41–49. [Google Scholar] [CrossRef]
- Yu, Y.-H.; Li, Y. Reynolds-Averaged Navier–Stokes simulation of the heave performance of a two-body floating-point absorber wave energy system. Comput. Fluids 2013, 73, 104–114. [Google Scholar] [CrossRef]
- Sun, C.; Luo, Z.; Zhu, Y.; Lu, Z.; Wu, G.; Shang, J. Structural Design and Numerical Optimization of Novel Wave Energy Point Absorber. Energies 2018, 49, 406–413. [Google Scholar] [CrossRef]
- Son, D.; Belissen, V.; Yeung, R.W. Performance validation and optimization of a dual coaxial-cylinder ocean-wave energy extractor. Renew. Energy 2016, 92, 192–201. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Zhao, Y.J.; Sun, W.; Li, J.X. Ocean wave energy converters: Technical principle, device realization, and performance evaluation. Renew. Sustain. Energy Rev. 2021, 141, 110764–110784. [Google Scholar] [CrossRef]
- Falcão, A.F.O.; Cândido, J.J.; Justino, P.A.P.; Henriques, J.C.C. Hydrodynamics of the IPS buoy wave energy converter including the effect of non-uniform acceleration tube cross section. Renew. Energy 2012, 41, 105–114. [Google Scholar] [CrossRef]
- Rezaei, S.; Rahimi, A.; Parvizian, J.; Mansourzadeh, S.; Düster, A. Dimensional optimization of a two-body Wave energy converter using response surface methodology. Ocean Eng. 2022, 261, 112186. [Google Scholar] [CrossRef]
- Abdelkhalik, O.; Zou, S. Control of small two-body heaving wave energy converters for ocean measurement applications. Renew. Energy 2019, 132, 587–595. [Google Scholar] [CrossRef]
- Weinstein, A.; Fredrikson, G.; Parks, M.J.; Nielsen, K. Numerical evaluation of a two-body point absorber wave energy converter with a tuned inerter. Renew. Energy 2021, 171, 217–226. [Google Scholar]
- Sun, C.; Luo, Z.; Shang, J.; Lu, Z.; Zhu, Y.; Wu, G. Design and Numerical Analysis of a Novel Counter-Rotating Self-Adaptable Wave Energy Converter Based on CFD Technology. Energies 2018, 11, 694. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Shang, J.; Luo, Z.; Zhu, Y.; Lu, Z.; Wu, G.; Cong, D. Performance characteristics of a Novel point Absorber-type WEC based on counter-rotating self-adaptable movement mechanism. Energy Sources Part A Recovery Util. Environ. Eff. 2021, 43, 783–799. [Google Scholar] [CrossRef]
- Sun, C.; Shang, J.; Luo, Z.; Lu, Z.; Wu, G.; Zhu, Y. Using Flexible Blades to Improve the Performance of Novel Small-Scale Counter-Rotating Self-Adaptable Wave Energy Converter for Unmanned Marine Equipment. J. Mar. Sci. Eng. 2019, 7, 223. [Google Scholar] [CrossRef] [Green Version]
- Johansen, J.; Sorensen, N.N. Aerofoil characteristics from 3D CFD rotor computations. Wind Energy 2004, 7, 283–294. [Google Scholar] [CrossRef]
- Setoguchi, T.; Santhakumar, S.; Maeda, H.; Takao, M.; Kaneko, K. A review of impulse turbines for wave energy conversion. Renew. Energy 2001, 23, 261–292. [Google Scholar] [CrossRef]
- Matloff, L.Y.; Chang, E.; Feo, T.J.; Jeffries, L.; Stowers, A.K.; Thomson, C.; Lentink, D. How flight feathers stick together to form a continuous morphing wing. Science 2020, 367, 293–297. [Google Scholar] [CrossRef]
- Goteman, M. Wave energy parks with point-absorbers of different dimensions. J. Fluids Struct. 2017, 74, 142–157. [Google Scholar] [CrossRef]
- Dafnakis, P.; Bhalla, A.P.S.; Sirigu, S.A.; Bonfanti, M.; Bracco, G.; Mattiazzo, G. Comparison of wave-structure interaction dynamics of a submerged cylindrical point absorber with three degrees of freedom using potential flow and computational fluid dynamics models. Phys. Fluids 2020, 32, 1–20. [Google Scholar] [CrossRef]
- Xudong, W.; Shen, W.Z.; Zhu, W.J.; Sorensen, J.N.; Jin, C. Shape Optimization of Wind Turbine Blades. WIND ENERGY 2009, 12, 781–803. [Google Scholar] [CrossRef]
- Ye, X.M.; Fan, F.W.; Zhang, R.X.; Li, C.X. Prediction of Performance of a Variable-Pitch Axial Fan with Forward-Skewed Blades. ENERGIES 2019, 12, 2353. [Google Scholar] [CrossRef] [Green Version]
- Al Shami, E.; Wang, X.; Zhang, R.; Zuo, L. A parameter study and optimization of two body wave energy converters. Renew. Energy 2019, 131, 1–13. [Google Scholar] [CrossRef]
- Poguluri, S.K.; Ko, H.S.; Bae, Y.H. CFD investigation of pitch-type wave energy converter-rotor based on RANS simulations. Ships Offshore Struct. 2020, 15, 1107–1119. [Google Scholar] [CrossRef]
Options | Parameters |
---|---|
Mass | 1 kg |
Degree of freedom (DOF) | 1 DOF rotation |
Preload | 0.5 |
Moment of inertia | 0.5 kg·m2 |
Blade Type | Wake Field Diameter | Wake Field Length |
---|---|---|
Passive morphing blades | 320 mm | 1500 mm |
Flat blades | 440 mm | 900 mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Luo, Z.; Lu, Z.; Shang, J.; Wang, M.; Zhu, Y. Design and CFD Analysis of the Energy Efficiency of a Point Wave Energy Converter Using Passive Morphing Blades. Energies 2023, 16, 204. https://doi.org/10.3390/en16010204
Wang C, Luo Z, Lu Z, Shang J, Wang M, Zhu Y. Design and CFD Analysis of the Energy Efficiency of a Point Wave Energy Converter Using Passive Morphing Blades. Energies. 2023; 16(1):204. https://doi.org/10.3390/en16010204
Chicago/Turabian StyleWang, Changlei, Zirong Luo, Zhongyue Lu, Jianzhong Shang, Mangkuan Wang, and Yiming Zhu. 2023. "Design and CFD Analysis of the Energy Efficiency of a Point Wave Energy Converter Using Passive Morphing Blades" Energies 16, no. 1: 204. https://doi.org/10.3390/en16010204
APA StyleWang, C., Luo, Z., Lu, Z., Shang, J., Wang, M., & Zhu, Y. (2023). Design and CFD Analysis of the Energy Efficiency of a Point Wave Energy Converter Using Passive Morphing Blades. Energies, 16(1), 204. https://doi.org/10.3390/en16010204