Effect of Eccentric Tension on the Response of Wrinkle Defects in Carbon Fiber-Reinforced Composite Laminates
Abstract
:1. Introduction
2. Micro-Mechanical Model of Wrinkles
2.1. Wrinkle in Laminate
2.2. Effective Stiffness
3. Structural Response with Wrinkles
3.1. Heterogeneity Model
3.2. Heterogeneity Model Implanted in FEA
3.3. Structural Response
3.3.1. Tension
3.3.2. Bending around Y-Axis
3.3.3. Bending around Z-Axis
3.3.4. Torsion
4. Experiment Preparation
4.1. Test Specimen
4.2. FEA Simulation
5. Optical–Mechanical Measurement
5.1. Method
5.2. Procedure
5.3. Results Analysis
5.3.1. Out-of-Plane Displacement
5.3.2. Error Analysis
- (1)
- Non-ideal cosine curves in the wrinkles in the specimen;
- (2)
- The additional moments introduced by geometric asymmetry.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Hallander, P.; Akermo, M.; Mattei, C.; Petersson, M.; Nyman, T. An experimental study of mechanisms behind wrinkle development during forming of composite laminates. Compos. Part A Appl. Sci. Manuf. 2013, 50, 54–64. [Google Scholar] [CrossRef]
- Sorrentino, L.; Bellini, C. Potentiality of hot drape forming to produce complex shape parts in composite material. Int. J. Adv. Manuf. Technol. 2016, 85, 945–954. [Google Scholar] [CrossRef]
- Farnand, K.; Zobeiry, N.; Poursartip, A.; Fernlund, G. Micro-level mechanisms of fiber waviness and wrinkling during hot drape forming of unidirectional prepreg composites. Compos. Part A Appl. Sci. Manuf. 2017, 103, 168–177. [Google Scholar] [CrossRef]
- Jochum, C.; Grandidier, J.C.; Smaali, M. Proposal for a long-fiber microbuckling scenario during the cure of a thermosetting matrix. Compos. Part A Appl. Sci. Manuf. 2008, 39, 19–28. [Google Scholar] [CrossRef]
- Potter, K.; Khan, B.; Wisnom, M.; Bell, T.; Stevens, J. Variability, fiber waviness and misalignment in the determination of the properties of composite materials and structures. Compos. Part A Appl. Sci. Manuf. 2008, 39, 1343–1354. [Google Scholar] [CrossRef]
- Alshahrani, H.; Hojjati, M. Experimental and numerical investigations on formability of out-of-autoclave thermoset prepreg using a double diaphragm process. Compos. Part A Appl. Sci. Manuf. 2017, 101, 199–214. [Google Scholar] [CrossRef]
- Lightfoot, J.S.; Wisnom, M.R.; Potter, K. Defects in woven preforms: Formation mechanisms and the effects of laminate design and layup protocol. Compos. Part A Appl. Sci. Manuf. 2013, 51, 99–107. [Google Scholar] [CrossRef] [Green Version]
- Weber, T.A.; Englhard, M.; Arent, J.C.; Hausmann, J. An experimental characterization of wrinkling generated during prepreg autoclave manufacturing using caul plates. J. Compos. Mater. 2019, 53, 3757–3773. [Google Scholar] [CrossRef]
- Nebe, M. In Situ Characterization Methodology for the Design and Analysis of Composite Pressure Vessels; Springer Fachmedien: Wiesbaden, Germany, 2022; Available online: https://link.springer.com/10.1007/978-3-658-35797-9 (accessed on 24 February 2022). [CrossRef]
- Mukhopadhyay, S.; Jones, M.I.; Hallett, S.R. Compressive failure of laminates containing an embedded wrinkle: Experimental and numerical study. Compos. Part A Appl. Sci. Manuf. 2015, 73, 132–142. [Google Scholar] [CrossRef]
- Xie, N.B.; Smith, R.A.; Mukhopadhyay, S.; Hallett, S.R. A numerical study on the influence of composite wrinkle defect geometry on compressive strength. Mater. Des. 2018, 140, 7–20. [Google Scholar] [CrossRef]
- Wu, C.J.; Gu, Y.Z.; Luo, L.; Xu, P.; Wang, S.K.; Li, M.; Zhang, Z.G. Influences of in-plane and outof-plane fiber waviness on mechanical properties of carbon fiber composite laminate. J. Reinf. Plast. Compos. 2018, 37, 877–891. [Google Scholar] [CrossRef]
- Bloom, L.D.; Wang, J.; Potter, K.D. Damage progression and defect sensitivity: An experimental study of representative wrinkles intension. Compos. Part B Eng. 2013, 45, 449–458. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Jones, M.I.; Hallett, S.R. Tensile failure of laminates containing an embedded wrinkle; numerical and experimental study. Compos. Part A Appl. Sci. Manuf. 2015, 77, 219–228. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Nixon-Pearson, O.J.; Hallett, S.R. An experimental and numerical study on fatigue damage development in laminates containing embedded wrinkle defects. Int. J. Fatigue 2018, 107, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Elhajjar, R.F.; Petersen, D.R. Gaussian function characterization of unnotched tension behavior in a carbon/epoxy composite containing localized fiber waviness. Compos. Struct. 2011, 93, 2400–2408. [Google Scholar] [CrossRef]
- Riddle, T.; Cairns, D.; Nelson, J. Characterization of manufacturing defects common to composite wind turbine blades: Flaw characterization. In Proceedings of the 52nd, AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Denver, CO, USA, 4–7 April 2011. [Google Scholar]
- Riddle, T.W.; Cairns, D.S.; Nelson, J.W. Effects of Defects PartA: Treatment of Manufacturing Defects as Uncertainty Variables in a Wind Blade Probabilistic Design Framework. In Proceedings of the 32nd ASME Wind Energy Symposium, National Harbor, MD, USA, 13–17 January 2014. [Google Scholar]
- Pain, D.; Drinkwater, B.W. Detection of fibre waviness using ultrasonic array scattering data. J. Nondestruct. Eval. 2013, 32, 215–227. [Google Scholar] [CrossRef]
- Nelson, L.J.; Smith, R.A.; Mienczakowski, M. Ply-orientation measurements in composites using structure-tensor analysis of volumetric ultrasonic data. Compos. Part A Appl. Sci. Manuf. 2018, 104, 108–119. [Google Scholar] [CrossRef] [Green Version]
- Nelson, L.J.; Smith, R.A. Fibre direction and stacking sequence measurement in carbon fibre composites using Radon transforms of ultrasonic data. Compos. Part A Appl. Sci. Manuf. 2018, 118, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Smith, R.A.; Nelson, L.J.; Mienczakowski, M.J.; Wilcox, P.D. Ultrasonic analytic-signal responses from polymer-matrix composite laminates. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2018, 65, 231–243. [Google Scholar] [CrossRef]
- Ambrozinski, L.; Mrowka, J.; O’Donnell, M.; Pelivanov, I. Detection and imaging of local ply angle in carbon fiber reinforced plastics using laser ultrasound and tilt filter processing. Compos. Part A Appl. Sci. Manuf. 2019, 126, 105581. [Google Scholar] [CrossRef]
- Li, Z.C.; Zhou, L.C.; Pei, Y.M. Microwave near-field and far-field imaging of composite plate with hat stiffeners. Compos. Part B Eng. 2019, 161, 87–95. [Google Scholar] [CrossRef]
- Sutcliffe, M.P.F.; Lemanski, S.L.; Scott, A.E. Measurement of fibre waviness in industrial composite components. Compos. Sci. Technol. 2012, 72, 2016–2023. [Google Scholar] [CrossRef] [Green Version]
- Elhajjar, R.F.; Shams, S.S. A new method for limit point determination in composite materials containing defects using image correlation. Compos. Sci. Technol. 2016, 122, 140–148. [Google Scholar] [CrossRef]
- Takeda, T. Micromechanics model for three-dimensional effective elastic properties of composite laminates with ply wrinkles. Compos. Struct. 2018, 189, 419–427. [Google Scholar] [CrossRef]
- Chou, P.C.; Carleone, J.; Hsu, C.M. Elastic constants of layered media. J. Compos. Mater. 1972, 6, 80–93. [Google Scholar] [CrossRef]
- Sun, C.T.; Li, S. Three-dimensional effective elastic constants for thick laminates. J. Compos. Mater. 1988, 22, 629–639. [Google Scholar] [CrossRef]
- Whitcomb, J.; Noh, J. Concise derivation of formulas for 3D sublaminatehomogenization. J. Compos. Mater. 2000, 34, 522–535. [Google Scholar] [CrossRef]
- Sandhu, A.; Reinarz, A.; Dodwell, T.J. A Bayesian framework for assessing the strength distribution of composite structures with random defects. Compos. Struct. 2018, 205, 58–68. [Google Scholar] [CrossRef] [Green Version]
- Felipe-Sesé, L.; López-Alba, E.; Siegmann, P.; Díaz, F.A. Integration of fringe projection and two-dimensional digital image correlation for three-dimensional displacements measurements. Opt. Eng. 2016, 55, 121711. [Google Scholar] [CrossRef]
- Wu, Z.; Guo, W.; Pan, B.; Kemao, Q.; Zhang, Q. A DIC-assisted fringe projection profilometry for high-speed 3D shape, displacement and deformation measurement of textured surfaces. Opt. Lasers Eng. 2021, 142, 106614. [Google Scholar] [CrossRef]
E11 (GPa) | E22/E33 (GPa) | G12 (GPa) | G23 (GPa) | G31 (GPa) | v21 | v32 | v31 |
---|---|---|---|---|---|---|---|
133.3 | 9.09 | 7.23 | 3.16 | 7.24 | 0.261 | 0.436 | 0.261 |
Specimen | Stacking Sequence | Wrinkle Geometry | ||
---|---|---|---|---|
λ/mm | A/mm | Waviness Ratio: A/λ | ||
S1 | [0/90/0/90]s | 12.02 | 0.79 | 0.066 |
S2 | [0/90/0/90]s | 5.98 | 1.18 | 0.197 |
Specimen | Step | 1 | 2 | 3 |
---|---|---|---|---|
S1 | Load(N) | 200 | 800 | 1200 |
S2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, L.; Ying, K.; Wen, A.; Guo, J.; Zheng, J. Effect of Eccentric Tension on the Response of Wrinkle Defects in Carbon Fiber-Reinforced Composite Laminates. Energies 2023, 16, 209. https://doi.org/10.3390/en16010209
Ma L, Ying K, Wen A, Guo J, Zheng J. Effect of Eccentric Tension on the Response of Wrinkle Defects in Carbon Fiber-Reinforced Composite Laminates. Energies. 2023; 16(1):209. https://doi.org/10.3390/en16010209
Chicago/Turabian StyleMa, Li, Kaidi Ying, Ange Wen, Jing Guo, and Jinyang Zheng. 2023. "Effect of Eccentric Tension on the Response of Wrinkle Defects in Carbon Fiber-Reinforced Composite Laminates" Energies 16, no. 1: 209. https://doi.org/10.3390/en16010209
APA StyleMa, L., Ying, K., Wen, A., Guo, J., & Zheng, J. (2023). Effect of Eccentric Tension on the Response of Wrinkle Defects in Carbon Fiber-Reinforced Composite Laminates. Energies, 16(1), 209. https://doi.org/10.3390/en16010209