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Abstract: Composite pressure vessels (CPVs) have become the main equipment for hydrogen storage;
however, the effect of defect in the laminates of CPVs is difficult to detect. In this paper, composite
specimens containing wrinkle defects were investigated, and a heterogeneity model of a wrinkle
defect is proposed. A three-dimensional finite element code was developed to predict the behavior
of carbon fiber-reinforced composite laminates with wrinkle defects. The effect of the geometric
asymmetry of clamping was distinguished from the whole response. It was found that wrinkle defects
are sensitive to tension but completely insensitive to torsion and that the distortion of out-of-plane
displacement is strongly dependent upon wrinkle defects. An optical–mechanical method based
on fringe projection was presented to measure the response of wrinkle defects, which shows an
outstanding performance on wrinkle location and deformation visualization.

Keywords: fiber-reinforced composite laminates; wrinkle defects; fringe projection; optical–
mechanical method

1. Introduction

Composite pressure vessels (CPVs) are important pieces of equipment for hydrogen
storage. However, defects in CPVs will inevitably occur during the manufacturing process,
leading to the reduction in fatigue life and degradation in strength.

Wave defects, also known as misalignment in the form of in-plane waviness and
out-of-plane wrinkling, are frequently encountered flaws in fiber-reinforced composite
structures. Such defects commonly arise from manufacturing processes, i.e., the hot drape
forming (HDF) process [1–3] and Liquid Composite Molding (LCM) processes such as
Resin Transfer Molding (RTM) [4,5].

Factors such as the local fiber compressive stresses [6], stacking layup sequences [6,7], part
thickness, geometry, and tool–part interactions [8] contribute to the formation of wrinkles.

Figure 1 [9] shows an example of a wrinkle defect on a CPV, where circumferential
layers were locally squished by a subsequently wound helical layer with a lagging pattern,
which further leads to the local accumulation of wrinkled material. In consequence, these
defects may potentially trigger a preliminary vessel failure.

Compressive properties are more sensitive to out-of-plane wrinkling [10–12], among
which a 33.0% reduction in compressive strength has been reported [12]. Tension failure [13,14],
as well as tension–tension cyclic behavior [15,16], has been studied, where small delami-
nation can be initiated early during the load history and grow steadily with an increasing
number of cycles.

Usually, the shape and size of a wrinkle can be described as, e.g., a bell-shaped curve
of a Gaussian function [16] or sine/cosine functions. Further observations found that the
wavelength, amplitude, and deflection angles of wrinkles are approximately normally
distribution or have a Weibull distribution [17], and probabilistic models were developed
accordingly to assess the reliability of wind blades with such defects [18].
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These methods of observing wrinkles are also nondestructive testing (NDT) methods.
An ultrasonic array technique is used to detect the fiber waviness [19], and based on the
ultrasonic pulse-echo technique, both in-plane waviness and out-of-plane wrinkling were
visualized [20–22]. The other imaging techniques include laser-ultrasound (LU) [23] and
microwave scanning [24].

The microscopic images capturing out-of-plane defect height, type, and location
were obtained by using micro-computational tomography (CT) [1]. This method employs
multiple field image analysis (MFIA) [25] to visualize the microscopic characteristic of
waviness. However, CT scans are not feasible in industry practice because of their huge
cost and risk of radioactive contamination.

On the other hand, optical–mechanical methods such as Digital Image Correlation
(DIC) provide an approach to visualize deformation that shows highly localized concen-
trations surrounding the wrinkle [13,26]. Here, the concentrated deformation not only
indicates the location of defects but also gives an assessment of the performance of defec-
tive structures.

In order to observe the wrinkles’ effects on CPVs in the future, we carried out a
preliminary study on the composite laminates and proposed a fringe projection method to
assess the wrinkle defects by measuring the abnormal response of displacement.

The paper is organized as follows: Firstly, a heterogeneity model to describe the
probability distribution of wrinkles is presented, which is then implanted in the finite
element code to predict the structural response. The additional moments induced by
eccentric tension are considered. Then, the specimens containing a deterministic wrinkle
are investigated using the fringe projection method, and error analysis is also conducted.

2. Micro-Mechanical Model of Wrinkles
2.1. Wrinkle in Laminate

The wrinkle geometry is usually described as uniform or linear gradient [27]. This
work mainly considered wrinkles occurring in thin laminate, since their thicknesses are
very small and the variation along the height direction is limited; thus, the wrinkles are
assumed to be uniform.

Figure 2 shows an idealized model of a uniform wrinkle, where all fibers undulate
with an identical cosine waveform and are parallel to each other within the wrinkle region.
The profile of a uniform wrinkle is described by the following Equation (1):

z(x) = z0 + A cos(
2πx

λ
) , | x | ≤ λ/2 (1)
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where x is the longitudinal direction parallel to the fiber direction, z(x)is the coordinate
through-thickness direction, and z0 is the corresponding value in a wrinkle-free flat lami-
nate. A and λ are the maximum amplitude and wavelength of the wrinkle, respectively.
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Figure 2. Uniform wrinkle model.

2.2. Effective Stiffness

Figure 3 shows the two-step homogenization technique used to estimate the effective
elastic properties of wrinkled laminate. Firstly, the represented volume element (RVE)
containing a wrinkle was taken as a wrinkle-free laminate to conduct the vertical ho-
mogenization (see Figure 3b). In the second step, imaging of the bent fibers and their
horizontal homogenization was conducted (see Figure 3c). Such two-step homogenization
is only applicable to uniform wrinkles, and the detailed homogenization process is listed in
Appendix A, which also can be referenced in [27–30].
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3. Structural Response with Wrinkles

In response measurements of wrinkled laminate, it should be noticed that the geomet-
ric asymmetry of the clamping may lead to additional moments, which have an overall
impact on the structure response and may obscure the true response of the defect. Thus, a
heterogeneous wrinkle model with random distribution is necessary.
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3.1. Heterogeneity Model

According to [17,18,25,31], it is rational to presume that the wrinkle ratio of A and λ
obeys the normal distribution and has the following form:

F(γ) =
1√
2πS

exp

[
− (γ− γ0)

2

2S2

]
(2)

where γ is the wrinkle ratio, γ0 denotes the average value of ratio, and S is the standard
deviation. Considering the wrinkle towards up or down, the average ratio of the wrinkle’s
shape is zero.

3.2. Heterogeneity Model Implanted in FEA

The normal size distribution of the defects, as well as the random distribution of their
locations, is considered together, as shown in Figure 4.
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A normal distribution function is designed to obtain a wrinkle ratio between 0 and
0.25. In the finite element (FE) model, the wrinkle defect is regarded as a disturbance to the
stiffness matrix of each element. The degree of this disturbance depends on the value of
the wrinkle ratio. If the ratio is zero, the stiffness of the element reflects that of idealized
laminate. In this way, the heterogeneity model was implanted in finite element analysis
(FEA), and the behavior of a structure with randomly distributed wrinkles can be predicted.
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The numerical simulation considering the heterogeneity model was conducted by
“Magic matrix”, which is a program developed by our research group, based on MAT-
LAB R2016a.

3.3. Structural Response

Figure 5a shows the idealized laminate model with a stacking sequence (0,90,0,90)s.
The length and the width are 250 mm and 25 mm, respectively, and the thickness is 0.8 mm.
The global Cartesian coordinate is displayed using an x-y-z system. The bottom of the
laminate is constrained, and the tensile load was applied on the top end.
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Since the laminates are very thin, the different thickness of the adhesion layer has a
great influence on geometric symmetry of clamps during the preparation of the specimens.
In comparison with the idealized model (Figure 5a), some additional bending and torsion
moments may be caused by eccentric tension; see Figure 5b–d.

The mechanical properties of the orthotropic laminate are listed in Table 1.

Table 1. Mechanical properties of orthotropic laminate.

E11
(GPa)

E22/E33
(GPa)

G12
(GPa)

G23
(GPa)

G31
(GPa) v21 v32 v31

133.3 9.09 7.23 3.16 7.24 0.261 0.436 0.261
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3.3.1. Tension

Figure 6 shows the displacement responses of the laminate under tensile load. The
in-plane displacements along the x and y directions are u and v, respectively, and are
represented by contour maps; w is the out-of-plane displacement displayed by the 3D
surface. No displacement distortion can be found without wrinkle defects; however,
when considering the heterogeneity model of the defects, the out-of-plane displacements’
distortion becomes obvious.
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3.3.2. Bending around Y-Axis

Figure 7 shows the displacement response of the laminate under bending moment My
(see Figure 5b), from which the distortion only occurred in the in-plane displacement along
the y-direction when wrinkle model is considered.
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3.3.3. Bending around Z-Axis

With eccentric tension, the bending moment Mz (see Figure 5c) should be considered.
Figure 8 shows the out-of-plane displacement distortion that occurred in this situation in
the wrinkle model. Note that in the two long sides of the specimen, one was straightened
and the other was impressed with many local folds, which is a quite remarkable distortion
effect in the out-of-plane displacement.
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3.3.4. Torsion

The fact that no displacement distortion was found with/without wrinkle defects
under torsion moment was unexpected (see Figure 5d). Figure 9 shows that all of the
displacements in the laminate remain as smooth as perfect material.
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4. Experiment Preparation

In experimental investigation, it is necessary to make a sample containing one deter-
ministic wrinkle defect to verify the findings in Section 3.

To make sure the location of the defect has no obvious influence on the behavior of the
laminate, we investigate a heterogeneity model that considers randomly distributed defects
with different morphology sizes in Section 3.3. The results show that wrinkle defects always
cause out-of-plane displacement distortion under tension and bending around the z-axis,
regardless of where the defect is located.

4.1. Test Specimen

The specimens are made by unidirectional fiber prepregs with a thickness of 0.125 mm,
a fiber mass per unit area of 100g/m2, and a resin content of 20–40%. Figure 10 shows the
specimens where the wrinkle defect was made in the middle of the plate, which is just for
the convenience of observing the experiment.
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Table 2. Geometric parameters of wrinkle defects.

Specimen Stacking Sequence
Wrinkle Geometry

λ/mm A/mm Waviness Ratio: A/λ

S1 [0/90/0/90]s 12.02 0.79 0.066
S2 [0/90/0/90]s 5.98 1.18 0.197

4.2. FEA Simulation

According to the discussion in Section 3.3, the out-of-plane displacement distortion
only occurred under tension and the bending moment around the z-axis. Since the tensile
test can be easily realized in the lab, tension experiments were conducted.

Firstly, FEA was used as a guide to design experimental scheme. The tension process
was simulated using FE software ANSYS, Mechanical APDL 15.0, and Figure 11 shows the
FEA results for specimens with and without wrinkle defects.
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Figure 11a,b illustrate the out-of-plane displacement without defects, where the dis-
placement field is uniformly smooth and the displacements are 0.591 × 10−4 mm and
0.984 × 10−4 mm, corresponding to tensile forces of 600 N and 1000 N, respectively.
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However, when considering a wrinkle defect in the middle of the plate, the displace-
ment distribution is greatly changed: the maximum displacements in the wrinkled zone
of S1 are 0.0816 mm and 0.106 mm (see Figure 11c,d) and the maximum values of S2 are
0.169 mm and 0.228 mm (see Figure 11e,f).

It is found that the wrinkle defect causes a 104 amplification in out-of-plane displace-
ment. Comparing the severity of defects, S2 (with a larger wrinkle ratio) shows a larger
displacement and a narrower deformed area, which not only reflects the orientation of the
wrinkles but also signifies its influence on the degradation of the material’s performance.

5. Optical–Mechanical Measurement
5.1. Method

The fringe projection method has been widely used to measure three-dimensional
(3D) topography. Recently, a new application including displacement and deformation
measurement was developed by integrating DIC technology, where fringe projection was
used for shape measurement and DIC was used for image location and matching [32,33].

However, in this paper, the fringe projection method was used independently to
measure out-of-plane displacement. Figure 12 shows the experimental device and process:
Firstly, the phase shift and unwrapping technology were used to obtain the 3D point clouds
of laminates under different tensile forces, and then the algorithm of displacement extrac-
tion is presented in Figure 13, where the 3D topography is reconstructed by remapping and
cubic spline interpolation and the out-of-plane displacement is obtained by subtracting
two-point clouds.
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5.2. Procedure

The specimen was loaded by the steps given in Table 3. The surface point cloud (also
called surface depth) was measured at every load step. It was found that much better
effects could be obtained by using a force of 200 N as an initial load, which is probably
due to the complexity of the composites’ micro-structure that the deformation changed
nonlinearly from an unstressed to a forced state. Figures 14 and 15 show the measured
contours of surface depths of S1 and S2, corresponding to the forces of 200 N, 800 N, and
1200 N, respectively.

Table 3. Load steps.

Specimen Step 1 2 3

S1
Load(N) 200 800 1200S2
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5.3. Results Analysis
5.3.1. Out-of-Plane Displacement

Figures 16 and 17 show the out-of-plane displacement results obtained from the
displacement extracting algorithm.
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As shown in Figure 16, the location of the defect can be captured well according to the
out-of-plane displacement, where the measured maximum displacement is 0.100 mm for
600 N of force and 0.150 mm for 1000 N. Such a result indicates that the error compared
to the FE result is 18.4% and 29.3%, respectively. Given that the true morphology of the
wrinkle is not an ideal cosine function, such an error can be considered to be within an
acceptable range.

Figure 17 shows the out-of-plane displacement contour of S2, where the measured
displacement is concentrated in a limited area surrounding the wrinkle. The sources of
errors are discussed in the next section.

5.3.2. Error Analysis

The difference between experimental and numerical results may come from two aspects:

(1) Non-ideal cosine curves in the wrinkles in the specimen;
(2) The additional moments introduced by geometric asymmetry.

Fortunately, according to the discussion in Section 3.3, only the bending moment around
the z-axis contributes to the off-plane displacement, and its influence is discussed below.
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Figure 18 shows the most extreme case of bending moment MZ. Figure 19 is the
corresponding out-of-plane displacements of S2 considering the tensile load along with an
additional 5~10% MZ in the clockwise direction, where the maximum displacements are
close to 0.02 cm and 0.01 cm, which are highly consistent with the experimental results in
Figure 17.
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6. Conclusions

The mechanical response to wrinkle defects, as well as the effect of geometrically
asymmetric clamping, was investigated in this paper. Firstly, the heterogeneity model of
the wrinkles was presented, and their behavior under different loads was numerically
predicted. It was found that wrinkles are sensitive to eccentric tension and show distortion
in the out-of-plane displacement.

Secondly, combined with the displacement extraction algorithm, the fringe projection
technique was developed to measure the out-of-plane displacement, which exhibits an
outstanding effect in wrinkle location and deformation visualization.

The method proposed in this paper is expected to be used to measure the response of
wrinkle defects in laminates of CPVs.
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Appendix A

For every ply in the laminate, C′ij represents the orthotropic stiffness in each ply’s
material coordinate system. Then, in the global coordinate system, the stiffness can be
rewritten as:

Cij = T−1
θ C

′
ijT
−T
θ (A1)

where

[Tθ ] =



cos2 θ sin2 θ 0 0 0 2 sinθ cos θ

sin2 θ cos2 θ 0 0 0 −2 sinθ cos θ
0 0 1 0 0 0
0 0 0 cos θ − sinθ 0
0 0 0 sin θ cos θ 0

− sinθ cos θ sin θ cos θ 0 0 0 cos2 θ − sin2 θ

 (A2)

In step 1, the laminate is taken to be wrinkle-free when conducting the vertical homog-
enization. It is assumed that the out-of-plane stresses σzz, τyz, τzx and in-plane strains εxx,
εyy, εxy are uniform through each ply (σzz = σ*

zz, τyz = τ*
yz, τzx = τ*

zx, εxx = ε*
xx,εyy = ε*

yy,
εxy = ε*

xy). The constitutive relation for every ply can be rewritten as:{ {
σ∗A
}

{σB}

}
=

{
[CAA] [CAB]

[CAB]
T [CBB]

}{
{εA}
{ε∗B}

}
(A3)

where the superscript * denotes the average quantities of stress and strain. The other
symbols represent:

{
σ∗A
}
=
{

σ∗zz τ∗yz τ∗zx

}T
{σB} =

{
σxx σyy τxy

}T

{εA} =
{

εzz γyz γzx
}T{ε∗B} =

{
ε∗xx ε∗yy γ∗xy

}T (A4)

[CAA] =

 C33 C34 C35
C43 C44 C45
C53 C54 C55

[CAB] =

 C13 C23 C36
C14 C24 C46
C15 C25 C56

[CBB] =

 C11 C12 C16
C21 C22 C26
C16 C26 C66

 (A5)

Equation (A3) can be turned to the following form in terms of {σ∗A} and {ε∗B}:{
{εA}
{σB}

}
=

{
[CAA]

−1 − [CAA]
−1[CAB]

[CAB]
T [CAA]

−1 − [CAB]
T [CAA]

−1[CAB] + [CBB]

}{ {
σ∗A
}

{ε∗B}

}
(A6)

Thus, the average values of {σB} and {εA}, i.e., {σ∗B} and {ε∗A} for a homogenized material,
can be determined as: { {

ε∗A
}

{σ∗B}

}
=

{[
C∗A
]
−[C∗B]

[C∗B]
T [C∗D]

}{ {
σ∗A
}

{ε∗B}

}
(A7)

where [
C∗A
]
= 1

H

N
∑

k=1

∫ zk

zk−1 [CAA]
−1dz

[C∗B] =
1
H

N
∑

k=1

∫ zk

zk−1 [CAA]
−1[CAB]dz

[C∗D] =
1
H

N
∑

k=1

∫ zk

zk−1 −[CAB]
T [CAA]

−1[CAB] + [CBB]dz

(A8)

where N is the number of plies.
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Equation (A8) can also be expressed as:

σ∗i =
6

∑
j=1

C∗ijε
∗
j (i= 1, 2, . . . 6) (A9)

where C*
ij is the effective stiffness matrix for the RVE after vertical homogenization and the

expansion of Equation (A9) is:{ {
σ∗A
}

{σ∗B}

}
=

{ [
C∗A
]−1 [

C∗A
]−1

[C∗B]
[C∗B]

T[C∗A]−1
[C∗B]

T[C∗A]−1
[C∗B] + [C∗D]

}{ {
ε∗A
}

{ε∗B}

}
(A10)

In the beginning of step 2, the fiber was assumed to be bent, and the RVE was divided
into several strips. The number of strips depends upon the wavelength λ; 20~30 is usually
enough for numerical calculation.

In every strip, note that the stiffness C*
ij should be renewed according to the different

angle φ:
C∗ij ⇐ T−1

φ C∗ijT
−T
φ (A11)

Tφ =



cos2 φ 0 sin2 φ 0 2 cos φ sin φ 0
0 1 0 0 0 0

sin2 φ 0 cos2 φ 0 −2 cos φ sin φ 0
0 0 0 cos φ 0 − sin φ

− cos φ sin φ 0 cos φ sin φ 0 cos2 φ− sin2 φ 0
0 0 0 sin φ 0 cos φ

 (A12)

where
For the horizontal homogenization, it is assumed that the stresses σ*

xx, τ*
xy, τ*

zx and
strains ε*

yy, ε*
zz, ε*

yz of each strip are continuously uniform across the strip interfaces
(σ*

xx = σ**
xx, τ*

xy = τ**
xy, τ*

zx = τ**
zx,ε*

yy = ε**
yy, ε*

zz = ε**
zz, ε*

yz = ε**
yz). The constitutive

relation for a strip can also be rewritten as:{
{σ∗∗E }
{σ∗F}

}
=

{
[C∗EE] [C∗EF]

[C∗EF]
T [C∗FF]

}{
{ε∗E}
{ε∗∗F }

}
(A13)

where the superscript ** denotes the effective quantities for the RVE. The other
symbols represent:

{σ∗∗E } =
{

σ∗∗xx τ∗∗zx τ∗∗xy

}T
{σ∗F} =

{
σ∗yy σ∗zz τ∗yz

}T

{ε∗E} =
{

ε∗xx γ∗zx γ∗xy

}T
{ε∗∗F } =

{
ε∗∗yy ε∗∗zz γ∗∗yz

}T (A14)

[C∗EE] =

 C∗11 C∗15 C∗16
C∗15 C∗55 C∗56
C∗16 C∗56 C∗66

[C∗EF] =

 C∗12 C∗13 C∗14
C∗25 C∗35 C∗45
C∗26 C∗36 C∗46

[C∗FF] =

 C∗22 C∗23 C∗24
C∗23 C∗33 C∗34
C∗24 C∗34 C∗44

 (A15)

The averages of {σ∗D} and {ε∗C}, i.e., {σ∗∗D } and {ε∗∗C } for the homogenized RVE, can also
be given by: {

{ε∗∗E }
{σ∗∗F }

}
=

{
[C∗∗E ]− [C∗∗F ]

[C∗∗F ]T [C∗∗G ]

}{
{σ∗∗E }
{ε∗∗F }

}
(A16)

where
[C∗∗E ] = 1

λ

∫ λ/2
−λ/2 [C

∗
EE]
−1dx

[C∗∗F ] = 1
λ

∫ λ/2
−λ/2 [C

∗
EE]
−1[C∗EF]dx[

C∗∗G
]
= 1

λ

∫ λ/2
−λ/2 (−[C

∗
EF]

T [C∗EE]
−1[C∗EF] + [C∗FF])dx

(A17)
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Equation (A16) can also be expressed as:

σ∗∗i =
6

∑
j=1

C∗∗ij ε∗∗j (i= 1, 2, . . . 6) (A18)

where C∗∗ij is the effective stiffness for the RVE after horizontal homogenization and the
expansion of equation (A18) is:{

{σ∗∗E }
{σ∗∗F }

}
=

{
[C∗∗E ]−1 [C∗∗E ]−1[C∗∗F ]

[C∗∗F ]T [C∗∗E ]−1[C∗∗F ]T [C∗∗E ]−1[C∗∗F ] + [C∗∗G ]

}{
{ε∗∗E }
{ε∗∗F }

}
(A19)
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