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Abstract: Real-time battery SOX estimation including the state of charge (SOC), state of energy (SOE),
and state of health (SOH) is the crucial evaluation indicator to assess the performance of automotive
battery management systems (BMSs). Recently, intelligent models in terms of deep learning (DL)
have received massive attention in electric vehicle (EV) BMS applications due to their improved
generalization performance and strong computation capability to work under different conditions.
However, estimation of accurate and robust SOC, SOH, and SOE in real-time is challenging since
they are internal battery parameters and depend on the battery’s materials, chemical reactions, and
aging as well as environmental temperature settings. Therefore, the goal of this review is to present
a comprehensive explanation of various DL approaches for battery SOX estimation, highlighting
features, configurations, datasets, battery chemistries, targets, results, and contributions. Various
DL methods are critically discussed, outlining advantages, disadvantages, and research gaps. In
addition, various open challenges, issues, and concerns are investigated to identify existing concerns,
limitations, and challenges. Finally, future suggestions and guidelines are delivered toward accurate
and robust SOX estimation for sustainable operation and management in EV operation.

Keywords: state of charge; state of health; state of energy; battery management system; electric
vehicle; deep learning

1. Introduction

Globally, emissions from transportation have been rising steadily, accounting for 27%
of all emissions of carbon dioxide, 70% of which are produced by moving vehicles that burn
fossil fuels [1]. The progress of electric vehicles (EV) has been a focal field of researchers and
automotive engineers worldwide to solve these concerning difficulties [2,3]. Due to their
advantages in terms of dependability, simplicity, comfort, and increased economy, EVs have
emerged as the best replacement for diesel and petrol-powered cars [4,5]. They can also
help reduce climate change, global warming, and environmental pollution-related issues.
Due to the higher power density, lower self-discharge rate, high voltage, and long lifespan,
lithium-ion batteries are currently commonly used in EVs [6,7]. The proper functioning
of the battery storage system (BSS) depends on aging cycles, temperature rise, ongoing
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electrochemical reactions, and material deterioration [8,9], which is crucial to ensure the
efficient performance of EVs. In order to accurately measure temperature, current, and
voltage in battery cells using proper switching, sensors, converters, controllers, thermal
management system, and safety equipment, it is urgently necessary to develop an efficient
and intelligent BMS [10–12].

Accurate and robust SOX estimation in terms of the state of health (SOH), state of
energy (SOE), and state of charge (SOC) in EV BMS under uncertainties has grown to be
urgent issues that demand significant attention [13–15]. SOC and SOE represent the state
of charge and energy available in the battery, respectively, whereas SOH represents the
battery’s current health prognosis and remaining life [16]. The safe and dependable func-
tioning of EVs is ensured by accurate prediction of SOX, which can prevent batteries from
experiencing charging anomalies, overheating issues, and undesirable power breakdown
occurrences [17,18]. However, SOX for BMSs is affected by a number of challenges, includ-
ing slow convergence speed, complicated calculation, battery model design, algorithm
development, and poor resilience due to temperature and noise changes [19,20]. Hence, the
determination of an accurate and reliable SOX estimation for BMSs under various operating
situations requires careful consideration and in-depth investigation.

Generally speaking, model-based techniques and machine learning (ML)-based strate-
gies are used to estimate SOX in BMSs [21]. To effectively capture the behaviors of models,
model-based approaches require a thorough grasp of their practical and theoretical back-
grounds [22,23]. In accordance with this, model-based approaches use different complex
computation equations and functional relationships relevant to the anodes, cathodes ma-
terial features, and electrochemical processes, which often require extensive research and
specialized knowledge to execute the experiments [24]. In contrast, ML-based algorithms
examine SOX using a strong processor and big data set without any prior understanding of
the complicated chemical interactions or the properties of battery materials [25,26]. The
potential of traditional ML is greatly expanded by high-configuration computer processors,
advanced graphics processing units (GPU), and expanding the number of computational
layers due to the rise in data size [27]. Deep learning (DL) methods, the upgraded form
of machine learning, have drawn a lot of interest in SOC, SOH, and state of power (SOP)
estimates because of their enhanced learning ability, improved generalization efficiency,
and higher precision [28,29]. The effectiveness of DL approaches, however, is dependent
on the availability of a significant quantity of data as well as suitable hyperparameter
combinations and choice of structure [30]. As a result, more research is required to develop
reliable SOC, SOH, and SOP algorithms that have a sufficiently low computational cost.

The most promising technique for processing, managing, and monitoring massive
data is now known to be deep learning (DL). The scientific community has been drawn to
DL because of recent developments in different sectors, comprising healthcare [31], image
processing [32], and voice recognition [33]. Even so, no research has been carried out on
reviews based on DL in SOX estimation for intelligent BMSs. Noteworthy review articles
that have recently been published concentrated on ML-based techniques and model-based
approaches for robust SOC, SOH, and SOE estimations for BMSs. For instance, a survey by
Xiong et al. examined the performance of SOH [13] and SOC [34] for BMSs based on various
model-based approaches, emphasizing the techniques, advantages, disadvantages, and
potential developments. Shrivastava et al. [35] employed the Kalman filter technique for
real-time SOC estimation whereas another classification-based SOH estimation topology for
lithium-ion batteries was described by Tian et al. [36]. SOC estimation utilizing numerous
data-driven techniques was investigated by Dickson et al. [37]. Li et al. [38] performed
an analysis of SOH prediction in both ML and analytical modeling techniques. Lipu et al.
concentrated on major concerns, obstacles, and potential for data-driven SOC [39] and
SOH [40] estimation approaches. SOC was examined by Hannan et al. [41] for investigating
advantages, drawbacks, accuracy, and difficulties. The prediction of SOH for lithium-ion
batteries was provided by Yang et al. [42]. A work by Zhang et al. [43] covered the hybrid
approach, the adaptive filter method, and the SOC learning approach. Berecibar et al. [44]
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adopted experimental and adaptive approaches for estimating SOH for lithium-ion BMSs.
The various techniques for SOH and SOC estimation in EV batteries utilizing ML techniques
were discussed by Vidal et al. [45]. Concurrently, a comparative analysis of the various
works discussed earlier has been tabulated in Table 1, depicting the area of research and
the research gap. The aforementioned research demonstrates major improvements in SOX
estimation toward achieving better performance, utilizing either ML approaches or model-
based techniques. Nonetheless, a review study concentrating on DL techniques for SOX
estimation has not received much attention.

Table 1. Focused area and research gaps of the existing literature.

Reference Focused Area Research Gap

[37] Delivered a review of the various data-driven
techniques for SOC estimation

Review based on other state estimations, such as
SOH and SOP, was not conducted

[39] Reviewed data-driven techniques for SOC estimation DL technique-based review for SOC estimation was
not performed

[40] SOH and RUL estimation techniques were investigated The review was not comprehensive

[42] Focused on a review of SOH estimation techniques DL technique for SOH and other state estimation
was not carried out

[45] Studied various machine learning techniques for
SOC estimation

The implementation factor for SOC estimation was
not reviewed

This study presents new contributions by providing a thorough analysis of SOX
estimation for BMSs utilizing DL approaches in order to address the previously mentioned
research gaps. This paper’s originality comes in its evaluation of DL concerning state-of-
the-art approaches, key findings, problems, concerns, and potential future aspects for SOC,
SOE, and SOH estimation. This review includes these cutting-edge contributions:

• State-of-the-art DL approaches for SOX estimation concerning SOC, SOE, and SOH
are comprehensively reviewed. In line with that, the structure, strengths, shortcom-
ings, verification profiles, factors, and estimate errors of various DL-enabled SOX
estimations are thoroughly examined.

• The main concerns and issues of DL techniques are discussed in relation to battery
components, operations, and algorithms.

• Fruitful recommendations and future research opportunities for DL-based SOX esti-
mation for smart BMSs are provided.

There are six sections in this paper. Section 1 outlines the background, rationale,
and research gaps of recent studies and the contributions of the proposed review article.
Section 2 narrates the survey framework for article inclusion/exclusion criteria. Section 3
explains the preliminaries of various DL approaches applied in BMSs. Section 4 highlights
various DL algorithms for SOX estimation. Section 5 explores the problems and difficulties
in estimating battery SOX. Finally, this study concludes with various suggestions and
improvements in Section 6.

2. Survey Methodology

The conducted review article aims to develop an important and crucial assessment
of various SOX estimation techniques based on DL techniques for automotive BMSs. This
review was conducted by observing various steps based on screening and analysis which
were divided into three phases to select relevant articles, as presented in Figure 1. The
first phase of the screening process was based on the analysis of various web platforms,
such as IEEE Xplore, ScienceDirect, MDPI, Google Scholar, etc., to select suitable articles
for this review. The second phase was conducted by applying various keywords used for
battery SOX estimation, such as SOC, SOH, SOE, lithium-ion batteries, battery management
systems, and electric vehicles. Furthermore, the selection was based on the title, abstract,
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novelty, contributions, and research gaps. The final screening was conducted based on
criteria such as the journal’s quartile, citation, impact factor, and review process. In this
way, a total of 101 articles were selected for conducting this review of DL technique-based
SOX estimation for automotive applications.

Figure 1. The survey framework for appropriate article selection criteria.

The outcomes of the screening and analysis were classified into four categories. At
first, state-of-the-art DL methods, operations, and execution processes for SOX estimation
were discussed. Secondly, the assessment of various DL technique-based SOX estimation
methods was reviewed in detail. Thirdly, critical issues and concerns for the implementation
of DL in SOX estimation were discussed. Fourthly, the conclusion was presented with
prospects and suggestions.

3. State-of-the-Art Deep Learning Algorithms Applied in Intelligent Battery
Management Systems

Recently, the application of DL models consisting of several layers with sophisticated
structures has been applied in automotive research for model development, training, and
analysis with a large volume of data [46]. DL models execute operations with activation
functions and training algorithms using multiple hidden layers and neurons compared
to the single hidden layer in a simple neural network model [47]. Commonly employed
DL models in SOX estimation are LSTM, GRU, CNN, and autoencoder models. The
configuration, computational implementation equations, advantages, and disadvantages of
various DL models are presented in Table 2.

The execution of DL approaches for SOX estimation can be allocated into three phases.
The first phase includes appropriate battery selection, data collection, data extraction, data
preprocessing, and data division into training and testing, as depicted in Figure 2.

The second phase covers a DL network structure that depends on lots of factors, in-
cluding suitable hyperparameter selection, such as hidden layers, hidden neurons, learning
rate, decay rate, weight, bias initialization, number of iterations, batch size, and number
of epochs, as denoted in Figure 3. Moreover, the accuracy of DL-based SOX estimation is
subject to selecting appropriate training and testing functions and operations, including
backpropagation, gradient descent, activation functions (Sigmoid, tanh, and ReLU), an
Adam optimizer, and ensemble optimization.
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Table 2. Structure, mathematical expressions, advantages, and disadvantages of DL approaches.

Method Structure Mathematical Expressions Advantages Disadvantages

LSTM

fk = σ
(
W f [ht−1, xk ] + b f

)
ik = σ (Wi [ht−1, xk ] + bi)

gk = tanh (Wc [ht−1, xk ] + bc)
Ct = fk ∗ Ct−1 + ik ∗ gk

ok = σ (Wo [ht−1, xk ] + bo)
ht = ok ∗ tanh (Ct)

Requires no fine adjustment;
regulates better flow of

information through each
gate.

Long training time; needs
more memory for model

training.

GRU

zt = σ (Wz [ht−1, xk ])
rt = σ (Wr [ht−1, xk ] + bo)

ĥk = tanh (Wo [rt ∗ ht−1, xk ])
ht = (1− zt) ∗ ht−1 + zt ∗ ht

Requires less memory and
demonstrates fast training
speed; removes vanishing

gradient issues.

Slow convergence rate and
low learning efficiency.
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Table 2. Cont.

Method Structure Mathematical Expressions Advantages Disadvantages

CNN

A + 2B − C
D + 1

y(l)i = B(l)
i +

m(l−1)
1
∑

j=1
k(l)i,j ∗ y(l−1)

j

y(l)i = f z(l)i

z(l)i =
m(l−1)

1
∑

j=1

m(l−1)
2
∑

r=1

m(l−1)
3
∑

s=1
w(l)

i,j,r,s(Y
(l−1)
j )

r,s

Ability to detect important
features without human

intervention.

Lacks capabilities to trace
the position and orientation

of the object.

Autoencoder hm = f ′ xm
x′m = g′hm

Better feature extraction
ability; efficient training due

to noise-reducing capability in
input data.

Requires more data for
effective training, more

computational time, and
hyperparameter

adjustments.
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Figure 2. Data preparation and preprocessing for SOX estimation in automotive BMS.

Figure 3. DL algorithm structure, execution, hyperparameters, and operation.

The third phase consists of the validation and verification of DL methods using various
statistical error terms and performance assessments under a fixed ambient temperature
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and varying ambient temperatures. Moreover, the performance is further verified under
noise and aging impacts. In addition, a comparative analysis with the recent literature can
be carried out to check a DL-based SOX estimation in terms of accuracy and robustness.
Furthermore, hardware-in-the-loop tests and prototype hardware validation can still be
conducted. Performance validation procedures are shown in Figure 4.

Figure 4. The performance validation procedures for DL-based SOX estimation.

4. Deep Learning-Enabled SOX Estimation Frameworks

This section delivers an overview of various DL models and frameworks implemented
in SOX estimation in automotive BMS applications. This critical discussion focuses on
various important aspects, including targets, contributions, key findings, DL structure,
battery types, thermal condition, valuation process, results, and research gaps.

4.1. LSTM Framework for SOX Estimation

The LSTM model is one of the most effective DL techniques employed for the SOX
estimation of lithium-ion batteries. The LSTM model is usually employed due to its ability
to eliminate the vanishing gradient problem and to increase model training accuracy for
SOX estimation.

4.1.1. LSTM-Based SOC Estimation Approaches

Chen et al. [48] developed a SOC estimation framework with an LSTM model consider-
ing the extended inputs and constrained output. The experimentations were performed on
a battery dataset attained from the Center for Advanced Life Cycle Engineering (CALCE)
and based on loading conditions similar to the Federal Urban Driving Schedule (FUDS) and
Dynamic Stress Testing (DST). The validation of the proposed model was conducted based
on different temperatures, such as 0 ◦C, 10 ◦C, 20 ◦C, 30 ◦C, 40 ◦C, and 50 ◦C, respectively.
The LSTM model was also validated with different intelligent models, and the results
concluded that the SOC error of the proposed LSTM model was lower contrasted with
other NN approaches. Although the validation was conducted based on different operating
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temperatures, further assessment can still be conducted based on different battery datasets.
Almaita et al. [49] proposed an LSTM algorithm-based SOC estimation of high-capacity
grid-scale lithium-ion BSSs so that the power profile in the power system could be im-
proved. The battery dataset was attained from AL-Manara PV power in Jordan which
consisted of a battery storage capacity of 12 MWh. Three important battery features, tem-
perature, current, and voltage, were considered for the SOC estimation. The LSTM model
was validated with a feedforward neural network (FFNN) and deep feedforward neural
network (DFFNN). The outcomes depicted that the LSTM model was highly accurate with
a mean squared error (MSE) of 0.62% compared to the SOC of the DFFNN and FFNN in the
ranges of 4.03% to 7.37% and 5.37% to 9.22%, respectively. The LSTM-based SOC estimation
delivered satisfactory outcomes and can be implemented in high-capacity BSSs. Nonethe-
less, the justification of the suggested approach with another battery dataset can be used in
further research activities. Oyewola et al. [50] improvised the LSTM approach to develop a
controllable deep transfer learning (CDTL) network for SOC estimation, as presented in
Figure 5. The suggested CDTL network enhanced the target LSTM for long-term SOC esti-
mation. The MIT Stanford battery database consisting of 124 lithium-ion battery datasets
was employed for the proposed work. However, only three battery datasets were chosen
for the experimentation. The CDTL network achieved higher SOC estimation accuracy
with a root means square error (RMSE) of 0.70% compared to the benchmark approaches,
such as LSTM and autoencoder. The proposed CDTL model enhanced transfer learning
capability by 50%; however, the algorithm demonstrated high complexity for hardware
implementation.

Figure 5. Improved LSTM model-based SOC estimation framework.

A hybrid LSTM and extended Kalman filter approach with wide temperature adapta-
tion for SOC estimation was developed by Aninnakwa et al. [51]. The SOC estimation with
LSTM and EKF model was conducted under cold (−10 ◦C), normal (25 ◦C), and hot (50 ◦C)
temperatures. The experiment was conducted on an LNCM70Ah (lithium nickel man-
ganese cobalt oxide) lithium-ion battery under varying operating temperatures. The results
for the SOC estimation under the HPPC condition denoted the best mean absolute error
(MAE), root means square error (RMSE), and R2 values of 0.0697%, 0.0784%, and 99.9965%,
respectively, while the RMSE, MAE, and R2 values estimated were 0.0779%, 0.0943%, and
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99.9842% under DST conditions. The proposed model delivered results with the inclusion
of more training time compared with the conventional LSTM model, which can be reduced
by considering other aging factors and working conditions. A particle swarm optimized
(PSO) LSTM model was developed for the SOC estimation of lithium-ion batteries [52]. The
PSO model was employed to optimize the fundamental factors of the LSTM model to match
the data features with the network structure. The experimentation was conducted on li-ion
batteries with a nominal voltage of 3.2 V and nominal capacity of 6.2 Ah. The verification
of the PSO-LSTM model was carried out with models such as EKF and conventional LSTM.
A PSO-optimized LSTM model was introduced for SOC estimation by Ren et al. [52]. The
PSO technique was employed to explore the suitable key parameters of the LSTM model.
The batteries used in the experiments were LiFePO4 batteries with a nominal capacity and
nominal voltage of 6.2 Ah and 3.2 V, respectively. The appropriate use of noisy data was
added for assessing the robustness of the LSTM-PSO approach.

4.1.2. LSTM-Based SOH Estimation Approaches

Ma et al. [53] developed an improved LSTM model and considered various health
indicators, such as discharge capacity, temperature, current, and voltage, to develop a
data framework for the model training. The Pearson correlation coefficient was applied to
select the appropriate health indicators with a high correlation with the output capacity.
Additionally, a differential evolution grey wolf optimizer (DEGWO) was used to select the
optimal hyperparameters of the LSTM model. Two battery datasets, namely NASA and MIT
Stanford battery datasets, were employed for the testing and validation. It was depicted
that the SOH estimation error was within 1% for both battery datasets. This method depicts
high potential for practical application; nonetheless, this model depicts high complexity
due to the execution of the DL model with an optimization technique, and hence a suitable
hyperparameter selection technique may be employed. Gong et al. [54] proposed a PSO
technique-based LSTM model for SOH estimation of li-ion batteries. The execution of
PSO was conducted for a better selection of model hyperparameters. The experiment
was conducted on 18650-26 J lithium-ion batteries with a nominal capacity of 2.6 Ah.
The validation of the PSO-LSTM model was compared to other models, such as a back
propagation neural network (BPNN), support vector regression (SVR), and conventional
LSTM model. For the proposed model, the RMSE (%) was within 1% compared with other
models. However, further validation of the PSO-LSTM model can still be conducted with
other metaheuristic optimization techniques. A SOH estimation technique with Bayesian
optimization (BO) and an LSTM model was introduced by He et al. [55]. The battery
experimental tests were conducted on the real data of EV applications concerning user
behavior. The SOH estimation accuracy was measured based on RMSE and MAE where the
BO-LSTM model delivered an RMSE of 7.552% and MAE of 1.521%. Real-time EV data was
employed for the SOH estimation of lithium-ion batteries; nevertheless, the proposed model
can be validated with other models to depict its accuracy and effectiveness. Li et al. [56]
suggested an RUL and SOH estimation scheme based on a variant long short-term memory
(VLSTM) model. The model used four health indicators, temperature, current, voltage,
and time, for SOH estimation. The experiments were performed on 28 battery datasets
acquired from the NASA battery database. The results demonstrated the high effectiveness
and accuracy of the proposed model with an RMSE of 0.0159. Cui et al. [57] developed an
integrated LSTM and UKF-based SOH estimation framework for lithium-ion batteries. The
application of UKF with the LSTM model was observed to eliminate unwanted noises and
reduce estimation errors. The datasets were acquired from the NASA Ames Prognostics
Center of Excellence, consisting of four battery datasets, namely B33, B36, B41, and B42,
respectively. It was observed that the proposed LSTM-UKF models performed satisfactorily
compared to the reference model [58]. The work lacks comprehensive validation results;
however, further work can still be conducted toward the development of a coestimation
framework for SOC and SOH based on the same model features. A conventional LSTM
model for SOH estimation was proposed by Wu et al. [59]. The voltage parameters from
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the charging and discharging profile along with the incremental capacity profile were
analyzed, and suitable features relating to the capacity degradation curve were extracted.
The experiment was carried out by considering five batteries based on two types with
different sizes and nominal capacities. The algorithm execution was conducted utilizing
the different percentages of the training dataset, such as 30%, 40%, 50%, 60%, and 70%.
The model validation was based on different data-driven model outcomes in terms of
performance error indicators, such as MAE, mean squad error (MSE), RMSE, and R2.

4.1.3. LSTM-Based SOE Estimation Approaches

Fan et al. [60] developed a hybrid LSTM-AUKF model-based coestimation framework
for SOC and SOE, as shown in Figure 6. The battery dataset was acquired from the CALCE
battery database. The LSTM-UKF model was validated with various dynamic driving
schedules under different initial errors and operating temperatures. The performance error
based on RMSE and MAE delivered appropriate outcomes of 0.46% and 0.44%, respectively.
Additionally, the LSTM-AUKF model was computationally more effective compared to
other models, such as autoencoder-LSTM models and forgetting factor-based adaptive EKF
algorithms. Further research can still be conducted based on embedded BMS test platforms
and validation in real-time applications.

Figure 6. LSTM-AUKF model-based co-estimation of SOE and SOC.

An LSTM-based model for SOC and SOE estimation of li-ion batteries was presented
by Ma et al. [61]. The battery dataset was acquired from the public datasets provided by Dr.
Phillip Kollmeyer. The experiment was conducted on a single Panasonic 18650PF battery
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cell with a nominal voltage of 3.6 V and nominal capacity of 2.9 Ah. The dataset includes
battery charging and discharging values at different current ratings, EV, and mixed drive
cycles under different temperature settings. The validation was performed based on two
dynamic drive cycles under noise interference, different battery materials, and different
initial temperatures. The achieved MAE for the SOE was 1.09% under fixed temperature,
0.64% for different battery materials, and 1.19% for noise features. High accuracy and
robustness with SOE estimation were achieved; however, a suitable selection of the model
hyperparameters can be performed carefully. The summary of LSTM-based SOX estimation
is highlighted in Table 3.

4.2. GRU Framework for SOX Estimation

GRU models have been suitably adopted in SOX estimations for lithium-ion batteries.
GRU models eliminate the issue of vanishing gradient problems and, furthermore, require
less memory space for model training.

4.2.1. GRU-Based SOC Estimation Approaches

Wang et al. [62] developed an enhanced GRU model based on transfer learning for
SOC estimation with battery datasets extracted from CALCE, UW–Madison, and NASA
employed with nominal capacities of 2000 mAh, 2900 mAh, and 2000 mAh and a nomi-
nal voltage of 3.6 V. Three battery parameters, namely voltage, current and temperature,
were extracted to prepare the dataset for executing model training. The validation of the
improved GRU model was performed with the LSTM model, which delivered the SOC
estimation outcomes with a training time of 441.15 s whereas the proposed GRU model
delivered the SOC estimation outcomes within 387.37 s. However, further research may be
accomplished with more sophisticated DL models and metaheuristic optimization tech-
niques. Chen et al. [63] suggested a SOC estimation of lithium-ion batteries by developing a
hybrid GRU and AKF model, as depicted in Figure 7. The hybrid GRU-AKF model limited
the inaccuracies during the current fluctuations and delivered accurate SOC estimation.
The conducted work employed battery datasets obtained from CALCE at the University of
Maryland under different driving conditions. It is observed that the RMSE and maximum
error (MAXE) were less than 1.3% and 2.2%, respectively. The hybrid GRU-AKF demon-
strated satisfactory SOC outcomes with an improved efficiency and convergence speed of
less than 1 s.

Cui et al. [64] developed an improved bidirectional GRU (BGRU) and YKF based on
real-time SOC estimation techniques at different operating temperatures. Two driving
cycles, namely the Urban Dynamometer Driving Schedule (UDDS) and US06, were
employed to validate the proposed method. A satisfactory SOC estimation accuracy
was achieved at different operating conditions; the RMSE and ME were less than 1.12%
and 0.83%, respectively. However, further work can be undertaken to develop a hybrid
method consisting of a neural network and KF technique. A GRU-RNN-based SOC
estimation technique was framed by Jiao et al. [65]. Two battery parameters, namely
voltage and current, were utilized to develop an appropriate data framework for model
training. A momentum term was introduced to optimize the weights of the network and
accelerate the SOC convergence speed. The battery data extraction was conducted from
the battery testing setup named NEWARE CT-4008-5V12A comprising batteries with a
nominal capacity of 2.2 Ah. The outcomes of the SOH estimation with a momentum gra-
dient were evaluated based on different noise variances, different epochs, and different
hidden neurons. It was suggested that the proposed approach can be applied to the RUL
estimation of the supercapacitor.
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Table 3. Summary of LSTM-based SOX estimation approaches.

SOX Estimation Structure Battery Chemistry Thermal Status Validation Process Results Research Gaps

SOC [49]
-Number of hidden neurons 22
-Learning rate 0.01
-Number of epochs 150

Not mentioned Room temperature With another neural network,
such as DFFNN and FFNN

-MSE 0.62% (model 1)
-MSE 0.60% (model 2)
-MSE 0.48% (model 3)

Appropriate selection of
model hyperparameters
and deeper validation with
other DL models, such as
CNN and GRU

SOC [50]
-Number of hidden neurons 10
-Number of epochs 20
-Batch size 64

Lithium iron
phosphate/graphite (LFP)
cells

30 ◦C With conventional LSTM model -RMSE 0.70%
-MAE 0.48%

Application of transfer
learning for nonparametric
Bayesian model for SOC
estimation can be
conducted

SOC [51]
-Number of hidden neurons 30
-Learning rate 0.01
-Number of epochs 300

LNCM battery −10 ◦C, 25 ◦C, and 50 ◦C
With conventional LSTM model,
different temperatures, and
HPPC working condition

MAE = 0.0697%,
RMSE = 0.0784%,
R2 = 99.9965%

Consideration of different
battery chemistries for the
validation can be performed

SOH [54]

For PSO:
-Population size 5
-Number of iterations 50
-C1 1.5
-C2 1.5

18,650 size lithium-ion
batteries Room temperature With another neural network

such as BPNN, LSTM, and SVR

For A1:
-RMSE 1.7572%
-MAE 2.3350%

Depicts complexity due to
the application of
optimization technique
with DL model

SOH [55]
-Number of hidden layers 2
-Number of epochs 400
-Dropout coefficient 0.5

Not mentioned
0–10 ◦C, 10–20 ◦C, 20–30 ◦C,
30–40 ◦C, and
greater than 40 ◦C.

-No validation was conducted
based on other models and
temperatures

-RMSE 7.552%
-MAE 1.521%

The validation with other
models was not conducted

SOH [59] Not mentioned 18,650 size lithium-ion
batteries Room temperature

With another neural network,
such as ELM, SVM, and GPR
model

For cell 3
-MAE 4.67%
-MSE 1.66 × 10−4

-RMSE 1.29%

Appropriate use of
optimization technique can
be employed for suitable
selection of model
hyperparameters

SOE [61]

-Number of layers 3
-Number of neurons 256, 8, 2
-Number of epochs 100
-Learning rate 0.001

Panasonic 18650PF cell
Data collection was
conducted at 0 ◦C, 10 ◦C,
and 25 ◦C

With different drive cycles and
temperatures

RMSE at 10 ◦C and 25 ◦C
for UDDS drive cycle
2.88%, 1.61%

Other state estimation
techniques can be
integrated into future
research
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4.2.2. GRU-Based SOH Estimation Approaches

Chen et al. [66] developed a GRU approach-based SOH estimation technique for
lithium-ion batteries, as displayed in Figure 8. Apart from the GRU model, the ELM method
was used to forecast the entire temperature variation, and KF was employed to smoothen
the data. The experimentation was performed by extracting eight commercial kokam pouch
cell suitable battery datasets from the University of Oxford. The hyperparameter of the
GRU model was selected by the trial and error (TE) technique by changing the number
of hidden neurons. The RMSE, mean absolute error (MAE), and MAXE were within the
limits of 1.2%, 1.02%, and 2.28%, respectively. In future research, more emphasis can be
given to the extraction of more varying and extensive datasets based on different operating
temperatures for model training.

Figure 7. Hybrid GRU-AKF model-based SOC estimation framework.
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Figure 8. GRU model-based SOH estimation framework for BMS.

Fan et al. [67] developed a hybrid GRU and CNN model for SOH estimation of
lithium-ion batteries. The proposed GRU-CNN-based hybrid model can work under the
time dependencies of a charging curve. Two online battery datasets were employed from
NASA and Oxford to conduct the experiments. Four battery datasets, namely RW 16,
RW 20, RW 24, and RW 28, were acquired from the NASA database whereas cell 4 and
cell 8 were acquired from the Oxford battery database. The GRU-CNN model surpassed
other models, such as SVR, GPR, CNN, and the conventional GRU-based model on SOH
estimation accuracy by delivering a MAXE of 4.11% and 1.62% for the NASA battery dataset
and Oxford battery dataset, respectively. However, the proposed model demonstrated high
computational complexity with a training time of 60,193.27 s compared to 57,268.44 s for
GRU, 4237.71 s for CNN, 446.71 s for GPR, and 10,316.18 s for the SVR model. Cui and
Joe [68] developed a spatial–temporal attention-based GRU model for the prediction of
lithium-ion BMSs. The proposed work extracted six health indicators from battery charging
and discharging profiles that could correlate with the battery aging process. Model training
and testing were carried out on the three NASA battery datasets, i.e., B0005, B0006, and
B0007, respectively. The proposed model delivered satisfactory SOH estimation outcomes
based on minimum MAE and RMSE and outperformed other models, such as SVM, GPR,
RNN, LSTM, and conventional GRU. Fan et al. [67] introduced a GRU-CNN-based hybrid
SOH estimation scheme for lithium-ion BMSs considering time dependencies of the battery
charging profile. Three battery parameters, namely voltage, current, and temperature, were
used for constructing the data framework for model training. The battery dataset was
extracted from the NASA battery database consisting of 28 battery datasets divided into
seven groups. The verification and assessment of the GRU-CNN model was performed
with different data-driven models, such as SVR, GPR, CNN, and GRU model, respectively.
The GRU-CNN model depicted superiority based on the lowest SOH error; however, the
model complexity depicted issues related to high training time, which could be improved
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in further research. The contributions of GRU-based SOX estimation under different
conditions are presented in Table 4.

Table 4. Summary of GRU-based SOX estimation approaches.

SOX Estimation Structure Battery Chemistry Thermal Status Validation Process Results Research Gaps

SOC [63]

-Number of hidden
neurons 30
-Number of epochs
300
-Learning rate 0.01
-Batch size 64

LifePO4 battery

The battery dataset
was gathered from
8 different
temperature
profiles, i.e., −10 ◦C,
0 ◦C, 10 ◦C, 20 ◦C,
25 ◦C, 30 ◦C, 40 ◦C,
and 50 ◦C

With other driving
cycle datasets and
other data-driven
models

for US06
-RMSE 1.1%
-MAXE 2.2%
-Computational
time 0.0862 s

Validation with
other battery
chemistries was not
conducted.

SOC [64]

-Number of epochs
1000
-Number of hidden
neurons 300

18,650 size li-ion
batteries

−20 ◦C, −10 ◦C,
and 0 ◦C

The validation was
conducted with
different
temperatures

At 0 ◦C (UDDS)
-MAE 0.0221
-RMSE 0.0311
-R2 0.9880

Validation and
improvement in
SOC estimation
over varying
temperature ranges.

SOC [65]

-Number of epochs
400
-Number of hidden
neurons 30

BTcap 21,700
lithium battery

Max/min charging
temperature
20 ◦C/55 ◦C

The validation
process was based
on different model
hyperparameters

Momentum
gradient:
For hidden neurons
as 30
-RMSE 0.0152
-MAE 0.0100
-R2 0.9972

The framework did
not represent a
complete
framework and
lacked critical
points associated
with methodology
and results.

SOH [66]

-Number of hidden
layers 2
-Number of hidden
neurons 60
-Batch size 32
-Dropout rate 0.4
-Epoch 100

Kokam pouch cells Room temperature

With other neural
network, such as
BPNN, ELM, and
LSTM

-RMSE 0.58%
-MAE 0.47%
-MAX 1.32%
-R2 0.9932

More reliable
battery datasets can
be used for the SOH
framework.

SOH [67]

-Number of hidden
neurons 256
-Learning rate 0.00001
-Number of epochs
10,000
-Batch size 100

18,650 size li-ion
batteries Room temperature

-With other
data-driven models,
such as SVR, GPR,
GRU, and CNN

For cell 4
-MAE 0.61%
-MAX 1.60%

High processing
time for model
training.

4.3. CNN Framework for SOX Estimation

A CNN model has been employed for delivering outcomes with image recognition
and classification. However, the CNN model has been successful in battery SOX estimation
too. The CNN model requires low computational training time compared to other neural
networks, leading to a decrease in the need for human efforts to develop its functionalities.

4.3.1. CNN-Based SOC Estimation Approaches

Fan et al. [69] presented a SOC estimation approach for lithium-ion batteries by
employing a CNN model with a U-net architecture. The public dataset from the Panasonic
18,650 PF cell was employed with a nominal voltage of 3.6 V and nominal capacity of 2.9 Ah.
The data collection was conducted based on five different temperatures from 20 ◦C to 25 ◦C.
The outcomes revealed that an RMSE of 1.4% was achieved at a constant temperature
and 1.8% at variable temperatures, respectively. The method was easily executed with
satisfactory outcomes; however, validation of the proposed method was not carried out
with another model. Cui et al. [70] introduced a CNN-based hybrid model consisting of a
CNN and bidirectional weighted GRU (BWGRU). The proposed method limits the influence
of battery parameters on the SOC outcomes through a “multi-moment input” structure and
bidirectional network. The experimental setup was based on the Mendeley battery dataset
which was organized under 12 driving conditions at low temperatures, namely Mixed 1–8,
UDDS, HWFET, US06, and LA92. The CNN-BWGRU method was validated with other
conventional GRU and CNN-GRU models to demonstrate the effectiveness and accuracy
of the proposed model. Further works can be performed to validate the effectiveness
of the proposed model based on different temperatures and different aging conditions,
respectively. A combined SOC and SOH estimation scheme based on a pruned convolution
neural network with a transfer learning model and Gaussian process regression (GPR) was
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proposed by Li et al. [71], as shown in Figure 9. Additionally, fiber Bragg grating (FBG)
sensors were employed to acquire better process-related signals by connecting them with
the battery surface in order to capture the temperature variation due to battery charging and
discharging. The proposed work was based on four commercial lithium-ion battery cells
with a nominal capacity of 1.6 Ah and nominal voltage of 3.2 V. The SOC estimation with
regard to the RMSE and mean standard deviation (MSD) with FBG signals was 3.59% and
1.02%, respectively, and without FBG was 4.3% and 1.77%, respectively. Further research
can still be conducted to explore the application of FBG sensors in the state estimation of
batteries. Gong et al. [72] developed a novel CNN-based SOC estimation framework for
lithium-ion batteries. The data framework for the model training consisting of voltage,
current, and temperature sampled in 10 s. The proposed work was conducted based on
two public battery datasets from the NASA Ames Research Center and Oxford Battery
Degradation dataset. The CNN model operation was evaluated based on different criteria,
such as battery datasets and different input lengths. The CNN model for SOC estimation
was satisfactory; however, validation with other DL models was not conducted, which
could depict more effectiveness of the CNN model.

4.3.2. CNN-Based SOH Estimation Approaches

Li et al. [73] offered a hybrid CNN-LSTM model for SOH and RUL prediction of the
lithium-ion BMS applied in EV application, as depicted in Figure 10. The CNN-LSTM
model was developed to capture the hierarchical features of several variables associated
with temporal dependencies embedded in those features. The battery data features were
taken from the battery datasets obtained from NASA. A total of 12 battery datasets were
employed for SOH estimation. The training time for the CNN-LSTM model was appropriate
and demonstrated high SOH estimation accuracy with a low performance error of 0.0072
for the average RMSE. However, verification and comparative analysis with well-known
battery datasets can still be conducted in future research.

Figure 9. CNN-GPR model-based SOC estimation of lithium-ion battery.
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Yang et al. [74] developed a hybrid model combining a CNN and random forest
(RF) to predict the SOH of the battery under partial discharge. The extraction of the
suitable health indicators correlating with the estimated capacity was executed by the
two CNN models, and, consequently, the RF technique was utilized to predict the battery
SOH. The experiment was performed considering the MIT battery database which consists
of 124 lithium-ion battery datasets. A comparative analysis was performed with RF-ICA,
SOH-CNN, and ∆SOH-CNN where the proposed CNN-RF model depicted high robustness
and accuracy in SOH prediction. A novel CNN model named the pruned CNN model
with transfer learning was explored to predict the SOH of the lithium-ion BMSs [75]. The
source and target battery datasets include 16 battery datasets and four battery datasets,
respectively. The estimation accuracy was improved by training the proposed pruned CNN
model on a large battery dataset and then to the small dataset of the targeted battery by
employing the transfer learning technique. The effectiveness of the proposed model was
compared to the conventional CNN model and pruned CNN model without the transfer
learning technique. The SOH estimation outcomes were satisfactory and achieved a size
reduction of 68.34% and a computational saving of 80.97%. The authors in [76] applied a
temporal CNN model to capture the phenomena of capacity regeneration and accordingly
predict battery SOH. Additionally, the empirical mode decomposition (EMD) technique
was employed to denoise the unwanted data affecting the estimation accuracy. The NASA
battery datasets and CALCE battery dataset consisting of three batteries were employed for
the SOH estimation. The outcomes of CNN-based SOX estimation under various operating
conditions are summarized in Table 5.

Figure 10. End-to-end prognostic framework of CNN-LSTM based model for SOH and RUL predic-
tion of BMS.
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Table 5. Summary of CNN-based SOX estimation approaches.

SOX Estimation Structure Battery Chemistry Thermal Status Validation Process Results Research Gaps

SOC [69]

-Kernel size 5
-U-net depth 3
-Shrink ratio
5-Learning rate 0.001

Panasonic 18,650 PF
5 different
temperatures from
−20 ◦C to 25 ◦C.

With other
data-driven models
and under different
variable
temperatures

-RMSE 1.4% (for
constant
temperature)
-RMSE 1.8% (for
variable
temperature)

Hybridization of
the proposed model
with appropriate
model can be
performed for better
estimation accuracy

SOC [72]

-Kernel size 1
-Learning rate 0.001
-Number of
epochs 1000
-Batch size 32

18,650 lithium-ion
batteries

25 ◦C
40 ◦C

The validation
process was
conducted with
SRU and CNN-SRU
models

For RW13
-RMSE 0.83%
-MAE 0.63%
-MAXE 5.26%
-Time 1.21 s

High computational
complexity with
more training time

SOH [74]

-Filter size 3
-Filter stride 1
-Convolution filters 50
-Pooling size 3
-Pooling stride 3

lithium–iron-
phosphate/graphite
cells

Room temperature With different DoD
ranges

For DoD 0.1–0.8
-MAE 0.62%

Validation with
other models was
not conducted

SOH [76]

-Number of
iterations 1000
-Size of the kernel 3
-Mini batch size 128
-Dilation factor [1, 2, 4,
8, 16, 32, 64]

18,650 li-ion
batteries Room temperature

The validation
process was
conducted with
LSTM, CNN, and
GRU models

For B0005, start
point 30
-RMSE 0.014
-MAE 0.009

Further validation
of the model based
on different battery
chemistries can be
explored.

4.4. Autoencoder Framework for SOX Estimation

The autoencoder model is now being utilized in SOX estimation of lithium-ion batteries
as it provides the path to reduce the noisy data with ease which makes the DL model more
effective for estimation outcomes.

4.4.1. Autoencoder-Based SOC Estimation Approaches

Fasahat and Manthouri [77] developed a SOC estimation technique for lithium-ion
batteries by employing a hybrid framework based on autoencoder and LSTM to conduct
high-precision estimation. Two driving cycle battery datasets namely the FUDS and DST
drive cycle datasets were acquired from three different temperatures (0 ◦C, 25 ◦C, and
45 ◦C). The validation of the autoencoder-LSTM model was conducted with a multi-layer
perceptron (MLP) model. It was observed that MAE and MSE for the proposed model at
different operating temperatures delivered more accurate outcomes as compared to the
MLP model. Further investigation can still be conducted by validating the outcomes of
the proposed model with real-time EV drive cycle datasets. Chen et al. [78] presented
a hybrid model consisting of an autoencoder and GRU model for SOC estimation of
lithium-ion batteries. The denoising autoencoder is used to remove the noise and increase
the dimensions of the measured battery data while the GRU model was employed for
training and SOC estimation. The dataset obtained to conduct the experiments belongs to
the Samsung corporation, Korea consisting of lithium-ion nickel cobalt manganese oxide
(NCM) battery. The training operation was conducted with the UDDS driving cycle data
while the testing was conducted with the UDDS, HWFET, and NEDS driving cycle data.
Additionally, the accuracy of the proposed model was checked with the other methods
such as GRU and RNN where the proposed approach delivered accurate outcomes in terms
of MAE and RMSE.

4.4.2. Autoencoder-Based SOH Estimation Approaches

Wu et al. [79] introduced an autoencoder and ensemble learning technique based
SOH prediction framework, as depicted in Figure 11. The extraction of the critical health
features comprising battery charging profiles at different aging stages was conducted by
the convolutional autoencoder. Furthermore, an ensemble learning technique was applied
to enhance the SOH prediction accuracy of the autoencoder model. The NASA datasets
consisting of four battery datasets under different cycling test conditions were used to
validate the proposed model. The validation of the autoencoder model was conducted
with other models such as conventional GRU and ensemble learning-based GRU models.
The outcomes based on RMSE at 1.04% and MAE at 0.77% depicted high SOH estimation
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accuracy. However, validation with other battery datasets from the reliable online database
should be conducted to enhance the acceptability of the conducted research work.

Sun et al. [80] developed a sparse autoencoder and BPNN-based SOH prediction
technique. The input data framework for the model training was conducted by using the
battery voltage extracted during the later phase of the charging path. The acquisition of
the battery dataset was performed experimentally by conducting the accelerated aging
test on 8 batteries with a nominal capacity and nominal voltage of 2500 mAh and 3.2 V,
respectively. It was depicted that SOH estimated error was within the range of ±5% which
demonstrated the high accuracy and effectiveness of the proposed model with low compu-
tational cost. However, further improvements based on the appropriate selection of the
model hyperparameters should be undertaken for better estimation accuracy. Son et al. [81]
proposed a SOH estimation technique by applying an autoencoder model. The SOH esti-
mation technique consists of three parts namely feature extraction, feature manipulation,
and SOH estimation. The feature extraction was performed by the polynomial regression
and denoising autoencoder. The SOH prediction was determined by the GPR approach
considering the multiple battery health indicators. The autoencoder-based SOH estimation
model performance was validated with other models such as SVM, MLP, DCNN, and LSTM
methods. The proposed model depicts higher accuracy with the lowest RMSE, however,
SOH estimation under the various stochastic operational conditions was not performed.
The findings of autoencoder-based SOX estimation under different settings are presented
in Table 6.

Figure 11. Autoencoder and ensemble learning-based SOH estimation.
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Table 6. Summary of autoencoder-based SOX estimation approaches.

SOX Estimation Structure Battery Chemistry Thermal Status Validation Process Results Research Gaps

SOC [78]
-Batch size 64
Training epoch 500
-Learning rate 0.01

NCM battery Data extraction
takes place at 25 ◦C.

-With other
data-driven models
and under different
testing driving cycle
datasets

-RMSE 0.3300
(testing with UDDS)
-RMSE 2.1330
(Testing with
HWFET)

-Validation with
other battery
chemistries was not
conducted.

SOC [77] -Hidden layer 1
-Hidden neurons 22

18,650-size
lithium-ion
Batteries

0, 25, 45 ◦C

Validation at
different
temperatures and
with conventional
MLP model

At 25 ◦C
temperature.
-MAE 0.6664
-MSE 1.1886

-Validation with
other sophisticated
models could have
been performed.

SOH [79] -Encoder 8 layer
-Decoder 4 layer

18,650-size
lithium-ion
batteries

Room Temperature

With another neural
network such as
LSTM, GPR, and
SVM

for B0005:
RMSE 0.92%
MAE 0.74%

-Effect of
temperature profile
on capacity
degradation can be
studied.

SOH [81]

-Encoder 2 layer
-Decoder 2 layer
-Learning rate 0.001
-Number of
epochs 500

LiFePO4 cell −20 to 60 ◦C

Validation with
data-driven models
such as SVM, MLP,
DCNN, and LSTM
models.

At swelling 15◦C:
-RMSE 0.003
-RMSE ratio with
respect to GPR 1.00

-Validation of the
model with another
reliable battery
database can be
conducted.

5. Key Issues and Challenges of DL Applied in Automotive BMS

The use of DL approaches for battery SOX estimation has demonstrated important
contributions; however, there are still several internal and external problems and difficulties
that need to be resolved. As a result, the main problems and concerns of SOX estimation
with DL are roughly categorized into two groups: battery storage issues and methods and
execution problems.

5.1. Battery Energy Storage-Related Issues

Due to a number of problems, including battery capacity deterioration, thermal run-
away, battery aging, battery materials, and charge balance concerns, the precision of
different DL approaches for SOC, SOH, and SOP calculations might differ.

5.1.1. Battery Chemistries and Materials Issues

To test the battery SOX accuracy, Oxford, the National Aeronautics and Space Admin-
istration (NASA), and CALCE employed several battery chemistries, materials, and health
deterioration profiles. For instance, the Mendeley battery dataset utilized a 1.1 Ah li-ion
LiNiCoAlO2 battery whereas CALCE employed a 2.0 Ah li-ion LiNiMnCoO2 battery [82].
The use of various li-ion battery chemistries may affect the accuracy of DL techniques. A
GRU-dependent DL approach for SOC prediction utilizing lithium-iron phosphate (Li-
FP) and Li-NMC cells was developed by Yang et al. [83]. According to the findings, the
MAE and RMSE of the Li-NMC battery were less than the Li-PF cell. The accuracy of the
SOC estimation approach was examined in [84] by using two distinct lithium-ion battery
chemistries. An aging cycle test and a test bench platform were used for validation. The
trials were first carried out using brand-new lithium-ion battery cells, and it was found
that the LiFePO4 battery performed more accurately than the LTO battery with an RMSE of
0.5305% at 25 ◦C. The LTO battery demonstrated improved results in the aging cycle test.
Therefore, more investigation is necessary to ensure the accuracy of DL approaches when
used with various li-ion battery materials.

5.1.2. Battery Aging Characterizes

The issue of battery aging is another major factor in the deterioration of the precision.
Of DL techniques. According to previous research, acceleration of the aging cycle results
in a number of issues, including the deterioration of cathode materials, that reduce the
estimation accuracy of DL methods. Several important studies employing ML approaches
for SOC estimate in battery aging have been conducted. For example, Chaoui et al. [85]
used an RNN algorithm to conduct an aging estimation for the SOC of LiFePO4 batteries.
The findings demonstrated that when the battery aged to 10% of its fundamental capacity,
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the RMSE of the SOC increased to 2.7× 10−3% from 1.9× 10−3%. Han et al. [86] conducted
a thorough analysis of the main problems with battery deterioration across the whole life
cycle. To better comprehend the battery fade characteristic, the internal aging mechanisms
of the battery were first evaluated while taking into account various anode and cathode
materials. The influencing elements affecting battery life were then thoroughly examined
from the viewpoints of design, production, and application in order to achieve improved life
performance. DL techniques under the aging cycle, however, have not yet been investigated.
Therefore, to estimate battery SOX accurately, battery aging is a crucial topic that requires
additional consideration.

5.1.3. Battery Thermal Issue

When evaluating the effectiveness of various DL algorithms for SOX estimation,
battery temperature is a key factor. When temperatures alter, the accuracy of SOX is affected.
For instance, SOC-based GRU under various temperature conditions was examined by
Yang et al. [63]. The findings exhibited that the performance of the training model was
affected by the temperature fluctuating between 0–50 ◦C, leading to a change in the RMSE
between 1.81% and 2.33%. Likewise, Mamo et al. [51] investigated the effects of temperature
on the SOC utilizing LSTM and found that the RMSE was estimated to be 0.95%, 0.87%,
and 0.92% at 0 ◦C, 25 ◦C, and 45 ◦C, respectively. In contrast to conventional li-ion batteries,
LiFePO4 has a restricted exothermic heat discharge, which improves thermal stability [87].
According to Wang et al. [88], when the battery temperature increases by 1 ◦C, the battery’s
lifespan reduces by two months. In order to build an appropriate heating and cooling
system for BMSs, additional exploration is necessary to understand heat management in the
battery systems of EVs. Therefore, extensive research is needed to verify the performance
of SOX at various temperatures.

5.1.4. Battery Balancing and Cell Inconsistency Concerns

Battery overcharging and undercharging issues originate from battery charge imbal-
ances and cell inconsistencies. Additionally, battery charge imbalances are observed as a
result of age, manufacturing standards, material flaws, capacity changes, and changes in
physical features [89]. Charge imbalance is also frequently reported in much of the litera-
ture. A study by Park et al. [90] used LSTM and DNN approaches to calculate the SOC of a
battery pack made up of four lithium-ion battery cells. Due to the restriction of weakening
cells, passive balancing was ineffective when batteries were drained [91]. Because active
balancing redistributes energy across cells rather than squandering it and dissipating it, it is
both required and more effective at balancing the energy of a cell. Therefore, an intelligent
system must be created to address the problems caused by charge imbalance in the SOP,
SOH, SOE, and SOC prediction processes in BMSs.

5.2. DL Methods and Operation Problems

This section discusses numerous operational concerns of DL algorithms, including
factors and optimum DL approach selection.

5.2.1. DL Algorithm Execution Concerns

Even while the use of DL algorithms for BMSs in EVs has shown encouraging results,
it still has certain drawbacks. For instance, in time series prediction, LSTM can retain all
information throughout time; however, it has flaws, such as explosion and gradient vanish-
ing. Although LSTM does not need fine-tuning of characteristics such as learning rates, it
takes a longer time. Apart from this, GRU performs admirably in terms of memory use and
quick computing speed, but its accuracy is hampered when employing lengthy sequences.
Although CNN demonstrates effectiveness when using pooling and convolution methods
for factor sharing, it needs a large volume of data for smooth functioning. Autoencoders
offer a number of filters to minimize the dimensional issues but demand a huge volume of
data, a powerful computer, and hyperparameter adjustment.
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5.2.2. Quantity and Quality of Data

The precise quality and quantity of data are essential in the effectiveness and accuracy
of a DL approach. For instance, a low data volume reduces a DL algorithm’s accuracy
whereas a high data volume results in a significant computational cost and additional
overfitting concerns [92]. It requires a great amount of time and effort to gather a lot of data
over a period of time. Additionally, there are differences in data for distinct EV cycles with
different current and voltage value patterns. Additionally, the EV driving cycle is repeated
multiple times to gather a significant amount of training dataset [93]. Although a big data
set can produce superior results, the longer training period and increased computing load
cause overfitting issues [92]. Therefore, it is crucial to take into account the issue of data
quantity and quality.

5.2.3. Higher Computational Cost and Complexity

The precision and length of training, especially for deep learning algorithms, provide
one of the main obstacles to the successful use of intelligent approaches. Chemali et al. [27]
trained DL approaches offline using tens of thousands of battery data points over the course
of 50–60 h [94]. The efficiency of the computational cost determines whether a DL approach
is appropriate for a real-time BMS. The effectiveness of different DL algorithms in terms
of computing varies. Certain research recommends GeForce GTX 1080 Ti and NVIDIA
GeForce GTX 1070 Ti to determine SOX [56,67,95]. However, as dataset volumes grow
and configurations get more complicated with more hidden layers, computing costs and
complexity rise. In order to implement SOX through onboard-BMSs with minimal storage
and power requirements, additional research is necessary.

5.2.4. Appropriate Functions and Parameters Selection

To increase efficiency and accuracy, it is important to choose proper training settings for
DL methods. The accuracy of DL approaches is influenced by the selection of appropriate
training and activation functions. Additionally, computation issues are decreased by
properly choosing hyperparameters for DL algorithms [39]. Hyperparameters are typically
tuned using the TE method until acceptable results are obtained. However, TE illustrates a
significant loss of human energy and time. Therefore, more research is required to train DL
approaches by choosing appropriate hyperparameters.

5.2.5. Difficulties in Executing Optimized DL Methods

The accuracy, robustness, and efficiency of SOX for online BMS applications have
recently been improved by the deployment of several optimization schemes, including a
lighting search algorithm (LSA) [96], gravitational search algorithm (GSA) [25], backtrack-
ing search algorithm (BSA) [97], particle swarm optimization (PSO) [98], etc. However,
each optimization technique has a unique learning execution time, convergence, and ac-
curacy. Additionally, the development of optimization includes a number of parameters
and operational steps that not only call for intensive training and human expertise but also
result in a significant computing burden. To improve the accuracy of SOX, more research is
required on the integration of appropriate optimization techniques with DL methodologies.

5.2.6. Missing Regular/Irregular Data in Real-World Applications

Typically, the data derived from laboratory studies provide good results; however,
the data gathered from the outside world shows less accurate performance. The absence
of data in predictable or unpredictable patterns is the cause of the reduced estimation
accuracy [99]. There are a number of methods that may be applied to deal with the problems
caused by missing or irregular data. It is possible to include regularly sampled data in
some circumstances whereas irregular data are interpolated in other circumstances [100].
Additionally, a signal processing-based method can be used for data interpolation. Fast
generalized Fourier transform (FGFT) may use to do the data interpolation. However,
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further research is required to make up for the missing data inconsistencies and achieve
enhanced performance in real-world scenarios.

5.2.7. Validation Complexities under Real-World Data

One of the obstacles to implementing DL techniques with real-world data is data
integrity. Some research establishments have published high-quality battery datasets based
on different experimental conditions. The dataset comprises charging and discharging
battery current and EV drive cycles following specific procedures and requirements. The
battery datasets were acquired from various experimental conditions based on different
charge/discharge current rates under varying temperature conditions. Furthermore, the
battery parameter profiles of current and voltage for the EV drive cycle do not match
with actual data in real-world applications. Therefore, further investigation needs to be
performed for delivering and validating complex, real-world data.

5.2.8. Joint Estimation of SOE, SOH, SOP, and SOC Estimation

A multiscale and joint estimation technique may be used to minimize the calculations
of BMSs for SOE, SOH, SOP, and SOC prediction depending on deep learning approaches.
While the RUL and SOH are tracked with variations in battery capacities, the SOC is
examined with current level changes. Battery currents fluctuate a lot, and battery capacities
decrease as they ages. As a result, multiple time frames are needed for the monitoring of a
battery’s various states. Additionally, the majority of research papers have focused on single
estimations, such as RUL, SOP, SOE, and SOC. However, only a small number of prominent
papers have concentrated on the application of DL techniques for multiple measurements
together although Cui and Hu [57] presented LSTM for the combined measurement of
RUL and SOH of li-ion batteries. Apart from this, Li et al. [56] proposed a unique LSTM
approach for estimating RUL and SOH concurrently. To overcome the abovementioned
issues, further exploration is required.

6. Conclusions and Future Research Opportunities

This paper outlines various DL approaches and frameworks for SOX estimation for
BMSs in EV applications. SOX in terms of SOE, SOH, and SOC is extensively explored
employing LSTM, GRU, CNNs, and autoencoders. As a first contribution, various DL tech-
niques for SOX estimation were comprehensively reviewed in terms of methods, operation,
mathematical expressions, advantages, and disadvantages. As a second contribution, sev-
eral important aspects and factors were investigated, including configuration, parameters,
battery types, temperature status, validation profiles, accuracy, benefits, drawbacks, and
research gasps. As a third contribution, numerous key issues and limitations for DL-based
SOX estimation were delivered with regard to battery materials, algorithm complexities,
and validation difficulties. Fourthly, future aspects and suggestions for SOX estimation
were discussed. This analysis reveals that DL-based SOX estimation achieves excellent
outcomes under various battery chemistries, varying temperature conditions, and different
validation processes. Moreover, this survey denotes the limitations, issues, and challenges
in determining the SOX of BMSs, covering battery-related problems, algorithm execution
difficulties, and operational constraints. The investigation discloses that battery materials,
aging, thermal degradation, charge balancing, data amount, data quality, computational
cost, activation functions, and hyperparameters play a crucial role in achieving accurate
and robust SOX estimation. Finally, this paper delivers several effective and productive
recommendations for future research opportunities which are mentioned below.

• Primarily, the extraction of the data samples was performed by utilizing an advanced
battery testing system (BTS), such NEWARE BTS 4000, DAQ, Arbin BT 2000, and
Digatron. However, the acquired data samples consist of inaccurate data samples
because of the involvement of electromagnetic interference (EMI), noise influence,
and equipment accuracy. Additionally, the precise justification of the SOX methods
may not be conducted due to sensor inaccuracies and EMI. Therefore, it is vital to
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develop a BTS for accurate data extraction for developing a SOX estimation framework.
Considering this, some techniques associated with noise reduction, such as recursive
total least squares, bias compensating, a Butterworth filter, and a wavelength transform
method, can be applied.

• The framework associated with hybrid models of SOX estimation has been effective
with the accurate estimation of outcomes compared to single model estimation ac-
curacy. Usually, a hybrid model is developed based on the association amongst a
PF-based technique, KF-based technique, and data-driven-based models [47]. Nonethe-
less, the inaccurate hybridization of two or more models for SOX estimation may result
in computational burden, data overfitting, and inaccurate estimation outcomes. There-
fore, an appropriate study should be conducted, and practical feasibility should be
studied for hybridizing models for SOX estimation.

• Usually, SOX estimation is conducted based on data acquired from a single battery
cell. However, the BMS structure consists of several battery cells connected in series
and parallel. When battery cells are connected in series and parallel, unbalancing
issues are observed due to continuous charging and discharging. Due to this, the
estimation accuracy of the battery pack is not the same or as accurate as the estimation
with a single battery cell. To overcome the issue, various converters and controllers
have been modeled to reduce the abovementioned challenges. Additionally, relevant
investigations associated with reducing the size, expenses, equalization time, voltage
and current stress, power loss, and efficiency should be conducted.

• The execution of DL models for the SOX estimation of the lithium-ion battery takes
significant time for model training and delivering estimation outcomes. DL model
training time can be appropriately reduced with suitable selection of model hyperpa-
rameters considering the estimation outcomes as well. Currently, complex DL models
are executed in advanced GPU technologies, such as GeForce GTX 1080Ti and NVIDIA
GeForce GTX 1070Ti, to accelerate SOX estimation.

• An accurate SOX estimation can be obtained with suitable selection of the model
hyperparameters. When the selection of model hyperparameters, such as hidden
neurons, number of iterations, epochs, activation function, bias, and weight, is not
appropriate, the computational burden is increased, and issues associated with data
overfitting and data underfitting occur. Generally, the model hyperparameters are
selected based on the TE method which requires human expertise and is time con-
suming. Therefore, appropriate execution of the metaheuristic optimization technique
can be implemented along with DL models for the suitable selection of model hy-
perparameters. Therefore, execution of optimization techniques in SOX estimation
frameworks should be further explored.

• Currently, SOX estimations are performed under a preset environmental condition.
However, the application of cloud computing and the internet of things (IoT) platform
for online SOX estimation has not been investigated properly. The integration of
the IoT-based platform with SOX estimation frameworks will be beneficial with a
large volume of data acquired in real-time implementation along with accurate SOX
estimation. Maddikunta et al. [101] developed a predictive model for battery life
estimation in the internet of things (IoT) platform. Automated data sensors were
employed to access the data while data preprocessing methods, such as normalization
and transformation, were used. The outcomes were satisfactory with an accuracy
of 95%.

• However, research based on the execution of IoT-based real-time implementation for
SOX application has not been significantly explored, and, therefore, further research
should be conducted to explore the possibilities of integrating SOX estimation with IoT.

• The computational complication and burden of SOX estimation can be improved
with the application of multiscale and joint estimation processes. However, it should
be studied that each SOX estimation is conducted based on different conditions,
such as the SOC, which is conducted with the change in current values while the
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SOH is estimated based on battery capacity. There is frequent change in battery
currents whereas battery capacities age with battery cycles. Therefore, every battery
state estimation requires different time scales, which should be explored for the
development of an accurate joint estimation framework.

The critical discussion, analysis, key findings, issues, and future suggestions would
provide important guidelines to automotive engineers and industries to design an improved
SOX estimation framework using various DL approaches. Intelligent BMSs with DL
approaches to estimate accurate SOX estimation will enhance battery performance as well
as EV safety and reliability toward low carbon energy transitions in the future.
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Abbreviations

BGRU Bidirectional GRU
BO Bayesian optimization
BSA Backtracking search algorithm
BTS Battery testing system
BWGRU Bidirectional weighted GRU
CALCE Center for Advanced Life Cycle Engineering
CDTL Controllable deep transfer learning
CNN Convolutional Neural Network
DEGWO Differential evolution grey wolf optimizer
DFFNN Deep feedforward neural network
DL Deep learning
DST Dynamic stress testing
EMI Electromagnetic interference
EV Electric vehicle
FBG Fiber Bragg grating
FFNN Feedforward neural network
FGFT Fast generalized Fourier transform
FUDS Federal urban driving schedule
GPR Gaussian process regression
GPU Graphics processing unit
GSA Gravitational search algorithm
IoT Internet of things
LFP Lithium iron phosphate/graphite
Li-FP Li-iron phosphate
LSA Lighting search algorithm
LSTM Long short-term memory
LTO Lithium titanate
MAE Mean absolute error
MSE Mean squared error
MLP Multilayer perceptron
NASA National Aeronautics and Space Administration
NCM Nickel cobalt manganese oxide
PSO Particle swarm optimized
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RMSE Root mean square error
RUL Remaining useful life
SOC State of charge
SOE State of energy
SOH State of health
TE Trial and error
VLSTM Variant long short-term memory
UDDS Urban Dynamometer Driving Schedule

Symbols

σ () Sigmoid activation function
A Input data dimension
B Refers to padding

B(l)
i Bias matrix

bf Bias vector of forget gate
bi, bc Input gates
bo Bias vector of output gate
C Dimension of filter
D Stride
f ′ Encoder
fk Forget gate
g′ Decoder
hm Feature vector

k(l)i,j Filter of size 2h(l)1 + 1 ∗ 2h(l)2 + 1
ok Output gate
rt Reset gate
Wo Weight matrix
Wf Weight matrix of the forgot gate
Wi, Wc Weight matrix of the input gate
Wz Weight matrix of the update gate

W(l)
i,j,r,s Connection of weight position

xm Unlabeled data
x′m Reconstructed unlabeled data
xk Current time step of input k
zt Update gate
tanh Activation function
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