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Abstract: Wind turbine generators (WTGs) are highly sensitive to the disturbances of the grid and
tend to disconnect quickly during a voltage dip (when the voltage value is less than 80% of the
nominal voltage) or when the frequency is greatly changed. As an increasing number of permanent
magnet synchronous generators (PMSGs) are incorporated into the modern power grid, system
operators expect PMSG-WT to play an active role in low-voltage ride-through (LVRT) and primary
frequency regulation (PFR). Consequently, PMSG-WTs must be capable of supplying additional
active power in response to changes in system voltage and frequency. In this context, a new de-
loaded technique enhanced by a fuzzy-logic controller is suggested to develop the PMSG-pitch angle
control (PMSG-PAC). The studied MG consists of a wind farm (WF), variable load, and a battery
energy storage system (BESS). The WF contains five PMSG-WTs which are considered to be the
principal resource. The proposed DT-FLC ensures maximum aerodynamic reserve power for the
plant, enhances its capability to regulate the PAC, adjusts the WTG drop in response to the wind
speed, and increases the resilience of the PMSG-WT in the presence of low voltage. Moreover, the PFR
is significantly improved in terms of controlling the PAC (−0.0007 Hz) which meets the frequency
maximum droop recommended by the IEEE Std 1547-2018 and the Moroccan grid code, −3 Hz and
−2.5 Hz, respectively.

Keywords: microgrid resilience; low-voltage ride-through; primary frequency regulation; permanent
magnet synchronous generator; de-loaded technique; fuzzy-logic controller; pulse width modulation

1. Introduction
1.1. General Contexte

A microgrid is a smart grid that uses local renewable energy production (wind, solar,
hydro, etc.) to power the load(s). As the energy data is transmitted, the microgrid (MG)
also transmits data on consumption, production, and storage. The MG energy management
system enables the optimization of energy consumption and the electricity bill of the
load-demand, as well as the storage and control of energy in real-time.

Wind energy (WE) has been extensively exploited during the past decades [1]. Nowa-
days, wind energy is usually the most cost-effective source of sustainable energy [2]. It
also makes a substantial contribution to MGs and utility grids (UGs) [3,4]. In the field of
variable speed wind turbines (VS-WTs), permanent magnet synchronous generator WTs
(PMSG-WTs) are widely used due to their quicker control reactions in comparison to other
technologies [5]. They have an extensive operation area as they only employ power con-
verters, such as generator-side converters (rectifiers) and grid-side converters (inverters).
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To enhance the MG when a fault occurs and manage the power generation intermit-
tency, a battery energy storage system (BESS) is proposed. In sustainable MGs, BESSs are
an important element [6]. They provide charging and discharging feature that are tailored
to grid-fault events, weather conditions, and utility grid (UG) electricity prices [7]. They
recover the discontinuity of the renewable energy generators and stabilize the frequency
oscillation of their output power by emulating inertia [8].

Of several controllers, the fuzzy-logic controller (FLC) is the most widely used con-
troller for MG control strategies based on renewable energy resources due to advantages
that include improving system stability, regulating bus voltage, adjusting output power,
and offering quick battery charging and discharging actions. In addition, economically,
FLC is an inexpensive controller [9,10]. Furthermore, to reduce DC-link voltage fluctuations
and guarantee an active power reserve margin, the PMSG must function in the de-loaded
mode rather than the maximum power point tracking (MPPT) mode [3]. In addition, the
de-loaded technique (DT) can keep part of the active power in real-time to meet the load
demand and to ride through the voltage sag by controlling the angular rotation speed (ARS).
For this reason, during depressing frequency and voltage conditions, a DT-FLC is proposed
due to the complementarity between the advantages of both the de-loaded technique and
the FLC. In this study, the optimal PMSG torque is estimated from the generator speed
based on the WT model to achieve an optimal power reserve from the greatest possible
WTG input power.

1.2. Related Works

A variety of research studies have been conducted to tackle the aforementioned
problem. For instance, the authors in [4] investigated the LVRT requirement using the FLC
and the MPPT mode. An FLC was designed with the aim of smoothing fluctuations in
wind power. The MPPT mode was used to control the stator side converter. However,
according to the same paper, since wind velocity varies strongly, the MPPT mode also
produces significantly variable power.

In [5], de-loaded-LVRT control for the PMSG was investigated. The de-loaded tech-
nique was used to resolve the reserve energy limitation issue during a grid fault. However,
by regulating rotor speed, the de-loaded control approach can sometimes result in loss of
system control.

Authors in [3,11] employed an artificial neural network (ANN) to control and enhance
microgrid LVRT functionality due to its ability to approximate complicated systems and
increase control scheme performance. ANNs have the potential to implement nonlinear
system identification and control. Nevertheless, uncertainties in the ANN parameters result
in the limited performance of this control.

In [12], the authors proposed a coordinated control approach for WTGs and a super-
capacitor energy storage system (ESS). Inertial control was developed with the generator
torque limit, whereas to compensate for the active power shortage during the turbine
rotor recovery phase, ESS liberates its energy. The fatigue, aerodynamic, structure, and
turbulence (FAST) algorithm was used to describe the WTG, which determines the WT-
mechanical torque and handles electromechanical interactions in the wind energy system.
During frequency supports, a damping controller was added to the inertial control to
prevent strong mechanical oscillations in the WT. Furthermore, the stability study revealed
that the WTG and ESS stability was enhanced. However, the authors in this paper did not
discuss the participation of their proposed control in the LVRT requirements.

The authors in [4] suggested an FLC-based strategy for a full-converter WTG linked
with an energy storage device of the supercapacitor. The FLC was expected to smooth
out wind power variations while simultaneously maintaining a supercapacitor energy
reserve for short-term grid interruptions. The fuzzy method was rigorously evaluated and
compared to a traditional power smoothing strategy as well as the scenario without an
ESS. They found that the FLC improves wind power smoothing and regulates the state
of charge (SoC) of the supercapacitor during faults in the simulated microgrid. The WTG
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and MG exploitation were significantly enhanced by decreasing power oscillation and ESS
performance to meet the LVRT requirement. However, results show that the active power
injected into the grid was still disturbed.

1.3. The Main Contribution

This paper’s main contribution ensures the optimization of a de-loaded technique
improved by an FLC to enhance the performance of the standard LVRT control and PFR. In
this context, the benefits of the proposed method are summarized as follows:

— Developing a flexible DT-FLC to improve the traditional LVRT control and PFR;
— Limiting the low frequency by respecting the frequency limit droop given by the IEEE

standard (IEEE Std 1547–2018);
— Designing an MG which can successfully participate in the auxiliary services, mainly

voltage and frequency control;
— Minimizing the DC-link voltage oscillations under unbalanced microgrid conditions,

which allows protection of the rectifier and the inverter.

1.4. Paper Arrangement

The rest of this paper is structured as follows. The mathematical modeling of the
microgrid is established in Section 2. The developed de-loaded technique-fuzzy logic
control is designed in Section 3. Grid code requirements and fault ride-through are given
in Section 4. The primary frequency regulation in the islanded microgrid case is studied
in Section 5. In Section 6, simulation results are analyzed. Finally, the conclusions are
presented in Section 7.

2. Mathematical Modeling of the Microgrid

The suggested grid-connected MG is depicted in Figure 1. The WF and BESS are con-
nected to the AC-bus. The WF consists of five PMSG-WTs; each PMSG-WT is composed of
two back-to-back converters coupled with a DC capacitor. Due to its simplicity, robustness,
and ease of control, the DT-FLC is added to adjust the wind turbine blade pitch angle
during difficult wind conditions and depressed voltage and frequency circumstances.
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2.1. Wind Turbine-Mathematical Modeling

Mechanical power generation is described using WT properties. To determine and
control the WT-tip-speed ratio (λ) to a specified level, based on WE production and UG
conditions, the ARS of the WT (ωr), rotor blade radius (R), and wind speed (vw), are used
as indicated in (1):

λ =
Rωr

vw
(1)
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By regulating the ARS, the WT is able to generate an optimal mechanical power, Pm,
as given in [13,14]:

Pm =
1
2

.ρ.π.R2.Cp(λ, β).v3
w (2)

Consequently, the mechanical Torque, Tm, can be calculated as follows:

Tm =
Pm

ωr
=

1
2λ

.ρ.π.R3.Cp(λ, β).v2
w (3)

where ρ is the density of the air, β is the WT-pitch angle, and Cp is the WT-coefficient
of power.

There is a specific rotating speed for each instantaneous PMSG-WT wind speed, which
corresponds to the maximum wind power. From this maximum wind power, at both high
and low ARSs, the DT can be performed. However, the MPPT technique is used only to
attain the maximum power point from the WT system [3], when Cpmax = 0.41, λ = 8.1, and
β = 0◦. As shown in Figure 2, to obtain the most power reserve from the rotor inertia, the
suggested technique uses a lower rotor speed. The rotational speeds, ωr and ωr-del, for each
given wind speed are equivalent to the maximum and de-loaded output power, Pm and Pd,
respectively.
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Figure 2. Wind turbine characteristics with de-loaded and maximum power point tracking.

2.2. Permanent Magnet Synchronous Generator-Side Converter Model

The PMSG-SC, as illustrated in Figure 3, is capable of tracking the de-loaded and
maximum wind power by adjusting the pitch angle. A rectifier (AC/DC converter) is a
power converter in the PMSG-SC that indirectly regulates the ARS. Pulse width modulation
(PWM) is added to control the rectifier and inverter and to generate the control signal to
execute the generator’s nonlinear regulation [14,15]. According to [16–18] the stator dq-axis
voltages and PMSG-torques are presented in (4) and (5), respectively:{

vds = Rs.ids + Ls
dids
dt −ωs.Ls.iqs;

vqs = Rs.iqs + Ls
diqg
dt −ωs.Ls.iqs + ωs.ψ f ;

(4)

{
Te =

3
2 p.ψ f .iqs;

Tm = J dωr
dt + Te

(5)

where the stator dq-axis voltages are represented by vds and vqs, ids and iqs represent the
PMSG stator currents, the stator inductance and resistance are Ls and Rs, respectively, ωs
represents the electrical rotor speed, ψf is the electrical rotor-flux, p is the pole pairs of the
generator, J is the rotor inertia, and Te is the electromagnetic torque.
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2.3. DC-Link Voltage-Mathematical Modeling

DC-link voltage regulation is critical for the power conversion system, and it is partic-
ularly important during a low-voltage situation [5]. Based on the voltage of the DC-link,
the supplied power is represented in (6):

Pc = C.Udc.
dUdc

dt
= Pg − Pgrid (6)

where C represents the DC-link capacitor, Pg is the generated power, and Pgrid is the
GS-Converter power.

2.4. Grid-Side and Battery Energy Storage System-Mathematical Modeling

As indicated in Figure 3, from the inverter (DC/AC converter), the produced power is
injected into the UG. According to [18], the overall GSC model can be defined as follows:{

vdg = v.idg − R.idg − L
didg
dt + ωs.L.iqg

vqg = v.iqg − R.iqg − L diqg
dt + ωs.L.idg

(7)

where the dq-axis grid-side voltages are vdg and vqg, L is the inductance of the grid, R is the
resistance of the grid, and idg and iqg are the grid-side currents on the dq-axis.

The quadrature current iqg and the direct current idg can be used to adjust the reactive
and active powers transmitted to the UG, respectively. The active and reactive grid powers
are, respectively, given as: {

Pg = 3
2 (vdgidg + vqgiqg)

Qg = 3
2 (vqgidg − vdgiqg)

(8)
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According to [19], BESS energy storage, which is defined by initial capacity and
charging/discharging power, is depicted in (9):

Pt
BESS =

Et
BESS − Et−1

BESS(1− σ)

η.∆t
(9)

where Et
BESS indicates the energy of the battery at time t, σ indicates self-discharge ratio,

Pt
BESS indicates the charging/discharging power at time t, η indicates battery-efficiency,

and ∆t indicates the interval of time.
The charging and discharging power of the BESS are restricted to its maximum output

power. When charging, the BESS operates as a load, and when discharging, it operates
as a generator. Furthermore, it is presumed that when the BESS is charging, its power is
negative and that it is positive when it is discharging [20]. This limitation is presented
as follows:

Pmin
BESS ≤ PBESS(t) ≤ Pmax

BESS (10)

3. The Proposed De-Loaded-Fuzzy Logic Control
3.1. De-Loaded-LVRT Technique

To enhance MG-LVRT capability and overcome the grid fault, a DT-FLC is proposed.
The DT operates with a lower ARS than the MPPT mode. Taking into consideration this
maximum speed constraint, the de-loaded operating strategy improves the rotor inertia
reserve energy. FLC is added to enhance the DT by smoothing out the wind speed variations
effect, controlling, and stabilizing the PMSG side and grid side of each WT as shown in
Figure 3.

According to [13,21], for each ARS, the reference of the de-loaded WTG-power, Pref, is
calculated as indicated in (11):

Pre f = Pd + Pres ×
[

ωr−del −ωr−measured
ωr−del −ωr−MPPT

]
(11)

with Pres = PMPPT − Pdel ,where Pres is the reserved power, ωr-MPPT, ωr-del, and ωr-measured
are the MPPT, de-loaded, and measured rotor speed, respectively.

The voltage-sag duration is required by the grid code. The voltage difference between
the normal and the lower grid voltage caused by a fault at PCC, Usag, is calculated as follows:

Usag = Un −U f ault (12)

where the voltage drop on the grid is denoted by Usag, the nominal voltage is denoted by
Un, and Ufault represents the voltage at the grid fault.

To calculate the reserve energy capacity of the rotor inertia, EWT
res , the following equa-

tion is used:
EWT

res =
1
2

J(ω2
r,max −ω2

r,del) (13)

When the power output of the PMSG-SC is dropped, EWT
res can be stored as kinetic

energy in the inertia form. As a consequence, the proposed approach offers a sufficient
energy-margin reserve to allow tend power to overcome the grid fault. Therefore, the
energy extracted from the ARS for de-loaded operational mode, EWT

res , can be calculated
as follows:

EWT
mech − EBESS = EWT

res (14)

with, EBESS = Q.V, where EBESS represents the energy of the battery (Wh), when a grid
fault occurs, this stands for charging to reserve energy depending on the SoC value. Q is
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the stored quantity of the electricity (Ah), and V is the voltage of the battery. As a result,
from (13) and (14), the de-loaded ARS can be determined as follows:

ωr,del =

√
ω2

r,max −
2(EWT

mech −QV)

J
(15)

3.2. Fuzzy-Logic Controller Design

The FLC is used in this work to improve the de-loaded technique as shown in Figure 3.
The recommended FLC membership function input and output are presented in Figure 4.
The FLC position is described in Table 1, and each variable used in the regulator description
is presented in a fuzzy set notation utilizing linguistic variables. The input is the current
(i), and voltage (u) is the output. On the other hand, the Gaussian function describes the
membership functions as big positive (BP), small positive (SP), zero (Z), small negative
(SN), and big negative (BN). Figure 5 depicts the suggested FLC design.
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Table 1. Rules for the fuzzy-logic controller.

i\u BN SN Z SP BP
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The FLC is used in this work to improve the de-loaded technique as shown in Figure 

3. The recommended FLC membership function input and output are presented in Figure 
4. The FLC position is described in Table 1, and each variable used in the regulator de-
scription is presented in a fuzzy set notation utilizing linguistic variables. The input is the 
current (i), and voltage (u) is the output. On the other hand, the Gaussian function de-
scribes the membership functions as big positive (BP), small positive (SP), zero (Z), small 
negative (SN), and big negative (BN). Figure 5 depicts the suggested FLC design. 

Figure 4. Membership functions of the input (a) and the output (b) of the proposed 
fuzzy-logic controller. 
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BN Z SN SN BN BN 
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Figure 5. The construction of the fuzzy-logic controller. 

BN SN Z SP BP 

−1 1 

1 

0 
Voltage (pu) 

0 

(b) 

BN SN Z SP BP 

−1 1 

1 

0 
 Current (pu) 

0 

(a) 

Figure 5. The construction of the fuzzy-logic controller.

4. Grid Code and Low-Voltage Ride-Through Requirements
4.1. Grid Code Requirement and Fault Ride-Through

In Figure 6, the grid codes of two countries, Morocco and Germany, are shown. The
red line represents the grid code of Germany (GCG), and the blue line represents the grid
code of Morocco (GCM). For the GCG, the voltage drop is described as 0% of the nominal
voltage (0% Un) for 150 ms, with an increase in voltage up to 90% Un at 1500 ms following
the fault incident. When the voltage of the grid dips below 90% Un, the LVRT function
should be activated. Moreover, according to the GCM, the WT must resist the low voltage
up to 80% Un for 600 ms [22,23].
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When the grid voltage is oriented on the d-axis (vqg = 0), the active and reactive
electricity supplied into the grid may be adjusted by utilizing the quadrature and the direct
component currents from (8), resulting in (16):{

Pg = 3
2 .vdg.idg

Qg = − 3
2 .vdg.iqg

(16)

4.2. Low-Voltage Ride-Through Capability

The wind energy conversion systems (WECSs) should deliver the reactive current to
manage the grid voltage if it exceeds 10% of the nominal value on each side of the nominal
voltage (Figure 7). The WT must supply a certain amount of reactive current depending on
the voltage level. According to (17), the reactive current must be increased after the dead
band [23,24] using the following Equation:

IQ − IQ0 ≥ 2
U −U0

Un
In (17)

where Iq denotes the reactive current, Iq0 denotes the reactive current preceding the fault,
In denotes the rated current, U denotes voltage during the fault, U0 denotes the voltage
before the fault, and Un denotes the rated voltage.

Grid codes differ by country, but they all have several requirements in common, such
as LVRT capabilities, frequency and voltage fluctuation constraints, active and reactive
power regulation, and power factor control. According to Figure 7, during a voltage dip,
the generating plants must provide more reactive current to the grid. Voltage regulation, as
indicated in Figure 7, must be implemented in the case of a voltage sag of more than 10%
of the generator voltage effective value. The voltage regulation must be triggered within
20ms after fault detection by supplying a reactive current on the undervoltage side of the
machine transformer with a contribution of at least 2% of the rated current per percent of
the voltage dip. According to the new GCG, if required, it must be capable of supplying a
reactive current of 100% of the rated current [23].



Energies 2023, 16, 291 9 of 16Energies 2023, 16, x FOR PEER REVIEW 9 of 16 
 

 

 
Figure 7. The concept of voltage control during voltage perturbations according to the E. ON grid 
code [23]. 

0

02Q Q n
n

U U
I I I

U
−

− ≥  (17)

where Iq denotes the reactive current, Iq0 denotes the reactive current preceding the fault, 
In denotes the rated current, U denotes voltage during the fault, U0 denotes the voltage 
before the fault, and Un denotes the rated voltage. 

Grid codes differ by country, but they all have several requirements in common, such 
as LVRT capabilities, frequency and voltage fluctuation constraints, active and reactive 
power regulation, and power factor control. According to Figure 7, during a voltage dip, 
the generating plants must provide more reactive current to the grid. Voltage regulation, 
as indicated in Figure 7, must be implemented in the case of a voltage sag of more than 
10% of the generator voltage effective value. The voltage regulation must be triggered 
within 20ms after fault detection by supplying a reactive current on the undervoltage side 
of the machine transformer with a contribution of at least 2% of the rated current per per-
cent of the voltage dip. According to the new GCG, if required, it must be capable of sup-
plying a reactive current of 100% of the rated current [23].  

When Ug = 90%Un, to improve the wind energy capture, the de-loaded algorithm will 
regulate the PMSG-side converter. The active power reference for the grid side is set to 
the value obtained by the de-loaded algorithm, whereas the reactive power reference is 
set to zero: 

0
ref del

ref

P P

Q

=

=
 (18)

5. Primary Frequency Regulation in an Islanded Microgrid Case 
Primary Frequency Regulation 

During strong winds and MG disconnection from the grid, the DT-FLC is employed 
to regulate the pitch angle of the WT-blade and to implement the pitch kinetics controller, 
as well as the ARS regulation, to adjust the blade pitch angle as indicated in Figure 8. 

The gradual frequency (Δf) and power (ΔP) variations are linked according to (19): 

.ff K PΔ = − Δ  (19)

Figure 7. The concept of voltage control during voltage perturbations according to the E. ON grid
code [23].

When Ug = 90%Un, to improve the wind energy capture, the de-loaded algorithm will
regulate the PMSG-side converter. The active power reference for the grid side is set to
the value obtained by the de-loaded algorithm, whereas the reactive power reference is set
to zero:

Pre f = Pdel
Qre f = 0

(18)

5. Primary Frequency Regulation in an Islanded Microgrid Case
Primary Frequency Regulation

During strong winds and MG disconnection from the grid, the DT-FLC is employed
to regulate the pitch angle of the WT-blade and to implement the pitch kinetics controller,
as well as the ARS regulation, to adjust the blade pitch angle as indicated in Figure 8. The
gradual frequency (∆f ) and power (∆P) variations are linked according to (19):

∆ f = −K f .∆P (19)

where Kf is the frequency droop factor constant, and ∆f and ∆P are the frequency deviation
and the active power margin, respectively.
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Figure 8. The proposed modeling of de-loaded-technique-based FLC to regulate the pitch angle and
the mechanical torque.

The active power margin can be determined in the following way, depending on the
condition of the battery charge/discharge:

∆P = PWF ± PBESS − PL (20)
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According to [21], the actual droop factor is calculated as follows:

K f .act = K f .max −
(

K f .max − K f .min

)[ Pres−act − Pres−min

Pres−max − Pres−min

]
(21)

where Pres-act is the WTG actual power margin, Pres-max is the WTG maximum power
margin, Pres-min is the minimum power margin, and Kf.max and Kf.min are the maximum
and minimum droop (%), respectively.

6. Simulation Results

The simulation findings are shown per unit in both cases, the connected and islanded
mode. In this study, the PCC (point common coupling) is in fact the origin of the voltage
drops. Table 2 summarizes the results obtained and the advantages and disadvantages of
each controller. In Tables 3 and 4, the PMSG and BESS parameters are listed.

Table 2. Quantitative comparison between FLC and ANN with both techniques.

Primary Frequency Droop (Hz) Voltage Droop (%) and System
Stability after the Fault

Controller FLC ANN Voltage Droop System Stability

De-loaded
technique −0.0007 −0.02 −70 High

MPPT Technique −0.0038 −0.022 −80 Medium

Table 3. PMSG and battery Parameters.

Parameters Description Value

Vn Nominal Voltage 660 V
P Active Power 2 MW

Udc DC-Link Voltage 1500 V
ωr Rated angular rotor speed 2.57 rad/s
f Rated Frequency 50 Hz
C DC-link Capacitor 4400 µF
vw Nominal Wind Speed 12.4 m/s
ρ Air density 1.225 kg/m3

A Swept Area 4775.94 m2

Lq, Ld
Stator d-axis and
q-axis inductance 0.0003 H

R Resistance of the Stator 0.008 Ω
p Pole pairs 60
ψf Permanent magnet flux 0.192 Wb

Table 4. Battery parameters.

Parameters Description Value

In Rated Battery Current 120 A
nb Battery Cell Number 10
Ri Interne Resistance 0.008 Ω

6.1. Case 1: Grid-Connected Microgrid under LVRT Mode

According to the LVRT requirements, the MG must be maintained connected to the
UG after the short-circuit problem occurred at the PCC. A grid fault event is investigated at
PCC during 1000 ms. To ride through the low-voltage, the DT and FLC are compared with
MPPT and ANN. On the other hand, BESS is considered to be used in difficult weather
conditions.
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In Figure 9, the wind speed is taken at around 0.67 pu and 0.99 pu to illustrate the
system performance. Under the grid faults, the response of the DC-link voltage control
strategy with FLC in comparison with ANN is shown in Figure 10. The voltage instability
caused saturation of current, resulting in a DC-link voltage disturbance. The LVRT is
performed as both strategies gave approximately the same answer; that is, the DC link
voltage was kept in the range −0.047% and +0.04% from the rated DC-Link voltage in the
fault time and remained constant after the fault. As illustrated in Figure 10, in comparison
with the ANN technique, the proposed technique (green line) clearly reduces the DC-link
voltage fluctuations.
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Figure 10. The DC-link voltage output.

To optimize the WT-power output, the ARS tracked the variation of the wind speed
and decreased when the fault occurred. With the DT-FLC, the ARS attitude during the
grid fault is depicted in Figure 11. As can be noticed, a reserve is produced through
ARS control to supply spinning reserves. Indeed, under severe wind speed variation, the
WF supplies electricity to the system by generating and storing the rotor’s kinetic energy
more effectively.

Figure 12 shows the PCC voltage drop; with the proposed technique, the fluctuations
are lower and the system is more stable. This leads to the mitigation of the power fluctua-
tions and peaks supplied to the MG. Figures 13 and 14 show the restriction in the active
power corresponding to an increase in reactive power. During a grid fault, GSC power
is zero in both techniques. However, taking into account the rotor speed restriction, the
proposed solution dropped its power by 10% less than the MPPT value. The reactive power
injected by the microgrid to the grid during the voltage sag started at t = 4 s. With the
DT-FLC, the power and voltage were stable in comparison with MPPT (green and purple
lines). The injected reactive power by the WF during the fault restores the PCC voltage, and
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its value changes from 0 to 0.9 pu and from 0 to 1 pu for de-loaded and MPPT techniques,
respectively, to fulfill the LVRT requirements given by GCG.
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Figure 15 illustrates battery SoC with both techniques, the DT-FLC and MPPT-FLC.
With the DT-FLC, the battery responds faster, at only 0.02 s, after the start of the voltage
sag. However, with MPPT-FLC, the battery responses at 0.13 s after the fault. Due to the
FLC performance, both techniques, MPPT and the DT, maintain the SoC between 0.25
and 0.85 pu to protect and prolong the battery life span. Hence, the battery participates
adequately in the LVRT requirement and contributes to enhancing the reliability and
stability of the MG.
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6.2. Case 2: Islanded Microgrid Mode

If the issue continues to take longer than the grid code allows, the MG must disconnect
from the UG to preserve its stability and load supply. In this mode, the MG is 100%
renewable, and WTGs and batteries are used to meet the load demand. Figure 16 depicts
the fluctuation in load demand (blue line), the output de-loaded, and maximum WF powers
(green and red lines, respectively). The load demand suddenly decreases from 1 to 0.95 pu
at 3 s and increases from 0.95 to 0.9736 pu at 6 s to be stabilized in this value. At the same
time, with 10% of power reserve between the two output WF powers, the de-loaded and
MPPT power follow the wind speed variations previously shown in Figure 10. The wind
power regulation is faster due to the pitch angle control of the proposed technique. The
power is reserved by storing more kinetic energy as shown in Figure 16. The droop between
the two powers is used to overcome the frequency fluctuations. Figure 17 shows the battery
participation in the primary frequency regulation using de-loaded control enhanced by
FLC. Battery power varies between −0.0264 and 0.64 pu, as a minimum and maximum
value, respectively.

The disconnection of the load from the grid caused unexpected demand from the
islanded microgrid, which creates a frequency variation as seen in Figure 18. As indicated
in the same figure and in Table 2, during high load, with the DT-FLC (blue line), the fre-
quency dips are reduced (−0.0007 Hz), which results in preventing MG loss and distortion
during load increase or disconnection from the grid. However, with FLC-MPPT (red line),
ANN-de-loaded (green line), and ANN-MPPT (purple line), the frequency deviation is
−0.0038 Hz, −0.02 Hz, and −0.022 Hz, respectively. The disturbing frequency under
the power variation is regulated following the load connection. With the DT-FLC, the
autonomous-MG participates in PFR better than the other controllers. This variation is
within the IEEE standard (IEEE Std 1547–2018) and Moroccan grid code which recommend
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a limited frequency default droop at (−3 Hz) and (−2.5 Hz), respectively, [25,26]. However,
without control (orange line), the system is unstable after the disconnection from the grid,
causing severe frequency deviation.
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7. Conclusions

In this paper, a new control strategy is investigated for connected-MG and islanded-
MG based on the DT-FLC. The studied MG is more resilient during and after a fault due
to the ARS control by absorbing kinetic energy from the rotor. The findings show that an
MG using the suggested approach is much better at responding to the LVRT requirement
(connected mode) and PFR (islanded mode) when compared to the MPPT and ANN control.
Furthermore, the BESS operation is explored to enhance the suggested control. When faults
occur, BESS support is employed to preserve stability and mitigate the negative effects of
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grid integration. In addition, the PWM-based-FLC is suggested to govern the PMSG-side
converter. Finally, from the obtained results in both cases, the proposed technique has
shown the system stability and robustness and has successfully maintained the system
voltage and frequency within a standard operating band that is defined by the grid codes.
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