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Abstract: Metal oxide and metal dichalcogenide heterostructure composites are promising candidates
for electrochemical use. In this study, a hybrid heterostructure composite electrode material was
made using a straightforward hydrothermal process using transition metal oxide (NiO) and metal
dichalcogenide (MoS2). The surface of the flower-like structured MoS2 was grown with granular
structured NiO, and this heterostructure composite exhibited considerably improved specific capaci-
tance when compared to the pure NiO and MoS2 materials. The pseudocapacitive performance was
effectively supported by the heterostructure combination of transition metal oxide (TMOs) and metal
dichalcogenide (MDC), which greatly improved ion transport within the material and storage. At
a current density of 1 A/g, the prepared heterostructure composite electrode material exhibited a
specific capacitance of 289 F/g, and, after 2000 cycles, the capacitance retained 101% of its initial
value. The symmetric device was constructed and put through tests using LED light. This finding
opens up a new avenue for the quickly increasing the field of heterostructure materials.

Keywords: heterostructure composite; NiO supercapacitor; TMO–TMC composite; MoS2 supercapacitor

1. Introduction

The world’s energy demands have rapidly expanded over time, yet the majority of that
energy still comes from fossil fuels [1]. Dependence on fossil fuels for an extended period
of time is not recommended since it increases the greenhouse effect, which causes ozone
depletion and global warming [2]. Renewable energy generation and powerful storage
technologies are essential for replacing fossil fuel energy. Solar cells, hydropower, and
windmills are just a few examples of the renewable energy sources that may be harnessed
for use in the energy industry. A gadget that can store energy generated from renewable
sources for later use is required. Fuel cells, batteries, capacitors, and so on are only some
of the various energy storage options available. Nevertheless, the combination of high
energy density and high power density in supercapacitors or ultracapacitors makes this
area of study intriguing. In addition, there are three distinct types of supercapacitors that
differ based on the process by which they store a charge: pseudocapacitors, electrochemical
double-layer capacitors (EDLC), and hybrid capacitors [3]. Depending on the sort of energy
storage mode used by the supercapacitor, the electrode material varies [4]. For instance,
carbon-type materials such as carbon nanotubes, carbon aerogels, etc. are used in EDLC,
but metal-based compounds such as metal oxide, metal chalcogenides, metal nitrides,
etc. are used in pseudocapacitors [5–7]. A hybrid capacitor utilizes both an EDLC and
a pseudocapacitor.

The transition metal oxides MnO2, V2O5, NiO, Co3O4, Fe3O4, and SnO2 exhibit ca-
pacitance characteristics [8–14]. Among these metal oxides, NiO is the most attractive
choice because of its low to high capacitance, stability, low cost, and strong electrochem-
ical activity. Recently, Vijayakumar et al. used the microwave method to produce NiO
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nanoflakes and reached 409 F/g at 0.5 current density [15]. In another investigation, Dhas
et al. produced NiO using a simple hydrothermal technique and achieved 132 F/g at a
scan rate of 5 mV/s [16]. Pore et al. recently created a hydrothermally generated NiO/rGO
nanocomposite and achieved 727.1 F/g at 1 mA/cm2 current density [17]. However, owing
to weak electrical conductivity and a small accessible surface area, it has not been possible
to achieve the predicted specific capacitance value of 2584 F/g [18]. To address the afore-
mentioned problem, van der Waals heterostructures, composites of various nanostructured
materials with exceptional qualities, were developed by combining metal chalcogenides
with metal oxides [19,20]. In compounds known as transition metal dichalcogenides, the
metal acts as a cation, while chalcogens such as sulfur, selenides, and other similar elements
serve as anions. Metal oxides, on the other hand, are composed of a metal cation and an
oxygen anion. Molybdenum disulfate (MoS2) is one of the transition metal dichalcogenides
(TMD), and it has a particularly desirable performance in the area of electrochemical energy
storage and conversion. MoS2 has a unique 2D structure that provides ions with a lot of
surface accessibility; the different oxidation states of the Mo atoms enable those accessible
ions to store energy. Additionally, for charge storage, the layered structure of MoS2 (S-Mo-S)
with van der Waals forces gives sufficient space to allow in the external ions between the
layers [21].

Recent research conducted by Acerce and colleagues explored chemically exfoliated
metallic 1T phase MoS2 nanosheets. The researchers conducted electrochemical studies
using various ions, such as H+, Li+, Na+, and K+, and they achieved capacitance ranging
from 400 to 700 F/cm3. In addition, the material stability was maintained at 95% after
5000 cycles [22]. Joseph et al., using the hydrothermal process, synthesized metallic defect
induced active edge 1T-MoS2 and investigated its electrochemical activity. They attained
379 F/g at a current density of 1 A/g, and the material maintained 92% of its stability after
3000 cycles [23]. In their hydrothermal synthesis of metallic MoS2, Geng et al. observed
a specific capacitance of 380 F/g when scanned at a rate of 5 mV/s [24]. Ghasemi et al.
developed a NiO/MoS2/rGO composite and employed it as a supercapacitor electrode;
after 1000 cycles, the capacitance was 7.38 mF/cm2 with 90% retention [25]. Li et al.
developed a Ni(OH)2/MoS2 nanohybrid with a specific capacitance of 201 mAh/g at a
scan rate of 5 mV/s and capacitance retention of 83% at a current density of 20 A/g [26].
Luo et al. developed a Ni3S4-MoS2 heterojunction electrode using a simple hydrothermal
process; electrochemical measurements revealed a specific capacitance of 985.25 F/g at a
current density of 1 A/g, as well as a capacitance retention of 58% after 20,000 cycles at a
current density of 10 A/g [27]. Yue et al. developed a Ni metal organic framework (MOF)
and a composite with MoS2; an electrochemical analysis revealed a remarkable specific
capacitance of 1590.24 F/g at a current density of 1 A/g, with capacitance preserved at 88%
after 20,000 cycles at a current density of 5 A/g [28]. In the field of supercapacitors, NiO
and MoS2 are both adaptable; in addition, their lateral resemblance increases the potential
of heterostructure composites, which have improved electric pseudocapacitive and electric
double-layer capacitive performances, simultaneously. The benefit of a heterostructure is
improved electrical performance in comparison to pristine materials; various metal oxides
have numerous redox activities. In addition, hybridization results in an increased surface
area and decreased diffusion length [29,30]. As a result, the NiO-MoS2 heterostructure
composition could be used as an electrode material for supercapacitors. It also has more
structural deficiencies and a greater number of accessible electrochemical active sites for
ion/electron diffusion, which enhances the redox reaction activities and electrochemical
energy storage [19,30,31].

In this study, it was shown that the hydrothermal process was used to create MoS2
with a flower-like structure. A thin layer of NiO was then formed on the prepared MoS2
surface after it was dissolved in water. The hybrid behavior of an electrochemical super-
capacitor and an EDLC was investigated using this NiO-MoS2 heterostructure composite.
Throughout the whole electrochemical study, an economical graphite sheet was used and
showed good capacitance.
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2. Materials and Methods
2.1. Synthesis of MoS2

MoS2 was produced using the hydrothermal technique, which included dissolving
0.02 M of ammonium molybdate in 70 mL of double-distilled (DD) water first and then
gradually adding 0.08 M of thiourea to the solution while stirring continuously at room
temperature. The mixture was stirred for an additional 30 min. Then, the solution was
transferred to a 100 mL stainless steel Teflon inline autoclave and held there for 24 h at
180 ◦C. Additionally, the precipitate was collected, washed with DD water and ethanol,
and then dried overnight at 60 ◦C. The collected sample was labeled as M.

2.2. Synthesis of NiO and NiO-MoS2 Composite

As with a typical procedure, 180 mg of MoS2 was dispersed in 60 mL of DD water.
Following that, 0.1 M of nickel nitrate hexahydrate (Ni (NO3)2·6H2O) was added and
dissolved. The pH of the solution was then adjusted to 11 using the NH3OH solution. The
solution was then transferred to a 100 mL Teflon inline autoclave and put in a furnace,
where it was heated at 150 ◦C for 12 h. The precipitate was recovered and washed multiple
times with DD water followed by ethanol before being dried in a vacuum oven at 60 ◦C for
6 h. Next, the dried powder was annealed at 450 ◦C for 1 h. Then, the collected sample was
labeled as NM3. The same procedure was followed with 600 mg of MoS2, and the sample
was labeled as NM10; without MoS2, pure NiO was prepared and labeled as N.

2.3. Working Electrode Preparation and Electrochemical Studies

To make the working electrodes, active material (N, M, NM3, and NM10) was ground
with acetylene black (AB) and polyvinylidene difluoride (PVDF) in a ratio of 80:10:10 with
1-methyl-2-pyrrolidinone (NMP). The produced slurry was coated on a graphite sheet in
an area that measured about 1 × 1 cm2 and was then dried at 90 ◦C for 6 h. Three elec-
trodes and 1M KOH were employed as the electrolyte to investigate the active material’s
electrochemical behavior. The prepared material’s electrochemical activity was analyzed
using the following methods: cycle stability, electrochemical impedance spectroscopy (EIS),
galvanostatic charge discharge (GCD), and cyclic voltammetry (CV). With a three-electrode
potentiostat Palmsens 3 (PSTrace 5.9, EKTechnologies GmbH, Nufringen, Germany) equip-
ment in an ambient environment, a full electrochemical investigation was carried out. The
constructed electrode was used as the working electrode, Ag/AgCl in 3.5 M KCl served
as the reference electrode, and a platinum wire served as the counter electrode in the
electrochemical investigation.

2.4. Instrumentation

The crystal structure of the materials was studied by X-ray diffraction using an Ultima
III with Cu-Ka wavelength of λ = 1.54056 Å at potential of 40 kV. The vibrational studies
were performed with Fourier transform infrared spectroscopy (FTIR) by a Thermo scientific
Nicolet iS5, Massachusetts, United States in KBr mode in the range of 400 to 4000 cm−1

wavenumbers. The morphology of materials was analyzed by field emission scanning
electron microscopy (FESEM) with energy dispersive X-ray spectroscopy (EDX) obtained
with a GEMINI 300, Carl Zeiss, Oberkochen Germany; the sample was dispersed on the
top of a carbon-coated grid. Transmission electron microscopy (TEM) was obtained with a
Tecnai G230S. The thermal stability of the materials was analyzed by thermogravimetric
analysis (TGA) performed by an Exstar 6200 TG/DTA instrument, LabWrench, Midland,
ON, Canada.

3. Results and Discussion
3.1. Structural Characterizations

X-ray diffraction was used to examine the structural analyses of the produced pristine
N and M and nanocomposite NM3 and NM10, which are shown in Figure 1a. In the NiO
spectrum, major peaks were observed at 2θ = 37.52◦, 43.54◦, 63.12◦, 75.70◦, and 79.56◦
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belonging to the planes (111), (200), (220), (311), and (222) for an NiO cubic structure with
a JCPDS card no. 47-1049 [32]. For the MoS2 spectrum, major peaks were observed at
2θ = 14.36◦, 33.58◦, 40.02◦, 44.04◦, 49.76◦, and 59.04◦, which corresponded to planes (002),
(100), (103), (006), (105), and (008) with JCPDS card no. 37-1492 [33–35].
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Figure 1. (a) X-ray diffraction pattern of N, M, NM3, and NM10; (b) FTIR spectra of N, M, NM3, and
NM10; * is the NiO peak in composite.

The NM3 spectrum and pure NiO showed no significant changes. Because MoS2 has
a lower diffraction density than the other materials, the NM10 composite did not detect
the MoS2 peak. Additionally, the crystallinity of the composite was lower than that of
the pristine material, and it was noted that the material’s full width at half maxima had
risen [36,37].

From the following Scherrer’s formula, the crystallite size of the materials was calcu-
lated [38].

D =
Kλ

β cos θ
(1)

where D is the crystallite size, K is the crystallite shape factor, λ is the wavelength of the
X-ray, β is the full width at half maxima, and θ is the Bragg’s angle. The crystallite size of
pure NiO is 20.56 nm; but, after being combined with MoS2, it only measured 2.90 nm. This
is because MoS2 has a lower crystallinity than NiO.

The molecular vibrations of samples N, M, NM3, and NM10 were analyzed from FTIR
spectra, as shown in Figure 1b. In the sample N spectrum, the typical peak at 1125 cm−1

indicated a C-O stretching vibration. The peak at 1630 and 3440 cm−1 corresponded to the
O-H bending vibration. The peak at 1397 cm−1 represented an S=O stretching vibration.
The minor peak at 3144 cm−1 corresponded to the asymmetric vibration of C-H stretching.
The peak at 1039 cm−1 represented Ni-O bending [39–42]. The FTIR spectra of M, NM3,
and NM10 had similar vibrations as C-O stretching, H2O deformation, OH bending, and
C-H stretching at identical scales. In summary, diffraction peaks of MoS2 were not reflected
in the composite, while the crystallinity of the material was lowered for the composite. This
is because the crystallinity density of MoS2 is smaller than that of NiO. In the FTIR, the
presence of MoS2 was confirmed with the S=O stretching vibration and C-O stretching.
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3.2. Morphological Studies

SEM investigation revealed the surface morphology of synthesized N, M, NM3, and
NM10, as shown in Figure 2a–d. Sample N was found to have tiny sphere-like particles
(Figure 2a). On the other hand, M had a cluster of nanoflower structures. NiO can be seen
forming on the surface of the MoS2 nanoflower in NM3 and NM10 (Figure 2c,d). In order
to improve charge mobility and increase electrochemical activity, the surface flower-like
structure of the MoS2 particles was grown on by the nanoscale sphere-shaped NiO.
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Figure 2. FESEM images of (a) N, (b) M, (c) NM3, and (d) NM10.

The corresponding TEM pictures showed the pure NiO and NiO-MoS2 composite
nanostructures (Figure 3a–e); their electron diffraction images are shown in Figure 3c,f,
respectively. According to the observed TEM images, N had particles that were about
22 nm in size, some of which were clustered when viewed from a distance, and others had
a hexagonal shape to them. Similarly, NM10 particles had a size of 1.2 µm and they had
two distinct parts: one was the MoS2 nanoflower’s core and the other was the NiO that
formed on the nanoflower’s surface. The SAED pattern of the N and NM10 demonstrated
a decrease in crystallinity from N to NM10 and was in agreement with the XRD findings.

3.3. Elemental Analysis

The prepared N, M, NM3, and NM10 elemental analyses are shown in Figure 4a–d.
Sample N verified the presence of nickel and oxygen with weight percentages of 75.8%
and 25.2%, respectively. Sample M verified the presence of molybdenum and sulphur with
percentages of 55.2% and 44.8%, respectively. The elemental mapping of the sample NM3
revealed the presence of a large quantity of nickel and oxygen and a very little amount of
molybdenum and sulphur, with weight percentages of 57%, 41%, 1%, and 1%, respectively.
It validated the little quantity of MoS2 contained in the composite. Nickel, oxygen, molyb-
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denum, and sulphur were likewise contained in NM10 in the proportions of 73%, 24%, 2%,
and 1%, respectively. The EDX energy spectrum is displayed in Figure S1 and the compo-
sition is listed in Table S3. These decreased Mo and S weight percentage concentrations
demonstrated that the NiO was formed on the surface of the MoS2 nanoflowers.
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3.4. Electrochemical Characterizations

Electrochemical methods such as cyclic voltammetry (CV), galvanostatic charge and
discharge (GCD), electrochemical impedance spectroscopy (EIS), and stability testing were
used to investigate the electrochemical activity of synthesized materials. In an aqueous
electrolyte 1 M KOH solution, the CV of N, M, NM3, and NM10 was measured in a three-
electrode setup with a potential window of 0–0.65 V vs. Ag/AgCl. Figure 5 depicts CV
curve at various scan rates of 5, 10, 15, 20, 25, 30, 35, and 40 mVs−1.
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The current peaks were found during cathodic and anodic scans, and their current
density rose with the scan rate without altering the form at higher scan rates. They depicted
the electrons’ and ions’ fast moments during the redox reaction, and they determined the
quick insertion and exertion of the ions at the electrode surface [43]. According to the CV
curves, pristine NiO and MoS2 exhibited a faradic redox reaction behavior and electrochem-
ical double-layer capacitor (EDLC) combined with pseudocapacitive behavior, respectively,
whereas the composite exhibited a dominating faradic redox reaction behavior [44,45]. The
following redox reaction was possible between the working electrode and alkaline aqueous
solution [31,46].

NiO + OH− ↔ NiOOH + e− (2)

The specific capacitance (Csp) of electrode materials from the CV curve was calculated
by following the formula [47]:

Csp =
1

mv(Vb −Va)

Vb∫
Va

I dV (3)

where Csp is the specific capacitance (Figure 1), v is the scan rate (mVs−1), m is the mass
of the active material (g), Vb and Va are the CV potential window limits (V), and I is the
discharge current (A). The material’s specific capacitance was estimated from the CV curve
and is listed in Table S1.
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The GCD studies were explored by varying the current density from 0.25 Ag−1

to 2 Ag−1 with a potential of 0.57 V. The results of these investigations are shown in
Figure 6a–d. The GCD profile of pure NiO suggests that the material behaved as a pseudo-
capacitor, whereas the EDLC profile of MoS2 was dependent on the composite. Pseudoca-
pacitance was dominated by NM3 and NM10, however. Figure 6e presents a comparison
of the GCD curve with 0.5 Ag−1. Based on the GCD curve, the specific capacitance of the
electrode may be calculated using the following formula [48]:

Csp =
Idt

mdV
(4)

where I is the discharge current (A), dt is the discharge time (s), m is the mass of active
material (g), dV is the potential window (V), and Csp is the specific capacitance (Fg−1). N,
M, NM3, and NM10 were found to have specific capacitances of 86, 56, 126, and 289 Fg−1,
respectively, at 1 Ag−1 current density. The capacitance retention of N, M, NM3, and
NM10 was observed at 95.7%, 90.4%, 98.6%, and 101.6%, respectively, during the GCD
cyclic stability test at 1 A/g for 2000 cycles. According to the aforementioned findings,
pristine material exhibited lower capacitance and stability, while composite materials
exhibited higher capacitance and stability. This is because heterostructure materials provide
advantages including high ion migration, large surfaces, and more active sites. These
characteristics provide easier charging and draining conditions and more charge storage.
Table S2 contains the material’s specific capacitance as determined from the GCD curve.
The specific capacitance significantly reduced at higher scan rates because of increased ion
diffusion on the electrode’s inner structure and a lowered interface between the electrolyte
and active material. As a result, electrolyte ions quickly reached the current collector.
Higher current density reduced the amount of electrode surface that the ions could reach,
which lowered the specific capacitance. Comparisons of the specific capacitances at various
current densities are shown in Figure S2.
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The coated electrode’s EIS was carried out at 0.5 V at frequencies of 10 kHz to 0.1 Hz;
their Nyquist curves are shown in Figure 5f. These graphs demonstrate the electrode’s
resistance characteristics. The electrode exhibited a small curve in the high-frequency region
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of the Nyquist plot, indicating that the faradaic reaction occurred at the electrode–electrolyte
interface. At low frequencies, however, the straight line was seen because of Warburg
impedance. The plot’s 45◦ angle clearly showed how the electrode behaved capacitively. In
comparison to N, M, and NM3, the NM10 electrode had the lowest resistance, indicating
that it has better conductivity and is more appropriate for use in supercapacitors. The
best electrode’s material stability was assessed for 2000 cycles using a current density of
1 Ag−1, as shown in Figure 6f. After 2000 consecutive GCD cycles, it was seen that the
specific capacitance rose; the electrode now had 101.5% more capacitance than before. This
might be because the electrolyte ions were more easily able to reach the active sites on the
electrode surface.

NiO was grown on the surface of the flower-like MoS2 possible mechanism of schematic
illustration and electrode–electrolyte interface, as shown in Figure 7. The unique flower-
like structure of the NiO-MoS2 composite may increase the active site and allow for easier
storage of the hydroxyl ion (OH-) on the surface of the electrode. In addition, the improved
charge conductivity may increase quick transport on the electrode surface. In Table 1,
the specific capacitance cyclic stability was compared to earlier studies. According to the
results above, the composite of NiO-MoS2 exhibited more electrochemical activity than the
pristine materials.
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Table 1. Specific capacitance comparing similar work and carbon-based electrode materials.

Material Current Density
or Scan Rate Electrolyte Specific

Capacitance Retention Reference

NiO nanoflakes 0.5 Ag−1 2 M KOH 409 Fg−1 92% after 500 cycles at
current density 10 Ag−1 [15]

NiO nanoparticles 5 mVs−1 1 M KOH 132 Fg−1 75% after 500 cycles at
scan rate 5 mVs−1 [16]

NiO/rGO composite 1 mAcm−2 6 M KOH 727.1 Fg−1 80% after 9000 cycles at
current density 1 mAcm−2 [17]

Metallic 1T-MoS2 1 Ag−1 1 M KOH 379 Fg−1 92% after 3000 cycles at
current density 1 A/g [23]

Ni(OH)2/MoS2 5 mVs−1 6 M KOH 201 mAhg−1 83% after 3000 cycles at
current density 20 A/g [26]

Ni3S4–MoS2 1 Ag−1 3 M KOH 982.21 Fg−1 58% after 20,000 cycles at
current density10 Ag−1 [27]

Ni-MOF @ MoS2 1 Ag−1 3 M KOH 1590.24 Fg−1 88% after 20,000 cycles at
current density 5 Ag−1 [28]

NiO nanobelts 5 Ag−1 2 M KOH 660 Fg−1 95% after 2000 cycles at
current density 5 Ag−1 [46]
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Table 1. Cont.

Material Current Density
or Scan Rate Electrolyte Specific

Capacitance Retention Reference

Ni9S8/O-MoS2
nanocomposite 2 Ag−1 1 M KOH 907 Fg−1 86% after 1200 cycles at

current density 2 Ag−1 [49]

MoS2/NiS 2 Ag−1 6 M KOH 1165 Fg−1 100% after 10,000 cycles at
current density 0.5 Ag−1 [50]

Chitin-derived
activated carbon 0.5 Ag−1 1 M H2SO4 227 Fg−1 98% after 10,000 cycles at

current density 10 Ag−1 [51]

MnO@CNP-2 hybrid
electrode 0.5 Ag−1 6 M KOH 545 Fg−1 87% after 3000 cycles at

current density 10 Ag−1 [52]

Chitosan porous
carbon

spheres/MXene
0.5 Ag−1 1 M H2SO4 362 Fg−1 98% after 10,000 cycles at

current density 10 Ag−1 [53]

Hierarchical porous
polyimide-derived

carbon (CPC-Fe/Zn)
1 Ag−1 6 M KOH 420 Fg−1 92% after 1000 cycles at

current density 20 Ag−1 [54]

Camellia pollen
activated carbon 1 Ag−1 6 M KOH 280 Fg−1 85% after 20,000 cycles at

current density 20 Ag−1 [55]

Porous carbon
N-doped 0.5 Ag−1 6 M KOH 275 Fg−1 95% after 5000 cycles at

current density 5 Ag−1 [56]

NiO-MoS2
heterostructure 1 Ag−1 1 M KOH 289 Fg−1 101% after 2000 cycles at

current density 1 Ag−1 This work

4. Conclusions

In conclusion, a straightforward hydrothermal approach proved effective in producing
the heterostructure NiO-MoS2 composite. In comparison to the pristine material, the
produced composite exhibited decreased crystallinity and a governed NiO cubic structure
with an average crystallite size of 2.90 nm. The composite was confirmed by vibrational
analysis. MoS2 was created in the shape of a flower, and NiO was grown on the layer of
the surface to create a heterostructure composite at nanoscale. In the 1 M aqueous solution
of KOH, NM10 exhibited a high specific capacitance of 289 F/g and capacitance retention
of 101.5% after 2000 GCD cycles. The decreased capacitance may have been caused by
the low-cost graphite current collector’s resistance. This work makes a compelling case
that the combination of EDLC behavior MoS2 and pseudocapacitance behavior NiO has an
effective electrode material for supercapacitors.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/en16010335/s1, Figure S1: EDAX energy spectrum of N, M, NM3,
and NM10; Figure S2: GCD specific capacitance for different energy density; Figure S3: TGA of N,
M, NM3 and NM10; Figure S4: Photograph of lab scale supercapacitor device; Table S1: Specific
capacitance of N, M, NM3, NM10 and NM15 samples at 5 mV/s Scan rate from CV; Table S2: Specific
capacitance calculated from GCD techniques; Table S3: Elemental composition of samples.
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