Utilization of a Commercial 3D Printer for the Construction of a Bio-Hybrid Device Based on Bioink and Adult Human Mesenchymal Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Apparatus
2.1.1. 3D Printer
2.1.2. Supplementary Devices
- -
- A safety hood for biological hazards, with a working area protected by vertical laminar flow classified class II-Type A/B3, HEPA filter (model 120 standard, Bio Activa, AQUARIA). This device was purchased from GENELAB SRL, Perugia (Italy).
- -
- Biological laboratory refrigerator KW class KLAB HTS MEDICAL PROJECT series (model KLAB-R1500V-HTS). Equipped with tropicalised refrigeration system, capable of working in critical environmental conditions and GMP-compliant internal ventilated refrigeration. Working temperature from 0 °C to +15 °C. This device was purchased from GENELAB SRL, Perugia (Italy).
- -
- Incubator (Thermo Electron Model 371 Steri Cycle CO2 Incubator) maintains the desired conditions, including temperature (37 °C), humidified air (95%), and CO2 concentration (5%). This direct-heat incubator features an in-chamber HEPA air filtration system. This device was purchased from GENELAB SRL, Perugia (Italy).
2.2. Materials
2.2.1. Inks Preparation
2.2.2. hUCMS Isolation and Cell Culture Maintenance
2.3. Experimental Procedure
2.3.1. Modifications Applied to the 3D-Printer for the Scope
2.3.2. Printer Tuning and Printing Method
2.3.3. Definition of the Shapes Selected for Printing
2.3.4. Procedure Used for the Insertion of Cells-Bioprinting with hUCMS
2.3.5. Evaluation of the Printed Shapes
2.3.6. Evaluation of Cells’ Vitality—Viability Assay
2.3.7. Morphological Evaluation
2.3.8. Histological Analyses: Sample Preparation and Specific Staining
3. Results
3.1. Deposition Procedure and Valutations over the Shapes
3.2. Analysis on Biological Material
Characteristics of Bioinks
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Melchels, F.P.W.; Domingos, M.A.N.; Klein, T.J.; Malda, J.; Bartolo, P.J.; Hutmacher, D.W. Additive manufacturing of tissues and organs. Prog. Polym. Sci. 2021, 37, 1079–1104. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Yan, Y.; Zhang, R. Rapid prototyping as a tool for manufacturing bioartificial livers. Trends Biotechnol. 2007, 25, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Gambelli, A.M.; Stornelli, G.; Di Schino, A.; Rossi, F. Methane and carbon dioxide hydrates properties in presence of Inconel 718 particles: Analyses on its potential application in gas separation processes to perform efficiency improvement. J. Environ. Chem. Eng. 2021, 9, 106571. [Google Scholar] [CrossRef]
- Gambelli, A.M.; Stornelli, G.; Di Schino, A.; Rossi, F. Methane and carbon dioxide hydrate formation and dissociation in presence of a pure quartz porous framework impregnated with CuSn12 metallic powder: An experimental report. Materials 2021, 14, 5115. [Google Scholar] [CrossRef] [PubMed]
- Mahendiran, B.; Muthusamy, S.; Sampath, S.; Jaisankar, S.N.; Popat, K.C.; Selvakumar, R.; Krishnakumar, G.S. Recent trends in natural polysaccharide based bioinks for multiscale 3D printing in tissue regeneration: A review. Int. J. Biol. Macromol. 2021, 183, 564–588. [Google Scholar] [CrossRef] [PubMed]
- Derakhshanfar, S.; Mbeleck, R.; Xu, K.; Zhang, X.; Zhong, W.; Xing, M. 3D bioprinting for biomedical devices and tissue engineering: A review of recent trends and advances. Bioact. Mater. 2018, 3, 144–156. [Google Scholar] [CrossRef]
- Bose, S.; Vahabzadeh, S.; Bandyopadhyay, A. Bone tissue engineering using 3D printing. Mater. Today 2013, 16, 496–504. [Google Scholar] [CrossRef]
- Yeong, W.; Chua, C.; Leong, K.; Chandrasekaran, M.; Lee, M. Indirect fabrication of collagen scaffold based on inkjet printing technique. Rapid Prototyp. J. 2006, 12, 229–237. [Google Scholar] [CrossRef]
- Schuurman, W.; Levett, P.A.; Pot, M.W.; van Weeren, P.R.; Dhert, W.J.A.; Hutmacher, D.W.; Melchels, F.P.W.; Klein, T.J.; Malda, J. Gelatin-Methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs. Macro-Mol. Biosci. 2013, 13, 551–561. [Google Scholar] [CrossRef]
- Dababneb, A.B.; Ozbolat, I.T. Bioprinting technology: A current state-of-the-art review. J. Manuf. Sci. Eng. 2014, 136, 061016. [Google Scholar] [CrossRef]
- Thavornyutikam, B.; Chantarapanich, N.; Sitthiseripratip, K.; Thouas, G.A.; Chen, Q. Bone tissue engineering scaffolding: Computer-aided scaffolding techniques. Prog. Biomater. 2014, 3, 61–102. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Sun, W.; Zhang, Y.; Wei, W.; Ambasudhan, R.; Xia, P.; Talantova, M.; Lin, T.; Kim, J.; Wang, X.; et al. Rapid induction and long-term self-renewal of primitive neural precursors from human embryonic stem cells by small molecule inhibitors. Proc. Natl. Acad. Sci. USA 2011, 108, 8299–8304. [Google Scholar] [CrossRef] [Green Version]
- Mouser, V.H.M.; Levato, R.; Bonassar, L.J.; Darryl, D.D.; Grande, D.A.; Klein, T.J.; Saris, D.B.F.; Zenobi-Wong, M.; Gawlitta, D.; Malda, J. Three-dimensional bioprinting and its potential in the field of articular cartilage regeneration. Cartilage 2017, 8, 327–340. [Google Scholar] [CrossRef] [Green Version]
- Peltola, S.M.; Melchels, F.P.W.; Grijpma, D.W.; Kellomaki, M. A review of rapid prototyping techniques for tissue engineering purposes. Ann. Med. 2008, 40, 268–280. [Google Scholar] [CrossRef] [Green Version]
- Panwar, A.; Tan, L.P. Current status of bioinks for micro-extrusion-based 3D bioprinting. Molecules 2016, 21, 685. [Google Scholar] [CrossRef]
- Ozbolat, I.T.; Hospodiuk, M. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials 2016, 76, 321–343. [Google Scholar] [CrossRef] [Green Version]
- Hiller, T.; Berg, J.; Elomaa, L.; Rohrs, V.; Ullah, I.; Schaar, K.; Dietrich, A.C.; Al-Zeer, M.A.; Kurtz, A.; Hocke, A.C.; et al. Generation of a 3D liver model comprising human extracellular matrix in an alginate/gelatin-based bioink by extrusion bioprinting for infection and transduction studies. Int. J. Mol. Sci. 2018, 19, 3129. [Google Scholar] [CrossRef] [Green Version]
- Jakab, K.; Norotte, C.; Damon, B.; Marga, F.; Neagu, A.; Besch-Williford, C.L.; Kachurin, A.; Church, K.H.; Park, H.; Minorov, V.; et al. Tissue engineering by self-assembly of cells printed into topologically defined structures. Tissue Eng. Part A 2008, 14, 413–421. [Google Scholar] [CrossRef]
- Gu, B.K.; Choi, D.J.; Park, S.J.; Kim, Y.J.; Kim, C.H. 3D bioprinting technologies for tissue engineering applications. Adv. Exp. Med. Biol. 2018, 1078, 15–28. [Google Scholar]
- Murphy, S.V.; Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 2014, 32, 773–785. [Google Scholar] [CrossRef]
- Decante, G.; Costa, J.B.; Silva-Correia, J.; Collins, M.N.; Reis, R.L.; Oliveira, J.M. Engineering bioinks for 3D bioprinting. Biofabrication 2021, 13, 032001. [Google Scholar] [CrossRef] [PubMed]
- Selcan, G.O.P.; Inci, I.; Zhang, Y.S.; Khademhosseini, A.; Mehmet, R.D. Bioinks for 3D bioprinting: An overview. Biomater. Sci. 2018, 6, 915–946. [Google Scholar]
- Lee, H.J.; Kim, Y.B.; Ahn, S.H.; Lee, J.S.; Jang, C.H.; Yoon, H.; Chun, W.; Kim, G.H. A New Approach for Fabricating Collagen/ECM-Based Bioinks Using Preosteoblasts and Human Adipose Stem Cells. Adv. Health Mater. 2015, 24, 1359–1368. [Google Scholar] [CrossRef] [PubMed]
- Montanucci, P.; Basta, G.; Pescara, T.; Pennoni, I.; Di Giovanni, F.; Calafiore, R. New simple and rapid method for purification of mesenchymal stem cells from the human umbilical cord Wharton jelly. Tissue Eng. Part A 2011, 17, 2651–2661. [Google Scholar] [CrossRef] [PubMed]
- Pittenger, M.F.; Mackay, A.M.; Beck, S.C.; Jaiswal, R.K.; Douglas, R.; Mosca, J.D.; Moorman, M.A.; Simonetti, D.W.; Craig, S.; Marshak, D.R. Multilineage potential of adult human mesenchymal stem cells. Science 1999, 284, 143–147. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Au, M.; Lu, K.; Eshpeter, A.; Korbutt, G.; Fisk, G.; Majumdar, A.S. Generation of insulin-producing islet-like clusters from human embryonic stem cells. Stem Cells 2007, 25, 1940–1953. [Google Scholar] [CrossRef]
- Ganta, C.; Chiyo, D.; Ayuzawa, R.; Rachakatla, R.; Pyle, M.; Andrews, G.; Weiss, M.; Tamura, M.; Troyer, D. Rat umbilical cord stem cells completely abolish rat mammary carcinomas with no evidence of metastasis or recurrence 100 days post-tumor cell inoculation. Cancer Res. 2009, 69, 1815–1820. [Google Scholar] [CrossRef] [Green Version]
- Bartholomew, A.; Sturgeon, C.; Siatskas, M.; Ferrer, K.; McIntosh, K.; Patil, S.; Hardy, W.; Devine, S.; Ucker, D.; Deans, R.; et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp. Hematol. 2002, 30, 42–48. [Google Scholar] [CrossRef]
- Di Nicola, M.; Carlo-Stella, C.; Magni, M.; Milanesi, M.; Longoni, P.D.; Matteucci, P.; Grisanti, S.; Gianni, M.A. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 2002, 99, 3838–3843. [Google Scholar] [CrossRef]
- Alunno, A.; Montanucci, P.; Bistoni, O.; Basta, G.; Caterbi, S.; Pescara, T.; Pennoni, I.; Bini, V.; Bartoloni, E.; Gerli, R.; et al. In vitro immunomodulatory effects of microencapsulated umbilical cord Wharton jelly-derived mesenchymal stem cells in primary Sjögren’s syndrome. Rheumatology 2015, 54, 163–168. [Google Scholar] [CrossRef] [Green Version]
- Sato, K.; Ozaki, K.; Oh, I.; Meguro, A.; Hatanaka, K.; Nagai, T.; Muroi, K.; Ozawa, K. Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood 2007, 109, 228–234. [Google Scholar] [CrossRef]
- Djouad, F.; Charbonnier, L.M.; Bouffi, C.; Louis-Plence, P.; Bony, C.; Apparailly, F.; Cantos, C.; Jorgensen, C.; Noel, D. Mesenchymal stem cells inhibit the differentiation of dendritic cells through an interleukin-6-dependent mechanism. Stem Cells 2007, 25, 2025–2032. [Google Scholar] [CrossRef]
- English, K.; Barry, F.P.; Field-Corbett, C.P.; Mahon, B.P. IFN-gamma and TNF-alpha differentially regulate immunomodulation by murine mesenchymal stem cells. Immunol. Lett. 2007, 110, 91–100. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, L.; Ren, G.; Yuan, Z.; Zhang, Y.; Zhao, R.C.; Shi, Y. Immunosuppressive properties of cloned bone marrow mesenchymal stem cells. Cell Res. 2007, 17, 240–248. [Google Scholar] [CrossRef] [Green Version]
- La Rocca, G.; Corrao, S.; Lo Iacono, M.; Corsello, T.; Farina, F.; Anzalone, R. Novel immunomodulatory markers expressed by humanWJ-MSC: An updated review in regenerative and reparative medicine. Open Tissue Eng. Regen. Med. J. 2012, 5, 50–58. [Google Scholar] [CrossRef] [Green Version]
- Selmani, Z.; Naji, A.; Zidi, I.; Favier, B.; Gaiffe, E.; Obert, L.; Borg, C.; Saas, P.; Tiberghien, P.; Rouas-Freiss, N.; et al. Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+ CD25highFOXP3+ regulatory T cells. Stem Cells 2008, 26, 212–222. [Google Scholar] [CrossRef]
- Montanucci, P.; Alunno, A.; Basta, G.; Bistoni, O.; Pescara, T.; Caterbi, S.; Pennoni, I.; Bini, V.; Gerli, R.; Calafiore, R. Restoration of t cell substes of patients with type 1 diabetes mellitus by microencapsulated human umbilical cord Wharton jelly-derived mesenchymal stem cells: An in vitro study. Clin. Immunol. 2016, 163, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Markstedt, K.; Mantas, A.; Tournier, I.; Ávila, M.H.; Hägg, D.; Gatenholm, P. 3D Bioprinting Human Chondrocytes with Nanocellulose-Alginate Bioink for Cartilage Tissue Engineering Applications. Biomacromolecules 2015, 16, 1489–1496. [Google Scholar] [CrossRef]
- Basta, G.; Montanucci, P.; Calafiore, R. Microencapsulation of cells and molecular therapy of type 1 diabetes mellitus: The actual state and future perspectives between promise and progress. J. Diabetes Investig. 2021, 12, 301–309. [Google Scholar] [CrossRef]
- Wang, J.H.; Thampatty, B.P. Mechanobiology of adult and stem cells. Int. Rev. Cell Mol. Biol. 2008, 271, 301–304. [Google Scholar]
- Weiss, M.L.; Mitchell, K.E.; Hix, J.E.; Medicetty, S.; El-Zarkouny, S.Z.; Grieger, D.; Troyer, D.L. Transplanation of porcine umbilical cord matrix cells into the rat brain. Exp. Neurol. 2003, 182, 288–299. [Google Scholar] [CrossRef] [PubMed]
Alginate (w/v) | Mannitol Saline Solution (v/v) | NanoCrystalline Cellulose (CNC) (CelluForce NCC®) | Microfibrillar Cellulose F (MFC) EXILVA | Viscosity [mPa s] | |
---|---|---|---|---|---|
Bioink1 | 2.5% | 4.6% | 2.5% | 806,936 ± 12,404 | |
2.5% | 4.6% | 1.5% | 319,124 ± 4149 | ||
2.5% | 4.6% | 0.5% | 55,072 ± 881 | ||
Bioink2 | 2.5% | 4.6% | 2.5% | 16,344 ± 327 |
Shape | Nominal Size | Real Size |
---|---|---|
SQUARE | Side:10 mm | Side: 10.36 mm ± 0.05 mm |
SQUARE | Side: 20 mm | Side: 20.72 mm ± 0.05 mm |
CIRCUMFERENCE | Diameter: 10 mm | Diameter: 10.22 mm ± 0.05 mm |
CIRCUMFERENCE | Diameter: 20 mm | Diameter: 20 mm |
Bioink | Shape | Size | Number of Prints |
---|---|---|---|
bioink1 2.5% MFC | Square | 10 mm | 8 |
bioink1 2.5% MFC | Square | 20 mm | 10 |
bioink1 2.5% MFC | Circumference | 10 mm | 10 |
bioink1 1.5% MFC | Circumference | 20 mm | 8 |
bioink1 2.5% MFC | Dome | 9 mm | 20 |
bioink1 1.5% MFC | Dome | 8 mm | 15 |
bioink2 2.5% CFC | Semi-sphere | 7 mm | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morelli, G.; Pescara, T.; Greco, A.; Montanucci, P.; Basta, G.; Rossi, F.; Calafiore, R.; Gambelli, A.M. Utilization of a Commercial 3D Printer for the Construction of a Bio-Hybrid Device Based on Bioink and Adult Human Mesenchymal Cells. Energies 2023, 16, 374. https://doi.org/10.3390/en16010374
Morelli G, Pescara T, Greco A, Montanucci P, Basta G, Rossi F, Calafiore R, Gambelli AM. Utilization of a Commercial 3D Printer for the Construction of a Bio-Hybrid Device Based on Bioink and Adult Human Mesenchymal Cells. Energies. 2023; 16(1):374. https://doi.org/10.3390/en16010374
Chicago/Turabian StyleMorelli, Giulio, Teresa Pescara, Alessia Greco, Pia Montanucci, Giuseppe Basta, Federico Rossi, Riccardo Calafiore, and Alberto Maria Gambelli. 2023. "Utilization of a Commercial 3D Printer for the Construction of a Bio-Hybrid Device Based on Bioink and Adult Human Mesenchymal Cells" Energies 16, no. 1: 374. https://doi.org/10.3390/en16010374
APA StyleMorelli, G., Pescara, T., Greco, A., Montanucci, P., Basta, G., Rossi, F., Calafiore, R., & Gambelli, A. M. (2023). Utilization of a Commercial 3D Printer for the Construction of a Bio-Hybrid Device Based on Bioink and Adult Human Mesenchymal Cells. Energies, 16(1), 374. https://doi.org/10.3390/en16010374